메뉴 건너뛰기




Volumn 10, Issue 2, 2019, Pages

Gut microbiota metabolite indole propionic acid targets tryptophan biosynthesis in Mycobacterium tuberculosis

Author keywords

Allosteric inhibitor; Antibiotic; NTM; Trpe; Tryptophan mimic

Indexed keywords

INDOLEPROPIONIC ACID; TRYPTOPHAN; ANTHRANILATE SYNTHASE; INDOLE DERIVATIVE; TUBERCULOSTATIC AGENT;

EID: 85063962184     PISSN: 21612129     EISSN: 21507511     Source Type: Journal    
DOI: 10.1128/mBio.02781-18     Document Type: Article
Times cited : (68)

References (50)
  • 2
    • 84938244327 scopus 로고    scopus 로고
    • Small molecules from the human microbiota
    • Donia MS, Fischbach MA. 2015. Small molecules from the human microbiota. Science 349: 1254766. https://doi.org/10.1126/science.1254766.
    • (2015) Science , vol.349 , pp. 1254766
    • Donia, M.S.1    Fischbach, M.A.2
  • 3
    • 85034427947 scopus 로고    scopus 로고
    • Antibiotics and specialized metabolites from the human microbiota
    • Mousa WK, Athar B, Merwin NJ, Magarvey NA. 2017. Antibiotics and specialized metabolites from the human microbiota. Nat Prod Rep 34: 1302-1331. https://doi.org/10.1039/C7NP00021A.
    • (2017) Nat Prod Rep , vol.34 , pp. 1302-1331
    • Mousa, W.K.1    Athar, B.2    Merwin, N.J.3    Magarvey, N.A.4
  • 4
    • 85051746264 scopus 로고    scopus 로고
    • Microbial tryptophan catabolites in health and disease
    • Roager HM, Licht TR. 2018. Microbial tryptophan catabolites in health and disease. Nat Commun 9: 3294. https://doi.org/10.1038/s41467-018-05470-4.
    • (2018) Nat Commun , vol.9 , pp. 3294
    • Roager, H.M.1    Licht, T.R.2
  • 5
    • 85055441410 scopus 로고    scopus 로고
    • The microbiome and tuberculosis: Early evidence for cross talk
    • Namasivayam S, Sher A, Glickman MS, Wipperman MF. 2018. The microbiome and tuberculosis: early evidence for cross talk. mBio 9: e01420-18. https://doi.org/10.1128/mBio.01420-18.
    • (2018) mBio , vol.9 , pp. e01420-e01518
    • Namasivayam, S.1    Sher, A.2    Glickman, M.S.3    Wipperman, M.F.4
  • 6
    • 85056668831 scopus 로고    scopus 로고
    • The host microbiota contributes to early protection against lung colonization by Mycobacterium tuberculosis
    • Dumas A, Corral D, Colom A, Levillain F, Peixoto A, Hudrisier D, Poquet Y, Neyrolles O. 2018. The host microbiota contributes to early protection against lung colonization by Mycobacterium tuberculosis. Front Immunol 9: 2656. https://doi.org/10.3389/fimmu.2018.02656.
    • (2018) Front Immunol , vol.9 , pp. 2656
    • Dumas, A.1    Corral, D.2    Colom, A.3    Levillain, F.4    Peixoto, A.5    Hudrisier, D.6    Poquet, Y.7    Neyrolles, O.8
  • 7
    • 0018867409 scopus 로고
    • The origin of indoleacetic acid and indolepropionic acid in rat and human cerebrospinal fluid
    • Young SN, Anderson GM, Gauthier S, Purdy WC. 1980. The origin of indoleacetic acid and indolepropionic acid in rat and human cerebrospinal fluid. J Neurochem 34: 1087-1092. https://doi.org/10.1111/j.1471-4159.1980.tb09944.x.
