메뉴 건너뛰기




Volumn 10, Issue 1, 2019, Pages 23-43

Methods to calculate uncertainty in the estimated overall effect size from a random-effects meta-analysis

Author keywords

confidence interval; evidence synthesis; meta analysis; overall treatment effect; random effects

Indexed keywords

ALGORITHM; BAYES THEOREM; COMPUTER SIMULATION; DECISION MAKING; HUMAN; META ANALYSIS (TOPIC); METHODOLOGY; RANDOMIZATION; REPRODUCIBILITY; SAMPLE SIZE; STATISTICAL ANALYSIS; STATISTICAL MODEL; UNCERTAINTY;

EID: 85061921326     PISSN: None     EISSN: 17592887     Source Type: Journal    
DOI: 10.1002/jrsm.1319     Document Type: Article
Times cited : (138)

References (174)
  • 1
    • 84925587640 scopus 로고    scopus 로고
    • Systematic reviews and meta-analyses of randomized trials: principles and pitfalls
    • da Costa BR, Juni P. Systematic reviews and meta-analyses of randomized trials: principles and pitfalls. Eur Heart J. 2014;35(47):3336-3345.
    • (2014) Eur Heart J , vol.35 , Issue.47 , pp. 3336-3345
    • da Costa, B.R.1    Juni, P.2
  • 2
    • 0003514452 scopus 로고    scopus 로고
    • Accessed 08 February, 2017
    • WHO. World Health Organization. http://www.who.int/en/. Accessed 08 February, 2017.
    • World Health Organization
  • 3
    • 62949147825 scopus 로고    scopus 로고
    • Accessed 08 February, 2017
    • EMA. European Medicines Agency. http://www.ema.europa.eu/ema/. Accessed 08 February, 2017.
    • European Medicines Agency
  • 7
    • 84974793861 scopus 로고    scopus 로고
    • Grading quality of evidence and strength of recommendations
    • Atkins D, Best D, Briss PA, et al. Grading quality of evidence and strength of recommendations. BMJ. 2004;328(7454):1490.
    • (2004) BMJ , vol.328 , Issue.7454 , pp. 1490
    • Atkins, D.1    Best, D.2    Briss, P.A.3
  • 8
    • 84958158270 scopus 로고    scopus 로고
    • Applicable or non-applicable: investigations of clinical heterogeneity in systematic reviews
    • Chess LE, Gagnier JJ. Applicable or non-applicable: investigations of clinical heterogeneity in systematic reviews. BMC Med Res Methodol. 2016;16(1):19.
    • (2016) BMC Med Res Methodol , vol.16 , Issue.1 , pp. 19
    • Chess, L.E.1    Gagnier, J.J.2
  • 10
    • 0033619529 scopus 로고    scopus 로고
    • Explaining heterogeneity in meta-analysis: a comparison of methods
    • Thompson SG, Sharp SJ. Explaining heterogeneity in meta-analysis: a comparison of methods. Stat Med. 1999;18(20):2693-2708.
    • (1999) Stat Med , vol.18 , Issue.20 , pp. 2693-2708
    • Thompson, S.G.1    Sharp, S.J.2
  • 11
    • 0022992740 scopus 로고
    • Meta-analysis in clinical trials
    • DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177-188.
    • (1986) Control Clin Trials , vol.7 , Issue.3 , pp. 177-188
    • DerSimonian, R.1    Laird, N.2
  • 12
    • 84988478557 scopus 로고    scopus 로고
    • Random-effects meta-analysis of inconsistent effects: a time for change
    • Cornell JE, Mulrow CD, Localio R, et al. Random-effects meta-analysis of inconsistent effects: a time for change. Ann Intern Med. 2014;160(4):267-270.
    • (2014) Ann Intern Med , vol.160 , Issue.4 , pp. 267-270
    • Cornell, J.E.1    Mulrow, C.D.2    Localio, R.3
  • 13
    • 0035970794 scopus 로고    scopus 로고
    • A comparison of statistical methods for meta-analysis
    • Brockwell SE, Gordon IR. A comparison of statistical methods for meta-analysis. Stat Med. 2001;20(6):825-840.
    • (2001) Stat Med , vol.20 , Issue.6 , pp. 825-840
    • Brockwell, S.E.1    Gordon, I.R.2
  • 14
    • 0035977414 scopus 로고    scopus 로고
    • A refined method for the meta-analysis of controlled clinical trials with binary outcome
    • Hartung J, Knapp G. A refined method for the meta-analysis of controlled clinical trials with binary outcome. Stat Med. 2001;20(24):3875-3889.
