메뉴 건너뛰기




Volumn 1, Issue , 2017, Pages 44-53

When is multitask learning effective? Semantic sequence prediction under varying data conditions

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; LEARNING SYSTEMS; MULTI-TASK LEARNING; SEMANTICS;

EID: 85021626507     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/e17-1005     Document Type: Conference Paper
Times cited : (152)

References (39)
  • 1
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • Nov
    • Rie Kubota Ando and Tong Zhang. 2005. A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research, 6(Nov):1817-1853.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 3
    • 84959879897 scopus 로고    scopus 로고
    • Improved transition-based parsing by modeling characters instead of words with LSTMs
    • Miguel Ballesteros, Chris Dyer, and Noah A. Smith. 2015. Improved Transition-based Parsing by Modeling Characters instead of Words with LSTMs. In EMNLP.
    • (2015) EMNLP
    • Ballesteros, M.1    Dyer, C.2    Smith, N.A.3
  • 4
    • 85021654356 scopus 로고    scopus 로고
    • Semantic tagging with deep residual networks
    • Johannes Bjerva, Barbara Plank, and Johan Bos. 2016. Semantic tagging with deep residual networks. In COLING.
    • (2016) COLING
    • Bjerva, J.1    Plank, B.2    Bos, J.3
  • 5
    • 85049060194 scopus 로고    scopus 로고
    • Multi-view and multi-task training of rst discourse parsers
    • Chloé Braud, Barbara Plank, and Anders Søgaard. 2016. Multi-view and multi-task training of rst discourse parsers. In COLING.
    • (2016) COLING
    • Braud, C.1    Plank, B.2    Søgaard, A.3
  • 6
    • 1942470793 scopus 로고    scopus 로고
    • Multitask learning
    • Springer
    • Rich Caruana. 1997. Multitask learning. In Learning to learn, pages 95-133. Springer.
    • (1997) Learning to Learn , pp. 95-133
    • Caruana, R.1
  • 7
    • 84959917665 scopus 로고    scopus 로고
    • Open-domain name error detection using a multi- task RNN
    • Hao Cheng, Hao Fang, and Mari Ostendorf. 2015. Open-Domain Name Error Detection using a Multi- Task RNN. In EMNLP.
    • (2015) EMNLP
    • Cheng, H.1    Fang, H.2    Ostendorf, M.3
  • 9
    • 80053364056 scopus 로고    scopus 로고
    • Broad-coverage sense disambiguation and information extraction with a supersense sequence tagger
    • Massimiliano Ciaramita and Yasemin Altun. 2006. Broad-coverage sense disambiguation and information extraction with a supersense sequence tagger. In EMNLP.
    • (2006) EMNLP
    • Ciaramita, M.1    Altun, Y.2
  • 10
    • 84905714139 scopus 로고    scopus 로고
    • Modelling annotator bias with multi-task Gaussian processes: An application to machine translation quality estimation
    • Trevor Cohn and Lucia Specia. 2013. Modelling annotator bias with multi-task gaussian processes: An application to machine translation quality estimation. In ACL.
    • (2013) ACL
    • Cohn, T.1    Specia, L.2
  • 14
    • 84959865196 scopus 로고    scopus 로고
    • Mpqa 3.0: An entity/event-level sentiment corpus
    • Lingjia Deng and Janyce Wiebe. 2015. Mpqa 3.0: An entity/event-level sentiment corpus. In NAACL.
    • (2015) NAACL
    • Deng, L.1    Wiebe, J.2
  • 15
    • 84943742882 scopus 로고    scopus 로고
    • Transition- based dependency parsing with stack long short- term memory
    • Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith. 2015. Transition- Based Dependency Parsing with Stack Long Short- Term Memory. In ACL.
    • (2015) ACL
    • Dyer, C.1    Ballesteros, M.2    Ling, W.3    Matthews, A.4    Smith, N.A.5
  • 16
    • 26444565569 scopus 로고
    • Finding structure in time
    • Jeffrey L. Elman. 1990. Finding structure in time. Cognitive science, 14(2):179-211.
    • (1990) Cognitive Science , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 18
    • 27744588611 scopus 로고    scopus 로고
    • Framewise phoneme classification with bidirectional LSTM and other neural network architectures
    • Alex Graves and Jürgen Schmidhuber. 2005. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18(5):602-610.
    • (2005) Neural Networks , vol.18 , Issue.5 , pp. 602-610
    • Graves, A.1    Schmidhuber, J.2
  • 19
