-
2
-
-
34547706430
-
Fast learning rates for plug-in classifiers
-
MR2336861
-
AUDIBERT, J.-Y. and TSYBAKOV, A. B. (2007). Fast learning rates for plug-in classifiers. Ann. Statist. 35 608-633. MR2336861
-
(2007)
Ann. Statist.
, vol.35
, pp. 608-633
-
-
Audibert, J.-Y.1
Tsybakov, A.B.2
-
3
-
-
0003962285
-
-
Johns Hopkins Univ. Press, Baltimore, MD, MR1245941
-
BICKEL, P. J., KLAASSEN, C. A. J., RITOV, Y. and WELLNER, J. A. (1993). Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins Univ. Press, Baltimore, MD. MR1245941
-
(1993)
Efficient and Adaptive Estimation for Semiparametric Models.
-
-
Bickel, P.J.1
Klaassen, C.A.J.2
Ritov, Y.3
Wellner, J.A.4
-
4
-
-
84906085233
-
Inference about the expected performance of a data-driven dynamic treatment regime
-
CHAKRABORTY, B., LABER, E. B. and ZHAO, Y.-Q. (2014). Inference about the expected performance of a data-driven dynamic treatment regime. Clin. Trials 11 408-417.
-
(2014)
Clin. Trials
, vol.11
, pp. 408-417
-
-
Chakraborty, B.1
Laber, E.B.2
Zhao, Y.-Q.3
-
7
-
-
34250277631
-
On central limit theorems for martingale triangular arrays
-
MR0471030
-
GAENSSLER, P., STROBEL, J. and STUTE, W. (1978). On central limit theorems for martingale triangular arrays. Acta Math. Acad. Sci. Hungar. 31 205-216. MR0471030
-
(1978)
Acta Math. Acad. Sci. Hungar.
, vol.31
, pp. 205-216
-
-
Gaenssler, P.1
Strobel, J.2
Stute, W.3
-
8
-
-
84938837686
-
Comment on "Dynamic treatment regimes: Technical challenges and applications" [MR3263118]
-
MR3263120
-
GOLDBERG, Y., SONG, R., ZENG, D. and KOSOROK, M. R. (2014). Comment on "Dynamic treatment regimes: Technical challenges and applications" [MR3263118]. Electron. J. Stat. 8 1290-1300. MR3263120
-
(2014)
Electron. J. Stat.
, vol.8
, pp. 1290-1300
-
-
Goldberg, Y.1
Song, R.2
Zeng, D.3
Kosorok, M.R.4
-
9
-
-
84864310566
-
Impossibility results for nondifferentiable functionals
-
MR2977437
-
HIRANO, K. and PORTER, J. R. (2012). Impossibility results for nondifferentiable functionals. Econometrica 80 1769-1790. MR2977437
-
(2012)
Econometrica
, vol.80
, pp. 1769-1790
-
-
Hirano, K.1
Porter, J.R.2
-
10
-
-
80054681541
-
Adaptive confidence intervals for the test error in classification
-
MR2894746
-
LABER, E. B. and MURPHY, S. A. (2011). Adaptive confidence intervals for the test error in classification. J. Amer. Statist. Assoc. 106 904-913. MR2894746
-
(2011)
J. Amer. Statist. Assoc.
, vol.106
, pp. 904-913
-
-
Laber, E.B.1
Murphy, S.A.2
-
11
-
-
84961287970
-
Dynamic treatment regimes: Technical challenges and applications
-
MR3263118
-
LABER, E. B., LIZOTTE, D. J., QIAN, M., PELHAM, W. E. and MURPHY, S. A. (2014a). Dynamic treatment regimes: Technical challenges and applications. Electron. J. Stat. 8 1225-1272. MR3263118
-
(2014)
Electron. J. Stat.
, vol.8
, pp. 1225-1272
-
-
Laber, E.B.1
Lizotte, D.J.2
Qian, M.3
Pelham, W.E.4
Murphy, S.A.5
-
12
-
-
84938876233
-
Rejoinder of "Dynamic treatment regimes: Technical challenges and applications."
-
MR3263123
-
LABER, E. B., LIZOTTE, D. J., QIAN, M., PELHAM, W. E. and MURPHY, S. A. (2014b). Rejoinder of "Dynamic treatment regimes: Technical challenges and applications." Electron. J. Stat. 8 1312-1321. MR3263123
-
(2014)
Electron. J. Stat.
, vol.8
, pp. 1312-1321
-
-
Laber, E.B.1
Lizotte, D.J.2
Qian, M.3
Pelham, W.E.4
Murphy, S.A.5
-
13
-
-
84863353464
-
Sparse online learning via truncated gradient
-
Curran Associates, Red Hook, NY
-
LANGFORD, J., LI, L. and ZHANG, T. (2009). Sparse online learning via truncated gradient. In Advances in Neural Information Processing Systems 21 908-915. Curran Associates, Red Hook, NY.