    • (2001) Stat Med , vol.20 , Issue.24 , pp. 3875-3889
    • Hartung, J.1    Knapp, G.2
  • 15
    • 0037110527 scopus 로고    scopus 로고
    • A simple confidence interval for meta-analysis
    • Sidik K, Jonkman JN. A simple confidence interval for meta-analysis. Stat Med. 2002;21(21):3153-3159.
    • (2002) Stat Med , vol.21 , Issue.21 , pp. 3153-3159
    • Sidik, K.1    Jonkman, J.N.2
  • 16
    • 84899478410 scopus 로고    scopus 로고
    • The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method
    • IntHout J, Ioannidis JP, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med Res Methodol. 2014;14(1):25.
    • (2014) BMC Med Res Methodol , vol.14 , Issue.1 , pp. 25
    • IntHout, J.1    Ioannidis, J.P.2    Borm, G.F.3
  • 17
    • 81955161941 scopus 로고    scopus 로고
    • Confidence intervals for a random-effects meta-analysis based on Bartlett-type corrections
    • Noma H. Confidence intervals for a random-effects meta-analysis based on Bartlett-type corrections. Stat Med. 2011;30(28):3304-3312.
    • (2011) Stat Med , vol.30 , Issue.28 , pp. 3304-3312
    • Noma, H.1
  • 18
    • 0033198316 scopus 로고    scopus 로고
    • Random-effects meta-analyses are not always conservative
    • Poole C, Greenland S. Random-effects meta-analyses are not always conservative. Am J Epidemiol. 1999;150(5):469-475.
    • (1999) Am J Epidemiol , vol.150 , Issue.5 , pp. 469-475
    • Poole, C.1    Greenland, S.2
  • 19
    • 76549085970 scopus 로고    scopus 로고
    • Estimation of the effect size in meta-analysis with few studies
    • Longford NT. Estimation of the effect size in meta-analysis with few studies. Stat Med. 2010;29(4):421-430.
    • (2010) Stat Med , vol.29 , Issue.4 , pp. 421-430
    • Longford, N.T.1
  • 20
    • 84864508284 scopus 로고    scopus 로고
    • Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane database of systematic reviews
    • Turner RM, Davey J, Clarke MJ, Thompson SG, Higgins JP. Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane database of systematic reviews. Int J Epidemiol. 2012;41(3):818-827.
    • (2012) Int J Epidemiol , vol.41 , Issue.3 , pp. 818-827
    • Turner, R.M.1    Davey, J.2    Clarke, M.J.3    Thompson, S.G.4    Higgins, J.P.5
  • 21
    • 84915750224 scopus 로고    scopus 로고
    • Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data
    • Rhodes KM, Turner RM, Higgins JP. Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data. J Clin Epidemiol. 2015;68(1):52-60.
    • (2015) J Clin Epidemiol , vol.68 , Issue.1 , pp. 52-60
    • Rhodes, K.M.1    Turner, R.M.2    Higgins, J.P.3
  • 22
    • 82055175725 scopus 로고    scopus 로고
    • Characteristics of meta-analyses and their component studies in the Cochrane database of systematic reviews: a cross-sectional, descriptive analysis
    • Davey J, Turner RM, Clarke MJ, Higgins JP. Characteristics of meta-analyses and their component studies in the Cochrane database of systematic reviews: a cross-sectional, descriptive analysis. BMC Med Res Methodol. 2011;11(1):160.
    • (2011) BMC Med Res Methodol , vol.11 , Issue.1 , pp. 160
    • Davey, J.1    Turner, R.M.2    Clarke, M.J.3    Higgins, J.P.4
  • 23
    • 84880850709 scopus 로고    scopus 로고
    • A re-analysis of the Cochrane library data: the dangers of unobserved heterogeneity in meta-analyses
    • Kontopantelis E, Springate DA, Reeves D. A re-analysis of the Cochrane library data: the dangers of unobserved heterogeneity in meta-analyses. PLoS One. 2013;8(7):e69930.
    • (2013) PLoS One , vol.8 , Issue.7
    • Kontopantelis, E.1    Springate, D.A.2    Reeves, D.3
  • 25
    • 79955544813 scopus 로고    scopus 로고
    • Interpretation of random effects meta-analyses
    • Riley RD, Higgins JP, Deeks JJ. Interpretation of random effects meta-analyses. BMJ. 2011;342(feb10 2):d549.