    • 85050264296 scopus 로고    scopus 로고
    • Table filling multi-task recurrent neural network for joint entity and relation extraction
    • Pankaj Gupta, Hinrich Schütze, and Bernt Andrassy. 2016. Table Filling Multi-Task Recurrent Neural Network for Joint Entity and Relation Extraction. In COLING.
    • (2016) COLING
    • Gupta, P.1    Schütze, H.2    Andrassy, B.3
  • 20
    • 84906921940 scopus 로고    scopus 로고
    • Semantic frame identification with distributed word representations
    • Karl Moritz Hermann, Dipanjan Das, Jason Weston, and Kuzman Ganchev. 2014. Semantic frame identification with distributed word representations. In ACL.
    • (2014) ACL
    • Hermann, K.M.1    Das, D.2    Weston, J.3    Ganchev, K.4
  • 23
    • 85019553882 scopus 로고    scopus 로고
    • Simple and accurate dependency parsing using bidirectional LSTM feature representations
    • Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations. TACL.
    • (2016) TACL
    • Kiperwasser, E.1    Goldberg, Y.2
  • 26
    • 84959934993 scopus 로고    scopus 로고
    • Finegrained opinion mining with recurrent neural networks and word embeddings
    • Pengfei Liu, Shafiq Joty, and Helen Meng. 2015. Finegrained opinion mining with recurrent neural networks and word embeddings. In EMNLP.
    • (2015) EMNLP
    • Liu, P.1    Joty, S.2    Meng, H.3
  • 29
    • 34249852033 scopus 로고
    • Building a large annotated corpus of English: The penn treebank
    • Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a Large Annotated Corpus of English: The Penn Treebank. Comput. Linguist., 19(2):x.
    • (1993) Comput. Linguist , vol.19 , Issue.2 , pp. x
    • Marcus, M.P.1    Marcinkiewicz, M.A.2    Santorini, B.3
  • 32
    • 85009255621 scopus 로고    scopus 로고
    • Multilingual part-of-speech tagging with bidirectional long short-term memory models and auxiliary loss
    • Barbara Plank, Anders Søgaard, and Yoav Goldberg. 2016. Multilingual Part-of-Speech Tagging with Bidirectional Long Short-Term Memory Models and Auxiliary Loss. In ACL.
    • (2016) ACL
    • Plank, B.1    Søgaard, A.2    Goldberg, Y.3
  • 33
    • 85021683692 scopus 로고    scopus 로고
    • Keystroke dynamics as signal for shallow syntactic parsing
    • Barbara Plank. 2016. Keystroke dynamics as signal for shallow syntactic parsing. In COLING.
    • (2016) COLING
    • Plank, B.1
  • 34
    • 33746341926 scopus 로고
    • The file drawer problem and tolerance for null results
    • Robert Rosenthal. 1979. The file drawer problem and tolerance for null results. Psychological bulletin, 86(3):638.
    • (1979) Psychological Bulletin , vol.86 , Issue.3 , pp. 638
    • Rosenthal, R.1
  • 35
    • 84994131779 scopus 로고    scopus 로고
    • Large-scale multitask learning for machine translation quality estimation
    • Kashif Shah and Lucia Specia. 2016. Large-scale multitask learning for machine translation quality estimation. In NAACL.
    • (2016) NAACL
    • Shah, K.1    Specia, L.2
  • 36
    • 85002310679 scopus 로고    scopus 로고
    • Deep multi-task learning with low level tasks supervised at lower layers
    • Anders Søgaard and Yoav Goldberg. 2016. Deep multi-task learning with low level tasks supervised at lower layers. In ACL.
    • (2016) ACL
    • Søgaard, A.1    Goldberg, Y.2
  • 37
    • 33947615175 scopus 로고    scopus 로고
    • Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting sequence data
    • Mar
    • Charles Sutton, Andrew McCallum, and Khashayar Rohanimanesh. 2007. Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting sequence data. Journal of Machine Learning Research, 8(Mar):693-723.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 693-723
    • Sutton, C.1    McCallum, A.2    Rohanimanesh, K.3
  • 38
    • 85099019865 scopus 로고    scopus 로고
    • Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition
    • Association for Computational Linguistics
    • Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In HLT-NAACL, pages 142-147. Association for Computational Linguistics.
    • (2003) HLT-NAACL , pp. 142-147
    • Sang, E.F.T.K.1    Meulder, F.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.