-
1
-
-
84908079780
-
A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics
-
Donia MS, Cimermancic P, Schulze CJ, Wieland Brown LC, Martin J, Mitreva M, Clardy J, Linington RG, Fischbach MA. 2014. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158: 1402-1414. https://doi.org/10.1016/j.cell.2014.08.032.
-
(2014)
Cell
, vol.158
, pp. 1402-1414
-
-
Donia, M.S.1
Cimermancic, P.2
Schulze, C.J.3
Wieland Brown, L.C.4
Martin, J.5
Mitreva, M.6
Clardy, J.7
Linington, R.G.8
Fischbach, M.A.9
-
2
-
-
84938244327
-
Small molecules from the human microbiota
-
Donia MS, Fischbach MA. 2015. Small molecules from the human microbiota. Science 349: 1254766. https://doi.org/10.1126/science.1254766.
-
(2015)
Science
, vol.349
, pp. 1254766
-
-
Donia, M.S.1
Fischbach, M.A.2
-
3
-
-
85034427947
-
Antibiotics and specialized metabolites from the human microbiota
-
Mousa WK, Athar B, Merwin NJ, Magarvey NA. 2017. Antibiotics and specialized metabolites from the human microbiota. Nat Prod Rep 34: 1302-1331. https://doi.org/10.1039/C7NP00021A.
-
(2017)
Nat Prod Rep
, vol.34
, pp. 1302-1331
-
-
Mousa, W.K.1
Athar, B.2
Merwin, N.J.3
Magarvey, N.A.4
-
4
-
-
85051746264
-
Microbial tryptophan catabolites in health and disease
-
Roager HM, Licht TR. 2018. Microbial tryptophan catabolites in health and disease. Nat Commun 9: 3294. https://doi.org/10.1038/s41467-018-05470-4.
-
(2018)
Nat Commun
, vol.9
, pp. 3294
-
-
Roager, H.M.1
Licht, T.R.2
-
5
-
-
85055441410
-
The microbiome and tuberculosis: Early evidence for cross talk
-
Namasivayam S, Sher A, Glickman MS, Wipperman MF. 2018. The microbiome and tuberculosis: early evidence for cross talk. mBio 9: e01420-18. https://doi.org/10.1128/mBio.01420-18.
-
(2018)
mBio
, vol.9
, pp. e01420-e01518
-
-
Namasivayam, S.1
Sher, A.2
Glickman, M.S.3
Wipperman, M.F.4
-
6
-
-
85056668831
-
The host microbiota contributes to early protection against lung colonization by Mycobacterium tuberculosis
-
Dumas A, Corral D, Colom A, Levillain F, Peixoto A, Hudrisier D, Poquet Y, Neyrolles O. 2018. The host microbiota contributes to early protection against lung colonization by Mycobacterium tuberculosis. Front Immunol 9: 2656. https://doi.org/10.3389/fimmu.2018.02656.
-
(2018)
Front Immunol
, vol.9
, pp. 2656
-
-
Dumas, A.1
Corral, D.2
Colom, A.3
Levillain, F.4
Peixoto, A.5
Hudrisier, D.6
Poquet, Y.7
Neyrolles, O.8
-
7
-
-
0018867409
-
The origin of indoleacetic acid and indolepropionic acid in rat and human cerebrospinal fluid
-
Young SN, Anderson GM, Gauthier S, Purdy WC. 1980. The origin of indoleacetic acid and indolepropionic acid in rat and human cerebrospinal fluid. J Neurochem 34: 1087-1092. https://doi.org/10.1111/j.1471-4159.1980.tb09944.x.
-
(1980)
J Neurochem
, vol.34
, pp. 1087-1092
-
-
Young, S.N.1
Anderson, G.M.2
Gauthier, S.3
Purdy, W.C.4
-
8
-
-
85036500288
-
A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites
-
Dodd D, Spitzer MH, Van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, Le A, Cowan TM, Nolan GP, Fischbach MA, Sonnenburg JL. 2017. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551: 648-652. https://doi.org/10.1038/nature24661.
