메뉴 건너뛰기




Volumn 7, Issue 1, 2013, Pages 443-470

Estimating treatment effect heterogeneity in randomized program evaluation

Author keywords

Causal inference; Individualized treatment rules; LASSO; Moderation; Variable selection

Indexed keywords


EID: 84876042107     PISSN: 19326157     EISSN: 19417330     Source Type: Journal    
DOI: 10.1214/12-AOAS593     Document Type: Article
Times cited : (457)

References (60)
  • 3
    • 79953133534 scopus 로고    scopus 로고
    • Analysis of randomized comparative clinical trial data for personalized treatment selections
    • Cai, T., Tian, L., Wong, P. H. and Wei, L. J. (2011). Analysis of randomized comparative clinical trial data for personalized treatment selections. Biostatistics 12 270-282.
    • (2011) Biostatistics , vol.12 , pp. 270-282
    • Cai, T.1    Tian, L.2    Wong, P.H.3    Wei, L.J.4
  • 5
    • 78651467125 scopus 로고    scopus 로고
    • Generalizing evidence from randomized clinical trials to target populations: The ACTG 320 trial
    • Cole, S. R. and Stuart, E. A. (2010). Generalizing evidence from randomized clinical trials to target populations: The ACTG 320 trial. Am. J. Epidemiol. 172 107-115.
    • (2010) Am. J. Epidemiol , vol.172 , pp. 107-115
    • Cole, S.R.1    Stuart, E.A.2
  • 7
    • 0011317093 scopus 로고
    • Treatment effect heterogeneity in paired data
    • Davison, A. C. (1992). Treatment effect heterogeneity in paired data. Biometrika 79 463-474.
    • (1992) Biometrika , vol.79 , pp. 463-474
    • Davison, A.C.1
  • 8
    • 0442309558 scopus 로고    scopus 로고
    • Causal effects in nonexperimental studies: Reevaluating the evaluation of training programs
    • Dehejia, R. H. and Wahba, S. (1999). Causal effects in nonexperimental studies: Reevaluating the evaluation of training programs. J. Amer. Statist. Assoc. 94 1053-1062.
    • (1999) J. Amer. Statist. Assoc , vol.94 , pp. 1053-1062
    • Dehejia, R.H.1    Wahba, S.2
  • 11
    • 65249113289 scopus 로고    scopus 로고
    • The calibration of treatment effects from clinical trials to target populations
    • Frangakis, C. (2009). The calibration of treatment effects from clinical trials to target populations. Clin. Trials 6 136-140.
    • (2009) Clin. Trials , vol.6 , pp. 136-140
    • Frangakis, C.1
  • 13
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman, J. H., Hastie, T. and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33 1-22.
    • (2010) Journal of Statistical Software , vol.33 , pp. 1-22
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 14
    • 0022072706 scopus 로고
    • Testing for qualitative interactions between treatment effects and patient subsets
    • Gail, M. and Simon, R. (1985). Testing for qualitative interactions between treatment effects and patient subsets. Biometrics 41 361-372.
    • (1985) Biometrics , vol.41 , pp. 361-372
    • Gail, M.1    Simon, R.2
  • 15
    • 84865371361 scopus 로고    scopus 로고
    • A weakly informative default prior distribution for logistic and other regression models
    • Gelman, A., Jakulin, A., Pittau, M. G. and Su, Y.-S. (2008). A weakly informative default prior distribution for logistic and other regression models. Ann. Appl. Stat. 2 1360-1383.
    • (2008) Ann. Appl. Stat , vol.2 , pp. 1360-1383
    • Gelman, A.1    Jakulin, A.2    Pittau, M.G.3    Su, Y.-S.4
  • 16
    • 0040953210 scopus 로고    scopus 로고
    • The effects of canvassing, telephone calls, and direct mail on voter turnout: A field experiment
    • Gerber, A. S. and Green, D. P. (2000). The effects of canvassing, telephone calls, and direct mail on voter turnout: A field experiment. American Political Science Review 94 653-663.
    • (2000) American Political Science Review , vol.94 , pp. 653-663
    • Gerber, A.S.1    Green, D.P.2
  • 17
    • 43049139907 scopus 로고    scopus 로고
    • Social pressure and voter turnout: Evidence from a large-scale field experiment
    • Gerber, A., Green, D. and Larimer, C. (2008). Social pressure and voter turnout: Evidence from a large-scale field experiment. American Political Science Review 102 33-48.
    • (2008) American Political Science Review , vol.102 , pp. 33-48
    • Gerber, A.1    Green, D.2    Larimer, C.3
  • 18
    • 78651423204 scopus 로고    scopus 로고