    • (2011) BMJ , vol.342 , Issue.feb10 2 , pp. d549
    • Riley, R.D.1    Higgins, J.P.2    Deeks, J.J.3
  • 27
    • 84964577758 scopus 로고    scopus 로고
    • Introduction to systematic reviews and meta-analysis
    • McKenzie JE, Beller EM, Forbes AB. Introduction to systematic reviews and meta-analysis. Respirology. 2016;21(4):626-637.
    • (2016) Respirology , vol.21 , Issue.4 , pp. 626-637
    • McKenzie, J.E.1    Beller, E.M.2    Forbes, A.B.3
  • 28
    • 85044865300 scopus 로고    scopus 로고
    • Methods for evidence synthesis in the case of very few studies
    • epub ahead of print1–11
    • Bender R, Friede T, Koch A, et al. Methods for evidence synthesis in the case of very few studies. Res Synth Methods. 2018. epub ahead of print:1–11
    • (2018) Res Synth Methods
    • Bender, R.1    Friede, T.2    Koch, A.3
  • 29
    • 0024991175 scopus 로고
    • Some statistical methods for combining experimental results
    • Laird NM, Mosteller F. Some statistical methods for combining experimental results. Int J Technol Assess Health Care. 1990;6(1):5-30.
    • (1990) Int J Technol Assess Health Care , vol.6 , Issue.1 , pp. 5-30
    • Laird, N.M.1    Mosteller, F.2
  • 30
    • 78649676690 scopus 로고    scopus 로고
    • Confidence intervals for random effects meta-analysis and robustness to publication bias
    • Henmi M, Copas JB. Confidence intervals for random effects meta-analysis and robustness to publication bias. Stat Med. 2010;29(29):2969-2983.
    • (2010) Stat Med , vol.29 , Issue.29 , pp. 2969-2983
    • Henmi, M.1    Copas, J.B.2
  • 31
    • 65549111339 scopus 로고    scopus 로고
    • Fixed- versus random-effects models in meta-analysis: model properties and an empirical comparison of differences in results
    • Schmidt FL, Oh IS, Hayes TL. Fixed- versus random-effects models in meta-analysis: model properties and an empirical comparison of differences in results. Br J Math Stat Psychol. 2009;62(Pt 1):97-128.
    • (2009) Br J Math Stat Psychol , vol.62 , pp. 97-128
    • Schmidt, F.L.1    Oh, I.S.2    Hayes, T.L.3
  • 32
    • 85101510947 scopus 로고    scopus 로고
    • A basic introduction to fixed-effect and random-effects models for meta-analysis
    • Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010;1(2):97-111.
    • (2010) Res Synth Methods. , vol.1 , Issue.2 , pp. 97-111
    • Borenstein, M.1    Hedges, L.V.2    Higgins, J.P.3    Rothstein, H.R.4
  • 33
    • 0034559950 scopus 로고    scopus 로고
    • Fixed effects vs. random effects meta-analysis models: implications for cumulative research knowledge
    • Hunter JE, Smith FL. Fixed effects vs. random effects meta-analysis models: implications for cumulative research knowledge. Int J Select Assess. 2000;8(4):275-292.
    • (2000) Int J Select Assess , vol.8 , Issue.4 , pp. 275-292
    • Hunter, J.E.1    Smith, F.L.2
  • 34
    • 84993734315 scopus 로고    scopus 로고
    • Weighting by inverse variance or by sample size in random-effects meta-analysis
    • Marín-Martínez F, Sánchez-Meca J. Weighting by inverse variance or by sample size in random-effects meta-analysis. Educ Psychol Meas. 2009;70(1):56-73.
    • (2009) Educ Psychol Meas , vol.70 , Issue.1 , pp. 56-73
    • Marín-Martínez, F.1    Sánchez-Meca, J.2
  • 35
    • 0040575119 scopus 로고    scopus 로고
    • Weighting by inverse variance or by sample size in meta-analysis: a simulation study
    • Sanchez-Meca J, Marín-Martínez F. Weighting by inverse variance or by sample size in meta-analysis: a simulation study. Educ Psychol Meas. 2016;58(2):211-220.