-
(2017)
Nature
, vol.551
, pp. 648-652
-
-
Dodd, D.1
Spitzer, M.H.2
Van Treuren, W.3
Merrill, B.D.4
Hryckowian, A.J.5
Higginbottom, S.K.6
Le, A.7
Cowan, T.M.8
Nolan, G.P.9
Fischbach, M.A.10
Sonnenburg, J.L.11
-
9
-
-
85042364607
-
Whole-cell screen of fragment library identifies gut microbiota metabolite indole propionic acid as antitubercular
-
Negatu DA, Liu JJJ, Zimmerman M, Kaya F, Dartois V, Aldrich CC, Gengenbacher M, Dick T. 2018. Whole-cell screen of fragment library identifies gut microbiota metabolite indole propionic acid as antitubercular. Antimicrob Agents Chemother 62: e01571-17. https://doi.org/10.1128/AAC.01571-17.
-
(2018)
Antimicrob Agents Chemother
, vol.62
, pp. e01571-e01617
-
-
Negatu, D.A.1
Liu, J.J.J.2
Zimmerman, M.3
Kaya, F.4
Dartois, V.5
Aldrich, C.C.6
Gengenbacher, M.7
Dick, T.8
-
10
-
-
85046008891
-
Indole propionic acid: A small molecule links between gut microbiota and tuberculosis
-
Kaufmann SHE. 2018. Indole propionic acid: a small molecule links between gut microbiota and tuberculosis. Antimicrob Agents Chemother 62: e00389-18. https://doi.org/10.1128/AAC.00389-18.
-
(2018)
Antimicrob Agents Chemother
, vol.62
, pp. e00389-e00418
-
-
Kaufmann, S.H.E.1
-
11
-
-
85020433554
-
The human microbiome in the fight against tuberculosis
-
Wood MR, Yu EA, Mehta S. 2017. The human microbiome in the fight against tuberculosis. Am J Trop Med Hyg 96: 1274-1284. https://doi.org/10.4269/ajtmh.16-0581.
-
(2017)
Am J Trop Med Hyg
, vol.96
, pp. 1274-1284
-
-
Wood, M.R.1
Yu, E.A.2
Mehta, S.3
-
12
-
-
84890037649
-
Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing
-
Zhang YJ, Reddy MC, Ioerger TR, Rothchild AC, Dartois V, Schuster BM, Trauner A, Wallis D, Galaviz S, Huttenhower C, Sacchettini JC, Behar SM, Rubin EJ. 2013. Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell 155: 1296-1308. https://doi.org/10.1016/j.cell.2013.10.045.
-
(2013)
Cell
, vol.155
, pp. 1296-1308
-
-
Zhang, Y.J.1
Reddy, M.C.2
Ioerger, T.R.3
Rothchild, A.C.4
Dartois, V.5
Schuster, B.M.6
Trauner, A.7
Wallis, D.8
Galaviz, S.9
Huttenhower, C.10
Sacchettini, J.C.11
Behar, S.M.12
Rubin, E.J.13
-
13
-
-
85027831330
-
A smallmolecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase
-
Wellington S, Nag PP, Michalska K, Johnston SE, Jedrzejczak RP, Kaushik VK, Clatworthy AE, Siddiqi N, McCarren P, Bajrami B, Maltseva NI, Combs S, Fisher SL, Joachimiak A, Schreiber SL, Hung DT. 2017. A smallmolecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase. Nat Chem Biol 13: 943-950. https://doi.org/10.1038/nchembio .2420.
-
(2017)
Nat Chem Biol
, vol.13
, pp. 943-950
-
-
Wellington, S.1
Nag, P.P.2
Michalska, K.3
Johnston, S.E.4
Jedrzejczak, R.P.5
Kaushik, V.K.6
Clatworthy, A.E.7
Siddiqi, N.8
McCarren, P.9
Bajrami, B.10
Maltseva, N.I.11
Combs, S.12
Fisher, S.L.13
Joachimiak, A.14
Schreiber, S.L.15
Hung, D.T.16
-
14
-
-
0035123059
-
Structure of the cooperative allosteric anthranilate synthase from Salmonella typhimurium
-
Morollo AA, Eck MJ. 2001. Structure of the cooperative allosteric anthranilate synthase from Salmonella typhimurium. Nat Struct Biol 8: 243-247. https://doi.org/10.1038/84988.