    • (1980) J Neurochem , vol.34 , pp. 1087-1092
    • Young, S.N.1    Anderson, G.M.2    Gauthier, S.3    Purdy, W.C.4
  • 10
    • 85046008891 scopus 로고    scopus 로고
    • Indole propionic acid: A small molecule links between gut microbiota and tuberculosis
    • Kaufmann SHE. 2018. Indole propionic acid: a small molecule links between gut microbiota and tuberculosis. Antimicrob Agents Chemother 62: e00389-18. https://doi.org/10.1128/AAC.00389-18.
    • (2018) Antimicrob Agents Chemother , vol.62 , pp. e00389-e00418
    • Kaufmann, S.H.E.1
  • 11
    • 85020433554 scopus 로고    scopus 로고
    • The human microbiome in the fight against tuberculosis
    • Wood MR, Yu EA, Mehta S. 2017. The human microbiome in the fight against tuberculosis. Am J Trop Med Hyg 96: 1274-1284. https://doi.org/10.4269/ajtmh.16-0581.
    • (2017) Am J Trop Med Hyg , vol.96 , pp. 1274-1284
    • Wood, M.R.1    Yu, E.A.2    Mehta, S.3
  • 14
    • 0035123059 scopus 로고    scopus 로고
    • Structure of the cooperative allosteric anthranilate synthase from Salmonella typhimurium
    • Morollo AA, Eck MJ. 2001. Structure of the cooperative allosteric anthranilate synthase from Salmonella typhimurium. Nat Struct Biol 8: 243-247. https://doi.org/10.1038/84988.
    • (2001) Nat Struct Biol , vol.8 , pp. 243-247
    • Morollo, A.A.1    Eck, M.J.2
  • 16
    • 57649112190 scopus 로고    scopus 로고
    • Purification and characterization of anthranilate synthase component I (TrpE) from Mycobacterium tuberculosis H37Rv
    • Lin X, Xu S, Yang Y, Wu J, Wang H, Shen H, Wang H. 2009. Purification and characterization of anthranilate synthase component I (TrpE) from Mycobacterium tuberculosis H37Rv. Protein Expr Purif 64: 8-15. https://doi.org/10.1016/j.pep.2008.09.020.
    • (2009) Protein Expr Purif , vol.64 , pp. 8-15
    • Lin, X.1    Xu, S.2    Yang, Y.3    Wu, J.4    Wang, H.5    Shen, H.6    Wang, H.7
  • 18
    • 76149120388 scopus 로고    scopus 로고
    • AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
    • Trott O, Olson AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31: 455-461. https://doi.org/10.1002/jcc.21334.
    • (2010) J Comput Chem , vol.31 , pp. 455-461
    • Trott, O.1    Olson, A.J.2
  • 19
    • 0035933197 scopus 로고    scopus 로고
    • The structures of anthranilate synthase of Serratia marcescens crystallized in the presence of (i) its substrates, chorismate and glutamine, and a product, glutamate, and (ii) its end-product inhibitor, L-tryptophan
    • Spraggon G, Kim C, Nguyen-Huu X, Yee MC, Yanofsky C, Mills SE. 2001. The structures of anthranilate synthase of Serratia marcescens crystallized in the presence of (i) its substrates, chorismate and glutamine, and a product, glutamate, and (ii) its end-product inhibitor, L-tryptophan. Proc Natl Acad Sci U S A 98: 6021-6026. https://doi.org/10.1073/pnas .111150298.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , pp. 6021-6026
    • Spraggon, G.1    Kim, C.2    Nguyen-Huu, X.3    Yee, M.C.4    Yanofsky, C.5    Mills, S.E.6
  • 21
    • 84961479446 scopus 로고
    • Site of action of growth inhibitory tryptophan analogues in Catharanthus roseus cell suspension cultures
    • Sasse F, Buchholz M, Berlin J. 1983. Site of action of growth inhibitory tryptophan analogues in Catharanthus roseus cell suspension cultures. Z Naturforsch 38: 910. https://doi.org/10.1515/znc-1983-11-1205.