    • Detecting heterogenous treatment effects in large-scale experiments using Bayesian additive regression trees
    • Univ. Iowa
    • Green, D. P. and Kern, H. L. (2010a). Detecting heterogenous treatment effects in large-scale experiments using Bayesian additive regression trees. In The Annual Summer Meeting of the Society of Political Methodology. Univ. Iowa.
    • (2010) The Annual Summer Meeting of the Society of Political Methodology
    • Green, D.P.1    Kern, H.L.2
  • 19
    • 78651453719 scopus 로고    scopus 로고
    • The Annual Meeting of the American Political Science Association, Washington, D.C
    • Green, D. P. and Kern, H. L. (2010b). Generalizing experimental results. In The Annual Meeting of the American Political Science Association. Washington, D.C.
    • (2010) Generalizing Experimental Results
    • Green, D.P.1    Kern, H.L.2
  • 20
    • 78649719355 scopus 로고    scopus 로고
    • Variable selection for qualitative interactions
    • Gunter, L., Zhu, J. and Murphy, S. A. (2011). Variable selection for qualitative interactions. Stat. Methodol. 8 42-55.
    • (2011) Stat Methodol , vol.8 , pp. 42-55
    • Gunter, L.1    Zhu, J.2    Murphy, S.A.3
  • 22
    • 79958720789 scopus 로고    scopus 로고
    • Challenges with propensity score matching in a high-dimensional setting and a potential alternative
    • Hill, J. L. (2011). Challenges with propensity score matching in a high-dimensional setting and a potential alternative. Multivariate and Behavioral Research 46 477-513.
    • (2011) Multivariate and Behavioral Research , vol.46 , pp. 477-513
    • Hill, J.L.1
  • 23
    • 33749677657 scopus 로고    scopus 로고
    • Unbiased recursive partitioning: A conditional inference framework
    • Hothorn, T., Hornik, K. and Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference framework. J. Comput. Graph. Statist. 15 651-674.
    • (2006) J. Comput. Graph. Statist , vol.15 , pp. 651-674
    • Hothorn, T.1    Hornik, K.2    Zeileis, A.3
  • 24
    • 20744434390 scopus 로고    scopus 로고
    • Do get-out-the-vote calls reduce turnout?: The importance of statistical methods for field experiments
    • Imai, K. (2005). Do get-out-the-vote calls reduce turnout?: The importance of statistical methods for field experiments. American Political Science Review 99 283-300.
    • (2005) American Political Science Review , vol.99 , pp. 283-300
    • Imai, K.1
  • 25
    • 78651447840 scopus 로고    scopus 로고
    • Estimation of heterogeneous treatment effects from randomized experiments, with application to the optimal planning of the get-out-the-vote campaign
    • Imai, K. and Strauss, A. (2011). Estimation of heterogeneous treatment effects from randomized experiments, with application to the optimal planning of the get-out-the-vote campaign. Political Analysis 19 1-19.
    • (2011) Political Analysis , vol.19 , pp. 1-19
    • Imai, K.1    Strauss, A.2
  • 26
    • 84856918174 scopus 로고    scopus 로고
    • Tree-structured analysis of treatment effects with large observational data
    • Kang, J., Su, X., Hitsman, B., Liu, K. and Lloyd-Jones, D. (2012). Tree-structured analysis of treatment effects with large observational data. J. Appl. Stat. 39 513-529.
    • (2012) J. Appl. Stat , vol.39 , pp. 513-529
    • Kang, J.1    Su, X.2    Hitsman, B.3    Liu, K.4    Lloyd-Jones, D.5
  • 27
    • 33645895554 scopus 로고    scopus 로고
    • The challenge of subgroup analyses-reporting without distorting
    • Lagakos, S. W. (2006). The challenge of subgroup analyses-reporting without distorting. N. Engl. J. Med. 354 1667-1669.
    • (2006) N. Engl. J. Med , vol.354 , pp. 1667-1669
    • Lagakos, S.W.1
  • 28
    • 0001093804 scopus 로고
    • Evaluating the econometric evaluations of training programs with experimental data
    • LaLonde, R. J. (1986). Evaluating the econometric evaluations of training programs with experimental data. American Economic Review 76 604-620.
    • (1986) American Economic Review , vol.76 , pp. 604-620
    • Lalonde, R.J.1
  • 29
    • 77956383473 scopus 로고    scopus 로고
    • Boosting predictions of treatment success
    • LeBlanc, M. and Kooperberg, C. (2010). Boosting predictions of treatment success. Proc. Natl. Acad. Sci. USA 107 13559-13560.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 13559-13560
