메뉴 건너뛰기




Volumn 44, Issue 2, 2016, Pages 713-742

Erratum: Statistical inference for the mean outcome under a possibly nonunique optimal treatment rule (Annals of Statistics (2016) 44 (713-742) DOI: 10.1214/15-AOS1384);Statistical inference for the mean outcome under a possibly non-unique optimal treatment strategy

Author keywords

Efficient estimator; Non regular inference; Online estimation; Optimal treatment; Optimal value; Pathwise differentiability; Semi parametric model

Indexed keywords


EID: 84963665173     PISSN: 00905364     EISSN: 21688966     Source Type: Journal    
DOI: 10.1214/20-AOS2031     Document Type: Erratum
Times cited : (228)

References (31)
  • 2
    • 34547706430 scopus 로고    scopus 로고
    • Fast learning rates for plug-in classifiers
    • MR2336861
    • AUDIBERT, J.-Y. and TSYBAKOV, A. B. (2007). Fast learning rates for plug-in classifiers. Ann. Statist. 35 608-633. MR2336861
    • (2007) Ann. Statist. , vol.35 , pp. 608-633
    • Audibert, J.-Y.1    Tsybakov, A.B.2
  • 4
    • 84906085233 scopus 로고    scopus 로고
    • Inference about the expected performance of a data-driven dynamic treatment regime
    • CHAKRABORTY, B., LABER, E. B. and ZHAO, Y.-Q. (2014). Inference about the expected performance of a data-driven dynamic treatment regime. Clin. Trials 11 408-417.
    • (2014) Clin. Trials , vol.11 , pp. 408-417
    • Chakraborty, B.1    Laber, E.B.2    Zhao, Y.-Q.3
  • 7
    • 34250277631 scopus 로고
    • On central limit theorems for martingale triangular arrays
    • MR0471030
    • GAENSSLER, P., STROBEL, J. and STUTE, W. (1978). On central limit theorems for martingale triangular arrays. Acta Math. Acad. Sci. Hungar. 31 205-216. MR0471030
    • (1978) Acta Math. Acad. Sci. Hungar. , vol.31 , pp. 205-216
    • Gaenssler, P.1    Strobel, J.2    Stute, W.3
  • 8
    • 84938837686 scopus 로고    scopus 로고
    • Comment on "Dynamic treatment regimes: Technical challenges and applications" [MR3263118]
    • MR3263120
    • GOLDBERG, Y., SONG, R., ZENG, D. and KOSOROK, M. R. (2014). Comment on "Dynamic treatment regimes: Technical challenges and applications" [MR3263118]. Electron. J. Stat. 8 1290-1300. MR3263120
    • (2014) Electron. J. Stat. , vol.8 , pp. 1290-1300
    • Goldberg, Y.1    Song, R.2    Zeng, D.3    Kosorok, M.R.4
  • 9
    • 84864310566 scopus 로고    scopus 로고
    • Impossibility results for nondifferentiable functionals
    • MR2977437
    • HIRANO, K. and PORTER, J. R. (2012). Impossibility results for nondifferentiable functionals. Econometrica 80 1769-1790. MR2977437
    • (2012) Econometrica , vol.80 , pp. 1769-1790
    • Hirano, K.1    Porter, J.R.2
  • 10
    • 80054681541 scopus 로고    scopus 로고
    • Adaptive confidence intervals for the test error in classification
    • MR2894746
    • LABER, E. B. and MURPHY, S. A. (2011). Adaptive confidence intervals for the test error in classification. J. Amer. Statist. Assoc. 106 904-913. MR2894746
    • (2011) J. Amer. Statist. Assoc. , vol.106 , pp. 904-913
    • Laber, E.B.1    Murphy, S.A.2
  • 11
    • 84961287970 scopus 로고    scopus 로고
    • Dynamic treatment regimes: Technical challenges and applications
    • MR3263118
    • LABER, E. B., LIZOTTE, D. J., QIAN, M., PELHAM, W. E. and MURPHY, S. A. (2014a). Dynamic treatment regimes: Technical challenges and applications. Electron. J. Stat. 8 1225-1272. MR3263118
    • (2014) Electron. J. Stat. , vol.8 , pp. 1225-1272
    • Laber, E.B.1    Lizotte, D.J.2    Qian, M.3    Pelham, W.E.4    Murphy, S.A.5
  • 12
    • 84938876233 scopus 로고    scopus 로고
    • Rejoinder of "Dynamic treatment regimes: Technical challenges and applications."
    • MR3263123
    • LABER, E. B., LIZOTTE, D. J., QIAN, M., PELHAM, W. E. and MURPHY, S. A. (2014b). Rejoinder of "Dynamic treatment regimes: Technical challenges and applications." Electron. J. Stat. 8 1312-1321. MR3263123
    • (2014) Electron. J. Stat. , vol.8 , pp. 1312-1321
    • Laber, E.B.1    Lizotte, D.J.2    Qian, M.3    Pelham, W.E.4    Murphy, S.A.5
  • 13
    • 84863353464 scopus 로고    scopus 로고
    • Sparse online learning via truncated gradient
    • Curran Associates, Red Hook, NY