    • (1983) Z Naturforsch , vol.38 , pp. 910
    • Sasse, F.1    Buchholz, M.2    Berlin, J.3
  • 22
    • 0015526442 scopus 로고
    • Tryptophan biosynthesis in Nicotiana tabacum and Daucus carota cell cultures: Site of action of inhibitory tryptophan analogs
    • Widholm JM. 1972. Tryptophan biosynthesis in Nicotiana tabacum and Daucus carota cell cultures: site of action of inhibitory tryptophan analogs. Biochim Biophys Acta 261: 44-51. https://doi.org/10.1016/0304-4165(72)90311-X.
    • (1972) Biochim Biophys Acta , vol.261 , pp. 44-51
    • Widholm, J.M.1
  • 23
    • 0023445515 scopus 로고
    • Two single-base-pair substitutions causing desensitization to tryptophan feedback inhibition of anthranilate synthase and enhanced expression of tryptophan genes of Brevibacterium lactofermentum
    • Matsui K, Miwa K, Sano K. 1987. Two single-base-pair substitutions causing desensitization to tryptophan feedback inhibition of anthranilate synthase and enhanced expression of tryptophan genes of Brevibacterium lactofermentum. J Bacteriol 169: 5330-5332. https://doi .org/10.1128/jb.169.11.5330-5332.1987.
    • (1987) J Bacteriol , vol.169 , pp. 5330-5332
    • Matsui, K.1    Miwa, K.2    Sano, K.3
  • 24
    • 0017835591 scopus 로고
    • Tryptophan uptake by Mycobacterium tuberculosis H37Rv: Effect of rifampin and ethambutol
    • Sundaram KS, Venkitasubramanian TA. 1978. Tryptophan uptake by Mycobacterium tuberculosis H37Rv: effect of rifampin and ethambutol. Antimicrob Agents Chemother 13: 726-730. https://doi.org/10.1128/AAC .13.5.726.
    • (1978) Antimicrob Agents Chemother , vol.13 , pp. 726-730
    • Sundaram, K.S.1    Venkitasubramanian, T.A.2
  • 27
    • 0345701347 scopus 로고    scopus 로고
    • Genes required for mycobacterial growth defined by high density mutagenesis
    • Sassetti CM, Boyd DH, Rubin EJ. 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48: 77-84. https://doi.org/10.1046/j.1365-2958.2003.03425.x.
    • (2003) Mol Microbiol , vol.48 , pp. 77-84
    • Sassetti, C.M.1    Boyd, D.H.2    Rubin, E.J.3
  • 28
    • 84931043192 scopus 로고    scopus 로고
    • Structure of the MarR family protein Rv0880 from Mycobacterium tuberculosis
    • Gao YR, Feng N, Chen T, Li de F, Bi LJ. 2015. Structure of the MarR family protein Rv0880 from Mycobacterium tuberculosis. Acta Crystallogr F Struct Biol Commun 71: 741-745. https://doi.org/10.1107/S2053230X15007281.
    • (2015) Acta Crystallogr F Struct Biol Commun , vol.71 , pp. 741-745
    • Gao, Y.R.1    Feng, N.2    Chen, T.3    Li de, F.4    Bi, L.J.5
  • 30
    • 84991409008 scopus 로고    scopus 로고
    • Network analysis identifies Rv0324 and Rv0880 as regulators of bedaquiline tolerance in Mycobacterium tuberculosis
    • Peterson EJR, Ma S, Sherman DR, Baliga NS. 2016. Network analysis identifies Rv0324 and Rv0880 as regulators of bedaquiline tolerance in Mycobacterium tuberculosis. Nat Microbiol 1: 16078. https://doi.org/10.1038/nmicrobiol.2016.78.
    • (2016) Nat Microbiol , vol.1 , pp. 16078
    • Peterson, E.J.R.1    Ma, S.2    Sherman, D.R.3    Baliga, N.S.4
  • 32
    • 67651147947 scopus 로고    scopus 로고
    • Structure and function of a complex between chorismate mutase and DAHP synthase: Efficiency boost for the junior partner
    • Sasso S, Okvist M, Roderer K, Gamper M, Codoni G, Krengel U, Kast P. 2009. Structure and function of a complex between chorismate mutase and DAHP synthase: efficiency boost for the junior partner. EMBO J 28: 2128-2142. https://doi.org/10.1038/emboj.2009.165.