    • (2016) Educ Psychol Meas , vol.58 , Issue.2 , pp. 211-220
    • Sanchez-Meca, J.1    Marín-Martínez, F.2
  • 36
    • 18444362140 scopus 로고    scopus 로고
    • Combining information from independent sources through confidence distribution
    • Singh K, Xie M, Strawderman W. Combining information from independent sources through confidence distribution. Ann Stat. 2005;33(1):159-183.
    • (2005) Ann Stat , vol.33 , Issue.1 , pp. 159-183
    • Singh, K.1    Xie, M.2    Strawderman, W.3
  • 37
    • 79954486112 scopus 로고    scopus 로고
    • Confidence distributions and a unifying framework for meta-analysis
    • Xie M, Singh K, Strawderman WE. Confidence distributions and a unifying framework for meta-analysis. J Am Stat Assoc. 2011;106(493):320-333.
    • (2011) J Am Stat Assoc , vol.106 , Issue.493 , pp. 320-333
    • Xie, M.1    Singh, K.2    Strawderman, W.E.3
  • 38
    • 84995794417 scopus 로고    scopus 로고
    • A general framework for the use of logistic regression models in meta-analysis
    • Simmonds MC, Higgins JP. A general framework for the use of logistic regression models in meta-analysis. Stat Methods Med Res. 2016;25(6):2858-2877.
    • (2016) Stat Methods Med Res , vol.25 , Issue.6 , pp. 2858-2877
    • Simmonds, M.C.1    Higgins, J.P.2
  • 39
    • 84973349187 scopus 로고    scopus 로고
    • Accounting for heterogeneity in meta-analysis using a multiplicative model-an empirical study
    • Mawdsley D, Higgins JP, Sutton AJ, Abrams KR. Accounting for heterogeneity in meta-analysis using a multiplicative model-an empirical study. Res Synth Methods. 2017;8(1):43-52.
    • (2017) Res Synth Methods , vol.8 , Issue.1 , pp. 43-52
    • Mawdsley, D.1    Higgins, J.P.2    Sutton, A.J.3    Abrams, K.R.4
  • 40
    • 84928736401 scopus 로고    scopus 로고
    • Neither fixed nor random: weighted least squares meta-analysis
    • Stanley TD, Doucouliagos H. Neither fixed nor random: weighted least squares meta-analysis. Stat Med. 2015;34(13):2116-2127.
    • (2015) Stat Med , vol.34 , Issue.13 , pp. 2116-2127
    • Stanley, T.D.1    Doucouliagos, H.2
  • 41
    • 84958237313 scopus 로고    scopus 로고
    • Integrated likelihood inference in small sample meta-analysis for continuous outcomes
    • Bellio R, Guolo A. Integrated likelihood inference in small sample meta-analysis for continuous outcomes. Scand J Stat. 2016;43(1):191-201.
    • (2016) Scand J Stat , vol.43 , Issue.1 , pp. 191-201
    • Bellio, R.1    Guolo, A.2
  • 42
    • 84949774302 scopus 로고    scopus 로고
    • We know less than we should about methods of meta-analysis
    • Hoaglin DC. We know less than we should about methods of meta-analysis. Res Synth Methods. 2015;6(3):287-289.
    • (2015) Res Synth Methods. , vol.6 , Issue.3 , pp. 287-289
    • Hoaglin, D.C.1
  • 43
    • 0029874040 scopus 로고    scopus 로고
    • A likelihood approach to meta-analysis with random effects
    • Hardy RJ, Thompson SG. A likelihood approach to meta-analysis with random effects. Stat Med. 1996;15(6):619-629.
    • (1996) Stat Med , vol.15 , Issue.6 , pp. 619-629
    • Hardy, R.J.1    Thompson, S.G.2
  • 44
    • 34047237099 scopus 로고    scopus 로고
    • A comparison of heterogeneity variance estimators in combining results of studies
    • Sidik K, Jonkman JN. A comparison of heterogeneity variance estimators in combining results of studies. Stat Med. 2007;26(9):1964-1981.
    • (2007) Stat Med , vol.26 , Issue.9 , pp. 1964-1981
    • Sidik, K.1    Jonkman, J.N.2
  • 45
    • 43049146541 scopus 로고    scopus 로고
    • Confidence intervals for the overall effect size in random-effects meta-analysis
    • Sanchez-Meca J, Marin-Martinez F. Confidence intervals for the overall effect size in random-effects meta-analysis. Psychol Methods. 2008;13(1):31-48.