-
(2001)
Nat Struct Biol
, vol.8
, pp. 243-247
-
-
Morollo, A.A.1
Eck, M.J.2
-
15
-
-
84946593300
-
Structure and inhibition of subunit I of the anthranilate synthase complex of Mycobacterium tuberculosis and expression of the active complex
-
Bashiri G, Johnston JM, Evans GL, Bulloch EM, Goldstone DC, Jirgis EN, Kleinboelting S, Castell A, Ramsay RJ, Manos-Turvey A, Payne RJ, Lott JS, Baker EN. 2015. Structure and inhibition of subunit I of the anthranilate synthase complex of Mycobacterium tuberculosis and expression of the active complex. Acta Crystallogr D Biol Crystallogr 71: 2297-2308. https://doi.org/10.1107/S1399004715017216.
-
(2015)
Acta Crystallogr D Biol Crystallogr
, vol.71
, pp. 2297-2308
-
-
Bashiri, G.1
Johnston, J.M.2
Evans, G.L.3
Bulloch, E.M.4
Goldstone, D.C.5
Jirgis, E.N.6
Kleinboelting, S.7
Castell, A.8
Ramsay, R.J.9
Manos-Turvey, A.10
Payne, R.J.11
Lott, J.S.12
Baker, E.N.13
-
16
-
-
57649112190
-
Purification and characterization of anthranilate synthase component I (TrpE) from Mycobacterium tuberculosis H37Rv
-
Lin X, Xu S, Yang Y, Wu J, Wang H, Shen H, Wang H. 2009. Purification and characterization of anthranilate synthase component I (TrpE) from Mycobacterium tuberculosis H37Rv. Protein Expr Purif 64: 8-15. https://doi.org/10.1016/j.pep.2008.09.020.
-
(2009)
Protein Expr Purif
, vol.64
, pp. 8-15
-
-
Lin, X.1
Xu, S.2
Yang, Y.3
Wu, J.4
Wang, H.5
Shen, H.6
Wang, H.7
-
17
-
-
70349932423
-
AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility
-
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. 2009. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30: 2785-2791. https://doi.org/10.1002/jcc.21256.
-
(2009)
J Comput Chem
, vol.30
, pp. 2785-2791
-
-
Morris, G.M.1
Huey, R.2
Lindstrom, W.3
Sanner, M.F.4
Belew, R.K.5
Goodsell, D.S.6
Olson, A.J.7
-
18
-
-
76149120388
-
AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
-
Trott O, Olson AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31: 455-461. https://doi.org/10.1002/jcc.21334.
-
(2010)
J Comput Chem
, vol.31
, pp. 455-461
-
-
Trott, O.1
Olson, A.J.2
-
19
-
-
0035933197
-
The structures of anthranilate synthase of Serratia marcescens crystallized in the presence of (i) its substrates, chorismate and glutamine, and a product, glutamate, and (ii) its end-product inhibitor, L-tryptophan
-
Spraggon G, Kim C, Nguyen-Huu X, Yee MC, Yanofsky C, Mills SE. 2001. The structures of anthranilate synthase of Serratia marcescens crystallized in the presence of (i) its substrates, chorismate and glutamine, and a product, glutamate, and (ii) its end-product inhibitor, L-tryptophan. Proc Natl Acad Sci U S A 98: 6021-6026. https://doi.org/10.1073/pnas .111150298.
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, pp. 6021-6026
-
-
Spraggon, G.1
Kim, C.2
Nguyen-Huu, X.3
Yee, M.C.4
Yanofsky, C.5
Mills, S.E.6
-
20
-
-
85057533277
-
Mechanism of fluorinated anthranilate-induced growth inhibition in Mycobacterium tuberculosis
-
Islam MN, Hitchings R, Kumar S, Fontes FL, Lott JS, Kruh-Garcia NA, Crick DC. 2018. Mechanism of fluorinated anthranilate-induced growth inhibition in Mycobacterium tuberculosis. ACS Infect. https://doi.org/10.1021/acsinfecdis.8b00092.
