메뉴 건너뛰기




Volumn 12, Issue 1, 2016, Pages 283-303

Optimal Individualized Treatments in Resource-Limited Settings

Author keywords

Asymptotic linearity; efficient influence curve; individualized treatments; influence curve; resource constraint

Indexed keywords

HUMAN; PROBABILITY; STATISTICAL MODEL; STOCHASTIC MODEL; ECONOMICS; OUTCOME ASSESSMENT; PERSONALIZED MEDICINE; PROCEDURES; STANDARDS; THEORETICAL MODEL;

EID: 84975256229     PISSN: None     EISSN: 15574679     Source Type: Journal    
DOI: 10.1515/ijb-2015-0007     Document Type: Article
Times cited : (69)

References (33)
  • 1
    • 0038107066 scopus 로고    scopus 로고
    • Optimal dynamic treatment regimes
    • Murphy SA. Optimal dynamic treatment regimes. J Roy Stat Soc Ser B 2003;650:331-6.
    • (2003) J Roy Stat Soc ser B , vol.650 , pp. 331-336
    • Murphy, S.A.1
  • 2
    • 84971321714 scopus 로고    scopus 로고
    • Optimal structural nested models for optimal sequential decisions
    • DY Lin and Heagerty P editors
    • Robins JM. Optimal structural nested models for optimal sequential decisions. In: DY Lin and Heagerty P, editors. Proc. Second Seattle Symp. Biostat, 179, 2004:189-326.
    • (2004) Proc. Second Seattle Symp. Biostat , vol.179 , pp. 189-326
    • Robins, J.M.1
  • 5
    • 79551540906 scopus 로고    scopus 로고
    • A model for allocating CDCs HIV prevention resources in the United States
    • Lasry A, Sansom SL, Hicks KA, Uzunangelov V. A model for allocating CDCs HIV prevention resources in the United States. Health Care Manag Sci 2011;140:115-24.
    • (2011) Health Care Manag Sci , vol.140 , pp. 115-124
    • Lasry, A.1    Sansom, S.L.2    Hicks, K.A.3    Uzunangelov, V.4
  • 6
    • 84867218798 scopus 로고    scopus 로고
    • Using a resource allocation model to guide better local sexually transmitted disease control and prevention programs
    • Tao G, Zhao K, Gift T, Qiu F, Chen G. Using a resource allocation model to guide better local sexually transmitted disease control and prevention programs. Oper Res Heal Care 2012;10:23-9.
    • (2012) Oper Res Heal Care , vol.10 , pp. 23-29
    • Tao, G.1    Zhao, K.2    Gift, T.3    Qiu, F.4    Chen, G.5
  • 9
    • 0001366593 scopus 로고
    • Discrete-variable extremum problems
    • Dantzig GB. Discrete-variable extremum problems. Oper Res 1957;50:266-88.
    • (1957) Oper Res , vol.50 , pp. 266-288
    • Dantzig, G.B.1
  • 10
    • 84871667403 scopus 로고    scopus 로고
    • A robust method for estimating optimal treatment regimes
    • Zhang B, Tsiatis A, Davidian M, Zhang M, Laber E. A robust method for estimating optimal treatment regimes. Biometrics 2012;68:1010-18.
    • (2012) Biometrics , vol.68 , pp. 1010-1018
    • Zhang, B.1    Tsiatis, A.2    Davidian, M.3    Zhang, M.4    Laber, E.5
  • 12
    • 84938837686 scopus 로고    scopus 로고
    • Comment on dynamic treatment regimes: Technical challenges and applications
    • Goldberg Y, Song R, Zeng D, Kosorok MR. Comment on dynamic treatment regimes: technical challenges and applications. Electron J Stat 2014;8:1290-300.
    • (2014) Electron J Stat , vol.8 , pp. 1290-1300
    • Goldberg, Y.1    Song, R.2    Zeng, D.3    Kosorok, M.R.4
  • 14
    • 84906085233 scopus 로고    scopus 로고
    • Inference about the expected performance of a data-driven dynamic treatment regime
    • Chakraborty B, Laber EB, Zhao Y-Q. Inference about the expected performance of a data-driven dynamic treatment regime. Clin Trials 2014;110:408-17.
    • (2014) Clin Trials , vol.110 , pp. 408-417
    • Chakraborty, B.1    Laber, E.B.2    Zhao, Y.-Q.3
  • 16
    • 85031866843 scopus 로고
    • A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods
    • Robins JM. A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods. Comput Math Appl 1987;140:139s-161s. ISSN 0097-4943.
    • (1987) Comput Math Appl , vol.140 , pp. 139s-161s
    • Robins, J.M.1
  • 17
    • 84862895832 scopus 로고    scopus 로고