    • (2008) Psychol Methods , vol.13 , Issue.1 , pp. 31-48
    • Sanchez-Meca, J.1    Marin-Martinez, F.2
  • 46
    • 79952602450 scopus 로고    scopus 로고
    • Testing for homogeneity in meta-analysis I. The one-parameter case: standardized mean difference
    • Kulinskaya E, Dollinger MB, Bjørkestøl K. Testing for homogeneity in meta-analysis I. The one-parameter case: standardized mean difference. Biometrics. 2011;67(1):203-212.
    • (2011) Biometrics , vol.67 , Issue.1 , pp. 203-212
    • Kulinskaya, E.1    Dollinger, M.B.2    Bjørkestøl, K.3
  • 47
    • 84905499762 scopus 로고    scopus 로고
    • On the moments of Cochran's Q statistic under the null hypothesis, with application to the meta-analysis of risk difference
    • Kulinskaya E, Dollinger MB, Bjorkestol K. On the moments of Cochran's Q statistic under the null hypothesis, with application to the meta-analysis of risk difference. Res Synth Methods. 2011;2(4):254-270.
    • (2011) Res Synth Methods. , vol.2 , Issue.4 , pp. 254-270
    • Kulinskaya, E.1    Dollinger, M.B.2    Bjorkestol, K.3
  • 48
    • 7944222428 scopus 로고    scopus 로고
    • Some general points in estimating heterogeneity variance with the DerSimonian-Laird estimator
    • Bohning D, Malzahn U, Dietz E, Schlattmann P, Viwatwongkasem C, Biggeri A. Some general points in estimating heterogeneity variance with the DerSimonian-Laird estimator. Biostatistics. 2002;3(4):445-457.
    • (2002) Biostatistics , vol.3 , Issue.4 , pp. 445-457
    • Bohning, D.1    Malzahn, U.2    Dietz, E.3    Schlattmann, P.4    Viwatwongkasem, C.5    Biggeri, A.6
  • 49
    • 14544296347 scopus 로고    scopus 로고
    • Nonparametric estimation of heterogeneity variance for the standardised difference used in meta-analysis
    • Malzahn U, Böhning D, Holling H. Nonparametric estimation of heterogeneity variance for the standardised difference used in meta-analysis. Biometrika. 2000;87(3):619-632.
    • (2000) Biometrika , vol.87 , Issue.3 , pp. 619-632
    • Malzahn, U.1    Böhning, D.2    Holling, H.3
  • 50
    • 84959297600 scopus 로고    scopus 로고
    • Methods to estimate the between-study variance and its uncertainty in meta-analysis
    • Veroniki AA, Jackson D, Viechtbauer W, et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods. 2016;7(1):55-79.
    • (2016) Res Synth Methods. , vol.7 , Issue.1 , pp. 55-79
    • Veroniki, A.A.1    Jackson, D.2    Viechtbauer, W.3
  • 51
    • 84963649819 scopus 로고    scopus 로고
    • Comparative performance of heterogeneity variance estimators in meta-analysis: a review of simulation studies
    • Langan D, Higgins JP, Simmonds M. Comparative performance of heterogeneity variance estimators in meta-analysis: a review of simulation studies. Res Synth Methods. 2017;8(2):181-198.
    • (2017) Res Synth Methods. , vol.8 , Issue.2 , pp. 181-198
    • Langan, D.1    Higgins, J.P.2    Simmonds, M.3
  • 52
    • 79751516729 scopus 로고    scopus 로고
    • Testing overall and moderator effects in random effects meta-regression
    • Huizenga HM, Visser I, Dolan CV. Testing overall and moderator effects in random effects meta-regression. Br J Math Stat Psychol. 2011;64(Pt 1):1-19.
    • (2011) Br J Math Stat Psychol , vol.64 , pp. 1-19
    • Huizenga, H.M.1    Visser, I.2    Dolan, C.V.3
  • 53
    • 0030894843 scopus 로고    scopus 로고
    • Incorporating variability in estimates of heterogeneity in the random effects model in meta-analysis
    • Biggerstaff BJ, Tweedie RL. Incorporating variability in estimates of heterogeneity in the random effects model in meta-analysis. Stat Med. 1997;16(7):753-768.
    • (1997) Stat Med , vol.16 , Issue.7 , pp. 753-768
    • Biggerstaff, B.J.1    Tweedie, R.L.2
  • 54
    • 84892400895 scopus 로고    scopus 로고
    • A simplification and implementation of random-effects meta-analyses based on the exact distribution of Cochran's Q
    • Preuß M, Ziegler A. A simplification and implementation of random-effects meta-analyses based on the exact distribution of Cochran's Q. Methods Inf Med. 2014;53(1):54-61.