-
(2018)
ACS Infect
-
-
Islam, M.N.1
Hitchings, R.2
Kumar, S.3
Fontes, F.L.4
Lott, J.S.5
Kruh-Garcia, N.A.6
Crick, D.C.7
-
21
-
-
84961479446
-
Site of action of growth inhibitory tryptophan analogues in Catharanthus roseus cell suspension cultures
-
Sasse F, Buchholz M, Berlin J. 1983. Site of action of growth inhibitory tryptophan analogues in Catharanthus roseus cell suspension cultures. Z Naturforsch 38: 910. https://doi.org/10.1515/znc-1983-11-1205.
-
(1983)
Z Naturforsch
, vol.38
, pp. 910
-
-
Sasse, F.1
Buchholz, M.2
Berlin, J.3
-
22
-
-
0015526442
-
Tryptophan biosynthesis in Nicotiana tabacum and Daucus carota cell cultures: Site of action of inhibitory tryptophan analogs
-
Widholm JM. 1972. Tryptophan biosynthesis in Nicotiana tabacum and Daucus carota cell cultures: site of action of inhibitory tryptophan analogs. Biochim Biophys Acta 261: 44-51. https://doi.org/10.1016/0304-4165(72)90311-X.
-
(1972)
Biochim Biophys Acta
, vol.261
, pp. 44-51
-
-
Widholm, J.M.1
-
23
-
-
0023445515
-
Two single-base-pair substitutions causing desensitization to tryptophan feedback inhibition of anthranilate synthase and enhanced expression of tryptophan genes of Brevibacterium lactofermentum
-
Matsui K, Miwa K, Sano K. 1987. Two single-base-pair substitutions causing desensitization to tryptophan feedback inhibition of anthranilate synthase and enhanced expression of tryptophan genes of Brevibacterium lactofermentum. J Bacteriol 169: 5330-5332. https://doi .org/10.1128/jb.169.11.5330-5332.1987.
-
(1987)
J Bacteriol
, vol.169
, pp. 5330-5332
-
-
Matsui, K.1
Miwa, K.2
Sano, K.3
-
24
-
-
0017835591
-
Tryptophan uptake by Mycobacterium tuberculosis H37Rv: Effect of rifampin and ethambutol
-
Sundaram KS, Venkitasubramanian TA. 1978. Tryptophan uptake by Mycobacterium tuberculosis H37Rv: effect of rifampin and ethambutol. Antimicrob Agents Chemother 13: 726-730. https://doi.org/10.1128/AAC .13.5.726.
-
(1978)
Antimicrob Agents Chemother
, vol.13
, pp. 726-730
-
-
Sundaram, K.S.1
Venkitasubramanian, T.A.2
-
25
-
-
85028393942
-
Inhibiting mycobacterial tryptophan synthase by targeting the inter-subunit interface
-
Abrahams KA, Cox JAG, Futterer K, Rullas J, Ortega-Muro F, Loman NJ, Moynihan PJ, Perez-Herran E, Jimenez E, Esquivias J, Barros D, Ballell L, Alemparte C, Besra GS. 2017. Inhibiting mycobacterial tryptophan synthase by targeting the inter-subunit interface. Sci Rep 7: 9430. https://doi.org/10.1038/s41598-017-09642-y.
-
(2017)
Sci Rep
, vol.7
, pp. 9430
-
-
Abrahams, K.A.1
Cox, J.A.G.2
Futterer, K.3
Rullas, J.4
Ortega-Muro, F.5
Loman, N.J.6
Moynihan, P.J.7
Perez-Herran, E.8
Jimenez, E.9
Esquivias, J.10
Barros, D.11
Ballell, L.12
Alemparte, C.13
Besra, G.S.14
-
26
-
-
0025922291
-
New use of BCG for recombinant vaccines
-
Stover CK, de la Cruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT, Bansal GP, Young JF, Lee MH, Hatfull GF. 1991. New use of BCG for recombinant vaccines. Nature 351: 456-460. https://doi.org/10.1038/351456a0.