    • Leblanc, M.1    Kooperberg, C.2
  • 30
    • 2142775432 scopus 로고    scopus 로고
    • Multicategory support vector machines: Theory and application to the classification of microarray data and satellite radiance data
    • Lee, Y., Lin, Y. and Wahba, G. (2004). Multicategory support vector machines: Theory and application to the classification of microarray data and satellite radiance data. J. Amer. Statist. Assoc. 99 67-81.
    • (2004) J. Amer. Statist. Assoc , vol.99 , pp. 67-81
    • Lee, Y.1    Lin, Y.2    Wahba, G.3
  • 31
    • 0036258405 scopus 로고    scopus 로고
    • Support vector machines and the Bayes rule in classification
    • Lin, Y. (2002). Support vector machines and the Bayes rule in classification. Data Min. Knowl. Discov. 6 259-275.
    • (2002) Data Min. Knowl. Discov , vol.6 , pp. 259-275
    • Lin, Y.1
  • 32
    • 80051894060 scopus 로고    scopus 로고
    • Subgroup identification based on differential effect search-a recursive partitioning method for establishing response to treatment in patient subpopulations
    • Lipkovich, I., Dmitrienko, A., Denne, J. and Enas, G. (2011). Subgroup identification based on differential effect search-a recursive partitioning method for establishing response to treatment in patient subpopulations. Stat. Med. 30 2601-2621.
    • (2011) Stat. Med , vol.30 , pp. 2601-2621
    • Lipkovich, I.1    Dmitrienko, A.2    Denne, J.3    Enas, G.4
  • 33
    • 84863023353 scopus 로고    scopus 로고
    • Should all smokers use combination smoking cessation pharmacotherapy? Using novel analytic methods to detect differential treatment effects over eight weeks of pharmacotherapy
    • Loh, W. Y., Piper, M. E., Schlam, T. R., Fiore, M. C., Smith, S. S., Jorenby, D. E., Cook, J. W., Bolt, D. M. and Baker, T. B. (2012). Should all smokers use combination smoking cessation pharmacotherapy? Using novel analytic methods to detect differential treatment effects over eight weeks of pharmacotherapy. Nicotine and Tobacco Research 14 131-141.
    • (2012) Nicotine and Tobacco Research , vol.14 , pp. 131-141
    • Loh, W.Y.1    Piper, M.E.2    Schlam, T.R.3    Fiore, M.C.4    Smith, S.S.5    Jorenby, D.E.6    Cook, J.W.7    Bolt, D.M.8    Baker, T.B.9
  • 34
    • 3142775780 scopus 로고    scopus 로고
    • Statistical treatment rules for heterogeneous populations
    • Manski, C. F. (2004). Statistical treatment rules for heterogeneous populations. Econometrica 72 1221-1246.
    • (2004) Econometrica , vol.72 , pp. 1221-1246
    • Manski, C.F.1
  • 36
    • 69949172005 scopus 로고    scopus 로고
    • Estimating response-maximized decision rules with applications to breastfeeding
    • Moodie, E. E. M., Platt, R. W. and Kramer, M. S. (2009). Estimating response-maximized decision rules with applications to breastfeeding. J. Amer. Statist. Assoc. 104 155-165.
    • (2009) J. Amer. Statist. Assoc , vol.104 , pp. 155-165
    • Moodie, E.E.M.1    Platt, R.W.2    Kramer, M.S.3
  • 38
    • 43049096073 scopus 로고    scopus 로고
    • Is voting contagious?: Evidence from two field experiments
    • Nickerson, D. W. (2008). Is voting contagious?: Evidence from two field experiments. American Political Science Review 102 49-57.
    • (2008) American Political Science Review , vol.102 , pp. 49-57
    • Nickerson, D.W.1
  • 40
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • MIT Press, Cambridge, MA
    • Platt, J. (1999). Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In Advances in Large Margin Classifiers 61-74. MIT Press, Cambridge, MA.
    • (1999) Advances In Large Margin Classifiers , pp. 61-74
    • Platt, J.1
  • 41
    • 84870707096 scopus 로고    scopus 로고
    • Performance guarantees for individualized treatment rules
    • Qian, M. and Murphy, S. A. (2011). Performance guarantees for individualized treatment rules. Ann. Statist. 39 1180-1210.
    • (2011) Ann. Statist , vol.39 , pp. 1180-1210
    • Qian, M.1    Murphy, S.A.2
  • 43
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70 41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 44
    • 11844302840 scopus 로고    scopus 로고
    • Subgroup analysis in randomized controlled trials: Importance, indications, and interpretation