    • LANGFORD, J., LI, L. and ZHANG, T. (2009). Sparse online learning via truncated gradient. In Advances in Neural Information Processing Systems 21 908-915. Curran Associates, Red Hook, NY.
    • (2009) Advances in Neural Information Processing Systems , vol.21 , pp. 908-915
    • Langford, J.1    Li, L.2    Zhang, T.3
  • 14
    • 21144470779 scopus 로고
    • Nonexistence of informative unbiased estimators in singular problems
    • MR1212163
    • LIU, R. C. and BROWN, L. D. (1993). Nonexistence of informative unbiased estimators in singular problems. Ann. Statist. 21 1-13. MR1212163
    • (1993) Ann. Statist. , vol.21 , pp. 1-13
    • Liu, R.C.1    Brown, L.D.2
  • 18
    • 84870707096 scopus 로고    scopus 로고
    • Performance guarantees for individualized treatment rules
    • MR2816351
    • QIAN, M. and MURPHY, S. A. (2011). Performance guarantees for individualized treatment rules. Ann. Statist. 39 1180-1210. MR2816351
    • (2011) Ann. Statist. , vol.39 , pp. 1180-1210
    • Qian, M.1    Murphy, S.A.2
  • 19
    • 84914179053 scopus 로고    scopus 로고
    • R CORE TEAM. R Foundation for Statistical Computing, Vienna, Austria.
    • R CORE TEAM (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.r-project.org/.
    • (2014) R: A Language and Environment for Statistical Computing
  • 21
    • 84938892102 scopus 로고    scopus 로고
    • Discussion of "Dynamic treatment regimes: Technical challenges and applications" [MR3263118]
    • MR3263119
    • ROBINS, J. and ROTNITZKY, A. (2014). Discussion of "Dynamic treatment regimes: Technical challenges and applications" [MR3263118]. Electron. J. Stat. 8 1273-1289. MR3263119
    • (2014) Electron. J. Stat. , vol.8 , pp. 1273-1289
    • Robins, J.1    Rotnitzky, A.2
  • 22
    • 84871677842 scopus 로고    scopus 로고
    • Statistical issues and limitations in personalized medicine research with clinical trials
    • Article 18
    • RUBIN, D. B. and VAN DER LAAN, M. J. (2012). Statistical issues and limitations in personalized medicine research with clinical trials. Int. J. Biostat. 8 Article 18.
    • (2012) Int. J. Biostat. , vol.8
    • Rubin, D.B.1    Vander Laan, M.J.2
  • 23
    • 3142725508 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • MR2051002
    • TSYBAKOV, A. B. (2004). Optimal aggregation of classifiers in statistical learning. Ann. Statist. 32 135-166. MR2051002
    • (2004) Ann. Statist. , vol.32 , pp. 135-166
    • Tsybakov, A.B.1
  • 26
    • 84963667892 scopus 로고    scopus 로고
    • Targeted learning of the mean outcome under an optimal dynamic treatment rule
    • VAN DER LAAN, M. J. and LUEDTKE, A. R. (2014b). Targeted learning of the mean outcome under an optimal dynamic treatment rule. J. Causal Inference 3 61-95.
    • (2014) J. Causal Inference , vol.3 , pp. 61-95
    • Vander Laan, M.J.1    Luedtke, A.R.2
  • 29
    • 84871667403 scopus 로고    scopus 로고
    • A robust method for estimating optimal treatment regimes
    • ZHANG, B., TSIATIS, A., DAVIDIAN, M., ZHANG, M. and LABER, E. (2012a). A robust method for estimating optimal treatment regimes. Biometrics 68 1010-1018.
    • (2012) Biometrics , vol.68 , pp. 1010-1018
    • Zhang, B.1    Tsiatis, A.2    Davidian, M.3    Zhang, M.4    Laber, E.5
  • 30
    • 84906088229 scopus 로고    scopus 로고
    • Estimating optimal treatment regimes from a classification perspective
    • ZHANG, B., TSIATIS, A. A., DAVIDIAN, M., ZHANG, M. and LABER, E. (2012b). Estimating optimal treatment regimes from a classification perspective. Statistics 68 103-114.
    • (2012) Statistics , vol.68 , pp. 103-114
    • Zhang, B.1    Tsiatis, A.A.2    Davidian, M.3    Zhang, M.4    Laber, E.5
  • 31
    • 84870657864 scopus 로고    scopus 로고
    • Estimating individualized treatment rules using outcome weighted learning
    • MR3010898
    • ZHAO, Y., ZENG, D., RUSH, A. J. and KOSOROK, M. R. (2012). Estimating individualized treatment rules using outcome weighted learning. J. Amer. Statist. Assoc. 107 1106-1118. MR3010898
    • (2012) J. Amer. Statist. Assoc. , vol.107 , pp. 1106-1118
    • Zhao, Y.1    Zeng, D.2    Rush, A.J.3    Kosorok, M.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.