-
(1991)
Nature
, vol.351
, pp. 456-460
-
-
Stover, C.K.1
de la Cruz, V.F.2
Fuerst, T.R.3
Burlein, J.E.4
Benson, L.A.5
Bennett, L.T.6
Bansal, G.P.7
Young, J.F.8
Lee, M.H.9
Hatfull, G.F.10
-
27
-
-
0345701347
-
Genes required for mycobacterial growth defined by high density mutagenesis
-
Sassetti CM, Boyd DH, Rubin EJ. 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48: 77-84. https://doi.org/10.1046/j.1365-2958.2003.03425.x.
-
(2003)
Mol Microbiol
, vol.48
, pp. 77-84
-
-
Sassetti, C.M.1
Boyd, D.H.2
Rubin, E.J.3
-
28
-
-
84931043192
-
Structure of the MarR family protein Rv0880 from Mycobacterium tuberculosis
-
Gao YR, Feng N, Chen T, Li de F, Bi LJ. 2015. Structure of the MarR family protein Rv0880 from Mycobacterium tuberculosis. Acta Crystallogr F Struct Biol Commun 71: 741-745. https://doi.org/10.1107/S2053230X15007281.
-
(2015)
Acta Crystallogr F Struct Biol Commun
, vol.71
, pp. 741-745
-
-
Gao, Y.R.1
Feng, N.2
Chen, T.3
Li de, F.4
Bi, L.J.5
-
29
-
-
84960971089
-
A comprehensive map of genome-wide gene regulation in Mycobacterium tuberculosis
-
Turkarslan S, Peterson EJ, Rustad TR, Minch KJ, Reiss DJ, Morrison R, Ma S, Price ND, Sherman DR, Baliga NS. 2015. A comprehensive map of genome-wide gene regulation in Mycobacterium tuberculosis. Sci Data 2: 150010. https://doi.org/10.1038/sdata.2015.10.
-
(2015)
Sci Data
, vol.2
, pp. 150010
-
-
Turkarslan, S.1
Peterson, E.J.2
Rustad, T.R.3
Minch, K.J.4
Reiss, D.J.5
Morrison, R.6
Ma, S.7
Price, N.D.8
Sherman, D.R.9
Baliga, N.S.10
-
30
-
-
84991409008
-
Network analysis identifies Rv0324 and Rv0880 as regulators of bedaquiline tolerance in Mycobacterium tuberculosis
-
Peterson EJR, Ma S, Sherman DR, Baliga NS. 2016. Network analysis identifies Rv0324 and Rv0880 as regulators of bedaquiline tolerance in Mycobacterium tuberculosis. Nat Microbiol 1: 16078. https://doi.org/10.1038/nmicrobiol.2016.78.
-
(2016)
Nat Microbiol
, vol.1
, pp. 16078
-
-
Peterson, E.J.R.1
Ma, S.2
Sherman, D.R.3
Baliga, N.S.4
-
31
-
-
85011958938
-
Mycobacterium tuberculosis chorismate mutase: A potential target for TB
-
Khanapur M, Alvala M, Prabhakar M, Shiva Kumar K, Edwin RK, Sri Saranya PS, Patel RK, Bulusu G, Misra P, Pal M. 2017. Mycobacterium tuberculosis chorismate mutase: a potential target for TB. Bioorg Med Chem 25: 1725-1736. https://doi.org/10.1016/j.bmc.2017.02.001.
-
(2017)
Bioorg Med Chem
, vol.25
, pp. 1725-1736
-
-
Khanapur, M.1
Alvala, M.2
Prabhakar, M.3
Shiva Kumar, K.4
Edwin, R.K.5
Sri Saranya, P.S.6
Patel, R.K.7
Bulusu, G.8
Misra, P.9
Pal, M.10
-
32
-
-
67651147947
-
Structure and function of a complex between chorismate mutase and DAHP synthase: Efficiency boost for the junior partner
-
Sasso S, Okvist M, Roderer K, Gamper M, Codoni G, Krengel U, Kast P. 2009. Structure and function of a complex between chorismate mutase and DAHP synthase: efficiency boost for the junior partner. EMBO J 28: 2128-2142. https://doi.org/10.1038/emboj.2009.165.