    • Rothwell, P. M. (2005). Subgroup analysis in randomized controlled trials: Importance, indications, and interpretation. The Lancet 365 176-186.
    • (2005) The Lancet , vol.365 , pp. 176-186
    • Rothwell, P.M.1
  • 45
    • 0036163572 scopus 로고    scopus 로고
    • Bayesian methods for support vector machines: Evidence and predictive class probabilities
    • Sollich, P. (2002). Bayesian methods for support vector machines: Evidence and predictive class probabilities. Machine Learning 46 21-52.
    • (2002) Machine Learning , vol.46 , pp. 21-52
    • Sollich, P.1
  • 46
    • 79952586276 scopus 로고    scopus 로고
    • The use of propensity scores to assess the generalizability of results from randomized trials
    • Stuart, E. A., Cole, S. R., Bradshaw, C. P. and Leaf, P. J. (2011). The use of propensity scores to assess the generalizability of results from randomized trials. J. Roy. Statist. Soc. Ser. A 174 369-386.
    • (2011) J. Roy. Statist. Soc. Ser. A , vol.174 , pp. 369-386
    • Stuart, E.A.1    Cole, S.R.2    Bradshaw, C.P.3    Leaf, P.J.4
  • 48
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 51
    • 0037168506 scopus 로고    scopus 로고
    • Soft and hard classification by reproducing kernel Hilbert space methods
    • Wahba, G. (2002). Soft and hard classification by reproducing kernel Hilbert space methods. Proc. Natl. Acad. Sci. USA 99 16524-16530 (electronic).
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 16524-16530
    • Wahba, G.1
  • 52
    • 84876017900 scopus 로고    scopus 로고
    • An efficient algorithm for computing the HHSVM and its generalizations
    • To appear
    • Yang, Y. and Zou, H. (2012). An efficient algorithm for computing the HHSVM and its generalizations. J. Comput. Graph. Statist. To appear.
    • (2012) J. Comput. Graph. Statist
    • Yang, Y.1    Zou, H.2
  • 53
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 49-67.
    • (2006) J. R. Stat. Soc. Ser. B Stat. Methodol , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 54
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • Zhang, T. (2004). Statistical behavior and consistency of classification methods based on convex risk minimization. Ann. Statist. 32 56-85.
    • (2004) Ann. Statist , vol.32 , pp. 56-85
    • Zhang, T.1
  • 55
    • 33746149382 scopus 로고    scopus 로고
    • Variable selection for support vector machines via smoothing spline ANOVA
    • Zhang, H. H. (2006). Variable selection for support vector machines via smoothing spline ANOVA. Statist. Sinica 16 659-674.
    • (2006) Statist. Sinica , vol.16 , pp. 659-674
    • Zhang, H.H.1
  • 56
    • 84871667403 scopus 로고    scopus 로고
    • A robust method for estimating optimal treatment regimes
    • To appear
    • Zhang, B., Tsiatis, A. A., Laber, E. B. and Davidian, M. (2012). A robust method for estimating optimal treatment regimes. Biometrics. To appear.
    • (2012) Biometrics
    • Zhang, B.1    Tsiatis, A.A.2    Laber, E.B.3    Davidian, M.4
  • 57
    • 83655181241 scopus 로고    scopus 로고
    • Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer
    • Zhao, Y., Zeng, D., Socinski, M. A. and Kosorok, M. R. (2011). Reinforcement learning strategies for clinical trials in nonsmall cell lung cancer. Biometrics 67 1422-1433.
    • (2011) Biometrics , vol.67 , pp. 1422-1433
    • Zhao, Y.1    Zeng, D.2    Socinski, M.A.3    Kosorok, M.R.4
  • 58
    • 84870657864 scopus 로고    scopus 로고
    • Estimating individualized treatment rules using outcome weighted learning
    • Zhao, Y., Zeng, D., Rush, J. A. and Kosorok, M. R. (2012). Estimating individualized treatment rules using outcome weighted learning. J. Amer. Statist. Assoc. 107 1106-1118.
    • (2012) J. Amer. Statist. Assoc , vol.107 , pp. 1106-1118
    • Zhao, Y.1    Zeng, D.2    Rush, J.A.3    Kosorok, M.R.4
  • 59
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 301-320.
    • (2005) J. R. Stat. Soc. Ser. B Stat. Methodol , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 60
    • 34548536008 scopus 로고    scopus 로고
    • On the "degrees of freedom" of the lasso
    • Zou, H., Hastie, T. and Tibshirani, R. (2007). On the "degrees of freedom" of the lasso. Ann. Statist. 35 2173-2192.
    • (2007) Ann. Statist , vol.35 , pp. 2173-2192
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.