    • (2014) Methods Inf Med , vol.53 , Issue.1 , pp. 54-61
    • Preuß, M.1    Ziegler, A.2
  • 55
    • 85063107269 scopus 로고    scopus 로고
    • Overview., Accessed 3 September 2017
    • Thomas N. OpenBUGS website. Overview. 2010; http://www.openbugs.net/w/Overview Accessed 3 September 2017.
    • (2010) OpenBUGS website
    • Thomas, N.1
  • 56
    • 0006407254 scopus 로고    scopus 로고
    • WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility
    • Lunn DJ, Thomas ABN, Spiegelhalter D. WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput. 2000;10(4):325-337.
    • (2000) Stat Comput , vol.10 , Issue.4 , pp. 325-337
    • Lunn, D.J.1    Thomas, A.B.N.2    Spiegelhalter, D.3
  • 57
    • 84922218560 scopus 로고    scopus 로고
    • Predictive distributions for between-study heterogeneity and simple methods for their application in Bayesian meta-analysis
    • Turner RM, Jackson D, Wei Y, Thompson SG, Higgins JP. Predictive distributions for between-study heterogeneity and simple methods for their application in Bayesian meta-analysis. Stat Med. 2015;34(6):984-998.
    • (2015) Stat Med , vol.34 , Issue.6 , pp. 984-998
    • Turner, R.M.1    Jackson, D.2    Wei, Y.3    Thompson, S.G.4    Higgins, J.P.5
  • 60
    • 77957653007 scopus 로고    scopus 로고
    • MetaEasy: a meta-analysis add-in for Microsoft Excel
    • Kontopantelis E, Reeves D. MetaEasy: a meta-analysis add-in for Microsoft Excel. J Stat Softw. 2009;30(7):1-25.
    • (2009) J Stat Softw , vol.30 , Issue.7 , pp. 1-25
    • Kontopantelis, E.1    Reeves, D.2
  • 64
    • 33750524394 scopus 로고    scopus 로고
    • Development and validation of MIX: comprehensive free software for meta-analysis of causal research data
    • Bax L, Yu LM, Ikeda N, Tsuruta H, Moons KG. Development and validation of MIX: comprehensive free software for meta-analysis of causal research data. BMC Med Res Methodol. 2006;6(1):50.
    • (2006) BMC Med Res Methodol , vol.6 , Issue.1 , pp. 50
    • Bax, L.1    Yu, L.M.2    Ikeda, N.3    Tsuruta, H.4    Moons, K.G.5
  • 66
    • 84863847959 scopus 로고    scopus 로고
    • Closing the gap between methodologists and end-users: R as a computational back-end
    • T.A
    • Wallace BC, Dahabreh IJT, T.A., Lau J, Trow P, Schmid CH. Closing the gap between methodologists and end-users: R as a computational back-end. J Stat Softw. 2012;49:1–15.
    • (2012) J Stat Softw. , vol.49 , pp. 1-15
    • Wallace, B.C.1    Dahabreh, I.J.T.2    Lau, J.3    Trow, P.4    Schmid, C.H.5
  • 67
    • 84964921069 scopus 로고    scopus 로고
    • Accessed 28 October 2017
    • Centre TNC. Review Manager (RevMan). 2014; www.cochrane.org/. Accessed 28 October 2017.
    • (2014) Review Manager (RevMan)
  • 69
    • 84884981453 scopus 로고    scopus 로고
    • A nondegenerate penalized likelihood estimator for variance parameters in multilevel model
    • Chung Y, Rabe-Hesketh S, Dorie V, Gelman A, Liu J. A nondegenerate penalized likelihood estimator for variance parameters in multilevel model. Psychometrika. 2013;78(4):685-709.
    • (2013) Psychometrika , vol.78 , Issue.4 , pp. 685-709
    • Chung, Y.1    Rabe-Hesketh, S.2    Dorie, V.3    Gelman, A.4    Liu, J.5
  • 74
    • 85063076472 scopus 로고    scopus 로고
    • R package version 0.5.8, Accessed 23 May 2018
    • Doebler P. mada: Meta-analysis of diagnostic accuracy. R package version 0.5.8 2015; https://cran.r-project.org/web/packages/mada/mada.pdf. Accessed 23 May 2018.