-
(2009)
EMBO J
, vol.28
, pp. 2128-2142
-
-
Sasso, S.1
Okvist, M.2
Roderer, K.3
Gamper, M.4
Codoni, G.5
Krengel, U.6
Kast, P.7
-
33
-
-
84959889803
-
Remote control by inter-enzyme allostery: A novel paradigm for regulation of the shikimate pathway
-
Munack S, Roderer K, Okvist M, Kamarauskaite J, Sasso S, van Eerde A, Kast P, Krengel U. 2016. Remote control by inter-enzyme allostery: a novel paradigm for regulation of the shikimate pathway. J Mol Biol 428: 1237-1255. https://doi.org/10.1016/j.jmb.2016.01.001.
-
(2016)
J Mol Biol
, vol.428
, pp. 1237-1255
-
-
Munack, S.1
Roderer, K.2
Okvist, M.3
Kamarauskaite, J.4
Sasso, S.5
van Eerde, A.6
Kast, P.7
Krengel, U.8
-
34
-
-
85045574467
-
NTM drug discovery: Status, gaps and the way forward
-
Wu ML, Aziz DB, Dartois V, Dick T. 2018. NTM drug discovery: status, gaps and the way forward. Drug Discov Today 23: 1502-1519. https://doi.org/10.1016/j.drudis.2018.04.001.
-
(2018)
Drug Discov Today
, vol.23
, pp. 1502-1519
-
-
Wu, M.L.1
Aziz, D.B.2
Dartois, V.3
Dick, T.4
-
35
-
-
85041822351
-
Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism
-
Gao J, Xu K, Liu H, Liu G, Bai M, Peng C, Li T, Yin Y. 2018. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol 8: 13. https://doi.org/10.3389/fcimb .2018.00013.
-
(2018)
Front Cell Infect Microbiol
, vol.8
, pp. 13
-
-
Gao, J.1
Xu, K.2
Liu, H.3
Liu, G.4
Bai, M.5
Peng, C.6
Li, T.7
Yin, Y.8
-
36
-
-
84907597269
-
Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4
-
Venkatesh M, Mukherjee S, Wang H, Li H, Sun K, Benechet AP, Qiu Z, Maher L, Redinbo MR, Phillips RS, Fleet JC, Kortagere S, Mukherjee P, Fasano A, Le Ven J, Nicholson JK, Dumas ME, Khanna KM, Mani S. 2014. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 41: 296-310. https://doi.org/10.1016/j.immuni.2014.06.014.
-
(2014)
Immunity
, vol.41
, pp. 296-310
-
-
Venkatesh, M.1
Mukherjee, S.2
Wang, H.3
Li, H.4
Sun, K.5
Benechet, A.P.6
Qiu, Z.7
Maher, L.8
Redinbo, M.R.9
Phillips, R.S.10
Fleet, J.C.11
Kortagere, S.12
Mukherjee, P.13
Fasano, A.14
Le Ven, J.15
Nicholson, J.K.16
Dumas, M.E.17
Khanna, K.M.18
Mani, S.19
-
37
-
-
85032575160
-
Xenobiotic receptor-mediated regulation of intestinal barrier function and innate immunity
-
Ranhotra HS, Flannigan KL, Brave M, Mukherjee S, Lukin DJ, Hirota SA, Mani S. 2016. Xenobiotic receptor-mediated regulation of intestinal barrier function and innate immunity. Nucl Recept Res 3: 101199. https://doi.org/10.11131/2016/101199.