    • (2009) EMBO J , vol.28 , pp. 2128-2142
    • Sasso, S.1    Okvist, M.2    Roderer, K.3    Gamper, M.4    Codoni, G.5    Krengel, U.6    Kast, P.7
  • 33
    • 84959889803 scopus 로고    scopus 로고
    • Remote control by inter-enzyme allostery: A novel paradigm for regulation of the shikimate pathway
    • Munack S, Roderer K, Okvist M, Kamarauskaite J, Sasso S, van Eerde A, Kast P, Krengel U. 2016. Remote control by inter-enzyme allostery: a novel paradigm for regulation of the shikimate pathway. J Mol Biol 428: 1237-1255. https://doi.org/10.1016/j.jmb.2016.01.001.
    • (2016) J Mol Biol , vol.428 , pp. 1237-1255
    • Munack, S.1    Roderer, K.2    Okvist, M.3    Kamarauskaite, J.4    Sasso, S.5    van Eerde, A.6    Kast, P.7    Krengel, U.8
  • 34
    • 85045574467 scopus 로고    scopus 로고
    • NTM drug discovery: Status, gaps and the way forward
    • Wu ML, Aziz DB, Dartois V, Dick T. 2018. NTM drug discovery: status, gaps and the way forward. Drug Discov Today 23: 1502-1519. https://doi.org/10.1016/j.drudis.2018.04.001.
    • (2018) Drug Discov Today , vol.23 , pp. 1502-1519
    • Wu, M.L.1    Aziz, D.B.2    Dartois, V.3    Dick, T.4
  • 35
    • 85041822351 scopus 로고    scopus 로고
    • Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism
    • Gao J, Xu K, Liu H, Liu G, Bai M, Peng C, Li T, Yin Y. 2018. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol 8: 13. https://doi.org/10.3389/fcimb .2018.00013.
    • (2018) Front Cell Infect Microbiol , vol.8 , pp. 13
    • Gao, J.1    Xu, K.2    Liu, H.3    Liu, G.4    Bai, M.5    Peng, C.6    Li, T.7    Yin, Y.8
  • 40
    • 85009792237 scopus 로고    scopus 로고
    • Interactions between the microbiota, immune and nervous systems in health and disease
    • Fung TC, Olson CA, Hsiao EY. 2017. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20: 145-155. https://doi.org/10.1038/nn.4476.
    • (2017) Nat Neurosci , vol.20 , pp. 145-155
    • Fung, T.C.1    Olson, C.A.2    Hsiao, E.Y.3
  • 42
    • 85011311161 scopus 로고    scopus 로고
    • Mechanisms of antibiotic resistance
    • Munita JM, Arias CA. 2016. Mechanisms of antibiotic resistance. Microbiol Spectr 4. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015.
    • (2016) Microbiol Spectr , pp. 4
    • Munita, J.M.1    Arias, C.A.2
  • 43
    • 0025996388 scopus 로고
    • Susceptibility of Legionella pneumophila grown extracellularly and in human monocytes to indole-3-propionic acid
    • Mandelbaum-Shavit F, Barak V, Saheb-Tamimi K, Grossowicz N. 1991. Susceptibility of Legionella pneumophila grown extracellularly and in human monocytes to indole-3-propionic acid. Antimicrob Agents Chemother 35: 2526-2530. https://doi.org/10.1128/AAC.35.12.2526.
    • (1991) Antimicrob Agents Chemother , vol.35 , pp. 2526-2530
    • Mandelbaum-Shavit, F.1    Barak, V.2    Saheb-Tamimi, K.3    Grossowicz, N.4
  • 44
    • 85046293513 scopus 로고    scopus 로고
    • 2016.0802. Chemical Computing Group ULC, Montreal, Quebec, Canada
    • Chemical Computing Group ULC. 2018. Molecular Operating Environment (MOE), 2016.0802. Chemical Computing Group ULC, Montreal, Quebec, Canada.