-
(2009)
Advances in Neural Information Processing Systems
, vol.21
, pp. 908-915
-
-
Langford, J.1
Li, L.2
Zhang, T.3
-
14
-
-
21144470779
-
Nonexistence of informative unbiased estimators in singular problems
-
MR1212163
-
LIU, R. C. and BROWN, L. D. (1993). Nonexistence of informative unbiased estimators in singular problems. Ann. Statist. 21 1-13. MR1212163
-
(1993)
Ann. Statist.
, vol.21
, pp. 1-13
-
-
Liu, R.C.1
Brown, L.D.2
-
18
-
-
84870707096
-
Performance guarantees for individualized treatment rules
-
MR2816351
-
QIAN, M. and MURPHY, S. A. (2011). Performance guarantees for individualized treatment rules. Ann. Statist. 39 1180-1210. MR2816351
-
(2011)
Ann. Statist.
, vol.39
, pp. 1180-1210
-
-
Qian, M.1
Murphy, S.A.2
-
19
-
-
84914179053
-
-
R CORE TEAM. R Foundation for Statistical Computing, Vienna, Austria.
-
R CORE TEAM (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.r-project.org/.
-
(2014)
R: A Language and Environment for Statistical Computing
-
-
-
21
-
-
84938892102
-
Discussion of "Dynamic treatment regimes: Technical challenges and applications" [MR3263118]
-
MR3263119
-
ROBINS, J. and ROTNITZKY, A. (2014). Discussion of "Dynamic treatment regimes: Technical challenges and applications" [MR3263118]. Electron. J. Stat. 8 1273-1289. MR3263119
-
(2014)
Electron. J. Stat.
, vol.8
, pp. 1273-1289
-
-
Robins, J.1
Rotnitzky, A.2
-
22
-
-
84871677842
-
Statistical issues and limitations in personalized medicine research with clinical trials
-
Article 18
-
RUBIN, D. B. and VAN DER LAAN, M. J. (2012). Statistical issues and limitations in personalized medicine research with clinical trials. Int. J. Biostat. 8 Article 18.
-
(2012)
Int. J. Biostat.
, vol.8
-
-
Rubin, D.B.1
Vander Laan, M.J.2
-
23
-
-
3142725508
-
Optimal aggregation of classifiers in statistical learning
-
MR2051002
-
TSYBAKOV, A. B. (2004). Optimal aggregation of classifiers in statistical learning. Ann. Statist. 32 135-166. MR2051002
-
(2004)
Ann. Statist.
, vol.32
, pp. 135-166
-
-
Tsybakov, A.B.1
-
25
-
-
84938759395
-
-
Division of Biostatistics, Univ. California, Berkeley.
-
VAN DER LAAN, M. J. and LUEDTKE, A. R. (2014a). Targeted learning of an optimal dynamic treatment, and statistical inference for its mean outcome. Technical Report 329, Division of Biostatistics, Univ. California, Berkeley. Available at http://www.bepress.com/ucbbiostat/.
-
(2014)
Targeted Learning of An Optimal Dynamic Treatment, and Statistical Inference for Its Mean Outcome. Technical Report 329
-
-
Vander Laan, M.J.1
Luedtke, A.R.2
-
26
-
-
84963667892
-
Targeted learning of the mean outcome under an optimal dynamic treatment rule
-
VAN DER LAAN, M. J. and LUEDTKE, A. R. (2014b). Targeted learning of the mean outcome under an optimal dynamic treatment rule. J. Causal Inference 3 61-95.
-
(2014)
J. Causal Inference
, vol.3
, pp. 61-95
-
-
Vander Laan, M.J.1
Luedtke, A.R.2
-
29
-
-
84871667403
-
A robust method for estimating optimal treatment regimes
-
ZHANG, B., TSIATIS, A., DAVIDIAN, M., ZHANG, M. and LABER, E. (2012a). A robust method for estimating optimal treatment regimes. Biometrics 68 1010-1018.
-
(2012)
Biometrics
, vol.68
, pp. 1010-1018
-
-
Zhang, B.1
Tsiatis, A.2
Davidian, M.3
Zhang, M.4
Laber, E.5
-
30
-
-
84906088229
-
Estimating optimal treatment regimes from a classification perspective
-
ZHANG, B., TSIATIS, A. A., DAVIDIAN, M., ZHANG, M. and LABER, E. (2012b). Estimating optimal treatment regimes from a classification perspective. Statistics 68 103-114.
-
(2012)
Statistics
, vol.68
, pp. 103-114
-
-
Zhang, B.1
Tsiatis, A.A.2
Davidian, M.3
Zhang, M.4
Laber, E.5
-
31
-
-
84870657864
-
Estimating individualized treatment rules using outcome weighted learning
-
MR3010898
-
ZHAO, Y., ZENG, D., RUSH, A. J. and KOSOROK, M. R. (2012). Estimating individualized treatment rules using outcome weighted learning. J. Amer. Statist. Assoc. 107 1106-1118. MR3010898
-
(2012)
J. Amer. Statist. Assoc.
, vol.107
, pp. 1106-1118
-
-
Zhao, Y.1
Zeng, D.2
Rush, A.J.3
Kosorok, M.R.4
|