    • (2015) P. mada: Meta-analysis of diagnostic accuracy
  • 75
    • 84945258098 scopus 로고    scopus 로고
    • version 4.1–0, Accessed 1 September 2017
    • Schwarzer G. meta: general package for meta-analysis. 2015; version 4.1–0:https://cran.r-project.org/web/packages/meta/meta.pdf. Accessed 1 September 2017.
    • (2015) meta: general package for meta-analysis
    • Schwarzer, G.1
  • 76
    • 85014415851 scopus 로고    scopus 로고
    • GEMTC: Network meta-analysis using Bayesian methods
    • Accessed 23 May 2018
    • van Valkenhoef G, Kuiper J. GEMTC: Network meta-analysis using Bayesian methods. R Package Version. 2016;0:8-2. https://cran.r-project.org/package=gemtc. Accessed 23 May 2018
    • (2016) R Package Version , pp. 8-2
    • van Valkenhoef, G.1    Kuiper, J.2
  • 77
    • 77958110812 scopus 로고    scopus 로고
    • Conducting meta-analyses in R with the metafor package
    • Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36(3):1-48.
    • (2010) J Stat Softw. , vol.36 , Issue.3 , pp. 1-48
    • Viechtbauer, W.1
  • 78
    • 85063106805 scopus 로고    scopus 로고
    • Metagen: inference in meta analysis and meta regression
    • Accessed 23 May 2018
    • Möbius T. Metagen: inference in meta analysis and meta regression. R Package Version. 2014;1:0. https://cran.r-project.org/package=metagen. Accessed 23 May 2018
    • (2014) R Package Version , vol.1
    • Möbius, T.1
  • 79
    • 84855926101 scopus 로고    scopus 로고
    • Higher-order likelihood inference in meta-analysis and meta-regression
    • Guolo A. Higher-order likelihood inference in meta-analysis and meta-regression. Stat Med. 2012;31(4):313-327.
    • (2012) Stat Med , vol.31 , Issue.4 , pp. 313-327
    • Guolo, A.1
  • 80
    • 84893272615 scopus 로고    scopus 로고
    • The R package metaLik for likelihood inference in meta-analysis
    • Guolo A, Varin C. The R package metaLik for likelihood inference in meta-analysis. J Stat Softw. 2012;50(7):1-14.
    • (2012) J Stat Softw. , vol.50 , Issue.7 , pp. 1-14
    • Guolo, A.1    Varin, C.2
  • 81
    • 85058419516 scopus 로고    scopus 로고
    • metamisc: Diagnostic and prognostic meta-analysis
    • Accessed 23 May 2018
    • Debray T, de Jong V. metamisc: Diagnostic and prognostic meta-analysis. R Package Version. 2017;0:1. https://cran.r-project.org/package=metamisc. Accessed 23 May 2018
    • (2017) R Package Version , pp. 1
    • Debray, T.1    de Jong, V.2
  • 82
    • 85010289375 scopus 로고    scopus 로고
    • metaplus: an R package for the analysis of robust meta-analysis and meta-regression
    • Accessed 23 May 2018
    • Beath K. metaplus: an R package for the analysis of robust meta-analysis and meta-regression. R Journal. 2016. https://journal.r-project.org/archive/2016-1/beath.pdfS. Accessed 23 May 2018
    • (2016) R Journal
    • Beath, K.1
  • 83
    • 85063102377 scopus 로고    scopus 로고
    • Meta-analysis using
    • version 0.9.8, Accessed 1 October 2017
    • Cheung MWL. Meta-analysis using. Structural Equation Modeling. 2016; version 0.9.8:https://cran.r-project.org/web/packages/metaSEM/metaSEM.pdf. Accessed 1 October 2017
    • (2016) Structural Equation Modeling
    • Cheung, M.W.L.1
  • 84
    • 79751516729 scopus 로고    scopus 로고
    • Hypothesis testing in random effects meta-regression
    • Huizenga H, Visser I, Dolan C. Hypothesis testing in random effects meta-regression. Br J Math Stat Psychol. 2011;64(1):1-19.
    • (2011) Br J Math Stat Psychol , vol.64 , Issue.1 , pp. 1-19
    • Huizenga, H.1    Visser, I.2    Dolan, C.3
  • 86
    • 85032114470 scopus 로고    scopus 로고
    • mvtmeta: multivariate meta-analysis
    • Accessed 23 May 2018
    • Chen H. mvtmeta: multivariate meta-analysis. R Package Version 1.0 2012; https://cran.r-project.org/package=mvtmeta. Accessed 23 May 2018.