-
(2016)
Nucl Recept Res
, vol.3
, pp. 101199
-
-
Ranhotra, H.S.1
Flannigan, K.L.2
Brave, M.3
Mukherjee, S.4
Lukin, D.J.5
Hirota, S.A.6
Mani, S.7
-
38
-
-
65849450639
-
Indole-3-propionic acid attenuates neuronal damage and oxidative stress in the ischemic hippocampus
-
Hwang IK, Yoo KY, Li H, Park OK, Lee CH, Choi JH, Jeong YG, Lee YL, Kim YM, Kwon YG, Won MH. 2009. Indole-3-propionic acid attenuates neuronal damage and oxidative stress in the ischemic hippocampus. J Neurosci Res 87: 2126-2137. https://doi.org/10.1002/jnr.22030.
-
(2009)
J Neurosci Res
, vol.87
, pp. 2126-2137
-
-
Hwang, I.K.1
Yoo, K.Y.2
Li, H.3
Park, O.K.4
Lee, C.H.5
Choi, J.H.6
Jeong, Y.G.7
Lee, Y.L.8
Kim, Y.M.9
Kwon, Y.G.10
Won, M.H.11
-
39
-
-
84966658995
-
Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor
-
Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L, Chao CC, Patel B, Yan R, Blain M, Alvarez JI, Kebir H, Anandasabapathy N, Izquierdo G, Jung S, Obholzer N, Pochet N, Clish CB, Prinz M, Prat A, Antel J, Quintana FJ. 2016. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med 22: 586-597. https://doi.org/10.1038/nm.4106.
-
(2016)
Nat Med
, vol.22
, pp. 586-597
-
-
Rothhammer, V.1
Mascanfroni, I.D.2
Bunse, L.3
Takenaka, M.C.4
Kenison, J.E.5
Mayo, L.6
Chao, C.C.7
Patel, B.8
Yan, R.9
Blain, M.10
Alvarez, J.I.11
Kebir, H.12
Anandasabapathy, N.13
Izquierdo, G.14
Jung, S.15
Obholzer, N.16
Pochet, N.17
Clish, C.B.18
Prinz, M.19
Prat, A.20
Antel, J.21
Quintana, F.J.22
more..
-
40
-
-
85009792237
-
Interactions between the microbiota, immune and nervous systems in health and disease
-
Fung TC, Olson CA, Hsiao EY. 2017. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20: 145-155. https://doi.org/10.1038/nn.4476.
-
(2017)
Nat Neurosci
, vol.20
, pp. 145-155
-
-
Fung, T.C.1
Olson, C.A.2
Hsiao, E.Y.3
-
41
-
-
62649151803
-
Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites
-
Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G. 2009. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 106: 3698-3703. https://doi.org/10.1073/pnas.0812874106.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 3698-3703
-
-
Wikoff, W.R.1
Anfora, A.T.2
Liu, J.3
Schultz, P.G.4
Lesley, S.A.5
Peters, E.C.6
Siuzdak, G.7
-
42
-
-
85011311161
-
Mechanisms of antibiotic resistance
-
Munita JM, Arias CA. 2016. Mechanisms of antibiotic resistance. Microbiol Spectr 4. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015.
-
(2016)
Microbiol Spectr
, pp. 4
-
-
Munita, J.M.1
Arias, C.A.2
-
43
-
-
0025996388
-
Susceptibility of Legionella pneumophila grown extracellularly and in human monocytes to indole-3-propionic acid
-
Mandelbaum-Shavit F, Barak V, Saheb-Tamimi K, Grossowicz N. 1991. Susceptibility of Legionella pneumophila grown extracellularly and in human monocytes to indole-3-propionic acid. Antimicrob Agents Chemother 35: 2526-2530. https://doi.org/10.1128/AAC.35.12.2526.
-
(1991)
Antimicrob Agents Chemother
, vol.35
, pp. 2526-2530
-
-
Mandelbaum-Shavit, F.1
Barak, V.2
Saheb-Tamimi, K.3
Grossowicz, N.4
-
44
-
-
85046293513
-
-
2016.0802. Chemical Computing Group ULC, Montreal, Quebec, Canada
-
Chemical Computing Group ULC. 2018. Molecular Operating Environment (MOE), 2016.0802. Chemical Computing Group ULC, Montreal, Quebec, Canada.