    • (2018) Molecular Operating Environment (MOE)
  • 45
    • 85009060616 scopus 로고    scopus 로고
    • Pyrazinamide resistance is caused by two distinct mechanisms: Prevention of coenzyme A depletion and loss of virulence factor synthesis
    • Gopal P, Yee M, Sarathy J, Low JL, Sarathy JP, Kaya F, Dartois V, Gengenbacher M, Dick T. 2016. Pyrazinamide resistance is caused by two distinct mechanisms: prevention of coenzyme A depletion and loss of virulence factor synthesis. ACS Infect Dis 2: 616-626. https://doi.org/10.1021/acsinfecdis.6b00070.
    • (2016) ACS Infect Dis , vol.2 , pp. 616-626
    • Gopal, P.1    Yee, M.2    Sarathy, J.3    Low, J.L.4    Sarathy, J.P.5    Kaya, F.6    Dartois, V.7    Gengenbacher, M.8    Dick, T.9
  • 46
    • 85017558600 scopus 로고    scopus 로고
    • Amphiphilic indole derivatives as antimycobacterial agents: Structureactivity relationships and membrane targeting properties
    • Yang T, Moreira W, Nyantakyi SA, Chen H, Aziz DB, Go ML, Dick T. 2017. Amphiphilic indole derivatives as antimycobacterial agents: structureactivity relationships and membrane targeting properties. J Med Chem 60: 2745-2763. https://doi.org/10.1021/acs.jmedchem.6b01530.
    • (2017) J Med Chem , vol.60 , pp. 2745-2763
    • Yang, T.1    Moreira, W.2    Nyantakyi, S.A.3    Chen, H.4    Aziz, D.B.5    Go, M.L.6    Dick, T.7
  • 47
    • 58149387446 scopus 로고    scopus 로고
    • Optimized method for preparation of DNA from pathogenic and environmental mycobacteria
    • Kaser M, Ruf MT, Hauser J, Marsollier L, Pluschke G. 2009. Optimized method for preparation of DNA from pathogenic and environmental mycobacteria. Appl Environ Microbiol 75: 414-418. https://doi.org/10.1128/AEM.01358-08.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 414-418
    • Kaser, M.1    Ruf, M.T.2    Hauser, J.3    Marsollier, L.4    Pluschke, G.5
  • 48
    • 0033434080 scopus 로고    scopus 로고
    • Probability-based protein identification by searching sequence databases using mass spectrometry data
    • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20: 3551-3567. https://doi.org/10.1002/(SICI)1522-2683(19991201)20: 18<3551:: AID-ELPS3551_3.0.CO;2-2.
    • (1999) Electrophoresis , vol.20 , pp. 3551-3567
    • Perkins, D.N.1    Pappin, D.J.2    Creasy, D.M.3    Cottrell, J.S.4
  • 49
    • 34548178909 scopus 로고    scopus 로고
    • In-gel digestion for mass spectrometric characterization of proteins and proteomes
    • Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M. 2007. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1: 2856-2860. https://doi.org/10.1038/nprot.2006.468.
    • (2007) Nat Protoc , vol.1 , pp. 2856-2860
    • Shevchenko, A.1    Tomas, H.2    Havlis, J.3    Olsen, J.V.4    Mann, M.5
  • 50
    • 84898540107 scopus 로고    scopus 로고
    • Repurposing the chemical scaffold of the anti-arthritic drug Lobenzarit to target tryptophan biosynthesis in Mycobacterium tuberculosis
    • Evans GL, Gamage SA, Bulloch EM, Baker EN, Denny WA, Lott JS. 2014. Repurposing the chemical scaffold of the anti-arthritic drug Lobenzarit to target tryptophan biosynthesis in Mycobacterium tuberculosis. Chembiochem 15: 852-864. https://doi.org/10.1002/cbic.201300628.
    • (2014) Chembiochem , vol.15 , pp. 852-864
    • Evans, G.L.1    Gamage, S.A.2    Bulloch, E.M.3    Baker, E.N.4    Denny, W.A.5    Lott, J.S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.