    • Population intervention causal effects based on stochastic interventions
    • Daz I, Vander Laan MJ. Population intervention causal effects based on stochastic interventions. Biometrics 2012;680: 541-9.
    • (2012) Biometrics , vol.680 , pp. 541-549
    • Daz, I.1    Vander Laan, M.J.2
  • 18
    • 84963671101 scopus 로고    scopus 로고
    • Technical Report 326 Division of Biostatistics University of California, Berkeley, under Review at JCI
    • Luedtke AR, Vander Laan MJ. Super-learning of an optimal dynamic treatment rule. Technical Report 326. Available at: http://www.bepress.com/ucbbiostat/, Division of Biostatistics, University of California, Berkeley, under Review at JCI, 2014a.
    • (2014) Super-learning of An Optimal Dynamic Treatment Rule
    • Luedtke, A.R.1    Vander Laan, M.J.2
  • 20
    • 84963667892 scopus 로고    scopus 로고
    • Targeted learning of the mean outcome under an optimal dynamic treatment rule
    • (Ahead Of print)
    • Vander Laan MJ, Luedtke AR. Targeted learning of the mean outcome under an optimal dynamic treatment rule. J Causal Inference 2014b. (Ahead Of print). DOI: 10.1515/jci-2013-0022.
    • (2014) J Causal Inference
    • Vander Laan, M.J.1    Luedtke, A.R.2
  • 24
    • 34547706430 scopus 로고    scopus 로고
    • Fast learning rates for plug-in classifiers
    • Audibert JY, Tsybakov AB. Fast learning rates for plug-in classifiers. Ann Statist 2007;350:608-33.
    • (2007) Ann Statist , vol.350 , pp. 608-633
    • Audibert, J.Y.1    Tsybakov, A.B.2
  • 26
    • 84963641621 scopus 로고    scopus 로고
    • R Core Team Vienna Austria: R Foundation for Statistical Computing
    • R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2014. Available at: http://www.r-project.org
    • (2014) R: A Language and Environment for Statistical Computing
  • 28
    • 84871677842 scopus 로고    scopus 로고
    • Statistical issues and limitations in personalized medicine research with clinical trials
    • Rubin DB, Vander laan MJ. Statistical issues and limitations in personalized medicine research with clinical trials. Int J Biostat 2012;8:article 18.
    • (2012) Int J Biostat , pp. 8
    • Rubin, D.B.1    Vander Laan, M.J.2
  • 29
    • 84870657864 scopus 로고    scopus 로고
    • Estimating individual treatment rules using outcome weighted learning
    • Zhao Y, Zeng D, Rush A, Kosorok M. Estimating individual treatment rules using outcome weighted learning. J Am Stat Assoc 2012;107:1106-18.
    • (2012) J Am Stat Assoc , vol.107 , pp. 1106-1118
    • Zhao, Y.1    Zeng, D.2    Rush, A.3    Kosorok, M.4
  • 30
    • 84926649085 scopus 로고    scopus 로고
    • New statistical learning methods for estimating optimal dynamic treatment regimes
    • Zhao YQ, Zeng D, Laber EB, Kosorok MR. New statistical learning methods for estimating optimal dynamic treatment regimes. J Am Stat Assoc 2014.
    • (2014) J Am Stat Assoc
    • Zhao, Y.Q.1    Zeng, D.2    Laber, E.B.3    Kosorok, M.R.4
  • 31
    • 77949987676 scopus 로고    scopus 로고
    • Ethical challenges in long-term funding for HIV/AIDS
    • Brock DW, Wikler D. Ethical challenges in long-term funding for HIV/AIDS. Health Aff 2009;280:1666-76.
    • (2009) Health Aff , vol.280 , pp. 1666-1676
    • Brock, D.W.1    Wikler, D.2
  • 32
    • 84866270155 scopus 로고    scopus 로고
    • Given financial constraints, it would be unethical to divert antiretroviral drugs from treatment to prevention
    • Macklin R, Cowan E. Given financial constraints, it would be unethical to divert antiretroviral drugs from treatment to prevention. Health Aff 2012;310:1537-44.
    • (2012) Health Aff , vol.310 , pp. 1537-1544
    • MacKlin, R.1    Cowan, E.2
  • 33
    • 84876352601 scopus 로고    scopus 로고
    • Antiretroviral resource allocation for HIV prevention
    • Singh JA. Antiretroviral resource allocation for HIV prevention. AIDS 2013;270:863-5.
    • (2013) AIDS , vol.270 , pp. 863-865
    • Singh, J.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.