-
(2018)
Molecular Operating Environment (MOE)
-
-
-
45
-
-
85009060616
-
Pyrazinamide resistance is caused by two distinct mechanisms: Prevention of coenzyme A depletion and loss of virulence factor synthesis
-
Gopal P, Yee M, Sarathy J, Low JL, Sarathy JP, Kaya F, Dartois V, Gengenbacher M, Dick T. 2016. Pyrazinamide resistance is caused by two distinct mechanisms: prevention of coenzyme A depletion and loss of virulence factor synthesis. ACS Infect Dis 2: 616-626. https://doi.org/10.1021/acsinfecdis.6b00070.
-
(2016)
ACS Infect Dis
, vol.2
, pp. 616-626
-
-
Gopal, P.1
Yee, M.2
Sarathy, J.3
Low, J.L.4
Sarathy, J.P.5
Kaya, F.6
Dartois, V.7
Gengenbacher, M.8
Dick, T.9
-
46
-
-
85017558600
-
Amphiphilic indole derivatives as antimycobacterial agents: Structureactivity relationships and membrane targeting properties
-
Yang T, Moreira W, Nyantakyi SA, Chen H, Aziz DB, Go ML, Dick T. 2017. Amphiphilic indole derivatives as antimycobacterial agents: structureactivity relationships and membrane targeting properties. J Med Chem 60: 2745-2763. https://doi.org/10.1021/acs.jmedchem.6b01530.
-
(2017)
J Med Chem
, vol.60
, pp. 2745-2763
-
-
Yang, T.1
Moreira, W.2
Nyantakyi, S.A.3
Chen, H.4
Aziz, D.B.5
Go, M.L.6
Dick, T.7
-
47
-
-
58149387446
-
Optimized method for preparation of DNA from pathogenic and environmental mycobacteria
-
Kaser M, Ruf MT, Hauser J, Marsollier L, Pluschke G. 2009. Optimized method for preparation of DNA from pathogenic and environmental mycobacteria. Appl Environ Microbiol 75: 414-418. https://doi.org/10.1128/AEM.01358-08.
-
(2009)
Appl Environ Microbiol
, vol.75
, pp. 414-418
-
-
Kaser, M.1
Ruf, M.T.2
Hauser, J.3
Marsollier, L.4
Pluschke, G.5
-
48
-
-
0033434080
-
Probability-based protein identification by searching sequence databases using mass spectrometry data
-
Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20: 3551-3567. https://doi.org/10.1002/(SICI)1522-2683(19991201)20: 18<3551:: AID-ELPS3551_3.0.CO;2-2.
-
(1999)
Electrophoresis
, vol.20
, pp. 3551-3567
-
-
Perkins, D.N.1
Pappin, D.J.2
Creasy, D.M.3
Cottrell, J.S.4
-
49
-
-
34548178909
-
In-gel digestion for mass spectrometric characterization of proteins and proteomes
-
Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M. 2007. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1: 2856-2860. https://doi.org/10.1038/nprot.2006.468.
-
(2007)
Nat Protoc
, vol.1
, pp. 2856-2860
-
-
Shevchenko, A.1
Tomas, H.2
Havlis, J.3
Olsen, J.V.4
Mann, M.5
-
50
-
-
84898540107
-
Repurposing the chemical scaffold of the anti-arthritic drug Lobenzarit to target tryptophan biosynthesis in Mycobacterium tuberculosis
-
Evans GL, Gamage SA, Bulloch EM, Baker EN, Denny WA, Lott JS. 2014. Repurposing the chemical scaffold of the anti-arthritic drug Lobenzarit to target tryptophan biosynthesis in Mycobacterium tuberculosis. Chembiochem 15: 852-864. https://doi.org/10.1002/cbic.201300628.
-
(2014)
Chembiochem
, vol.15
, pp. 852-864
-
-
Evans, G.L.1
Gamage, S.A.2
Bulloch, E.M.3
Baker, E.N.4
Denny, W.A.5
Lott, J.S.6
|