    • (2012) R Package Version , vol.1
    • Chen, H.1
  • 88
    • 13444302396 scopus 로고    scopus 로고
    • R2WinBUGS: a package for running WinBUGS from R
    • Sturtz S, Ligges U, Gelman A. R2WinBUGS: a package for running WinBUGS from R. J Stat Softw. 2005;12(3):1-16.
    • (2005) J Stat Softw. , vol.12 , Issue.3 , pp. 1-16
    • Sturtz, S.1    Ligges, U.2    Gelman, A.3
  • 89
    • 77957364937 scopus 로고    scopus 로고
    • rmeta: meta-analysis
    • Accessed 23 May 2018
    • Lumley T. rmeta: meta-analysis. R Package Version. 2012;2:16. https://cran.r-project.org/package=rmeta. Accessed 23 May 2018
    • (2012) R Package Version , vol.2 , pp. 16
    • Lumley, T.1
  • 90
    • 0004155877 scopus 로고    scopus 로고
    • Accessed 3 October 2017
    • SAS Institute Inc. SAS Software. 2003; http://www.sas.com/technologies/analytics/statistics/stat/. Accessed 3 October 2017.
    • (2003) SAS Software
  • 91
  • 92
    • 85063088652 scopus 로고    scopus 로고
    • Accessed 29 October 2017
    • PROC IML. SAS/IML 9.22 User's guide. http://support.sas.com/documentation/cdl/en/imlug/63541/PDF/default/imlug.pdf. Accessed 29 October 2017.
    • SAS/IML 9.22 User's guide
  • 97
    • 85063094820 scopus 로고    scopus 로고
    • RASmacro. 2017; https://github.com/rsparapa/rasmacro.
    • (2017)
  • 98
    • 85063108439 scopus 로고    scopus 로고
    • SAS Support Site, The power to know
    • PROC MCMC. SAS Support Site The power to know https://support.sas.com/en/support-home.html.
    • MCMC
  • 99
    • 84890166806 scopus 로고    scopus 로고
    • Accessed 1 October 2017
    • STATA. Stata Statistical Software 2013; https://www.stata.com/. Accessed 1 October 2017.
    • (2013) Stata Statistical Software
  • 101
    • 85129694952 scopus 로고    scopus 로고
    • Maximum likelihood estimation of generalized linear models with covariate measurement error
    • Rabe-Hesketh S, Skrondal A, Pickles A. Maximum likelihood estimation of generalized linear models with covariate measurement error. Stata Journal. 2003;3(4):386-411.
    • (2003) Stata Journal. , vol.3 , Issue.4 , pp. 386-411
    • Rabe-Hesketh, S.1    Skrondal, A.2    Pickles, A.3
  • 102
    • 77957672873 scopus 로고    scopus 로고
    • Metaan: random-effects meta-analysis
    • Kontopantelis E, Reeves D. Metaan: random-effects meta-analysis. Stata Journal. 2010;10:395-407.
    • (2010) Stata Journal. , vol.10 , pp. 395-407
    • Kontopantelis, E.1    Reeves, D.2
  • 103
    • 43749120910 scopus 로고    scopus 로고
    • Meta-regression in Stata
    • Harbord RM, Higgins JPT. Meta-regression in Stata. Stata J. 2008;8(4):493-519.
    • (2008) Stata J , vol.8 , Issue.4 , pp. 493-519
    • Harbord, R.M.1    Higgins, J.P.T.2
  • 105
    • 68149160854 scopus 로고    scopus 로고
    • Multivariate random-effects meta-analysis
    • White IR. Multivariate random-effects meta-analysis. Stata Journal. 2009;9:40-56.
    • (2009) Stata Journal. , vol.9 , pp. 40-56
    • White, I.R.1
  • 107
    • 84871782260 scopus 로고    scopus 로고
    • Accessed 29 October 2017
    • IBM Corp. IBM SPSS for Windows. 2013; http://www.spss.co.in/. Accessed 29 October 2017.
    • (2013) IBM SPSS for Windows
  • 108
    • 33745909737 scopus 로고    scopus 로고
    • meanes.sps,, Accessed 3 October 2017
    • Wilson B D. Meta-analysis stuff. meanes.sps, 2010; http://mason.gmu.edu/~dwilsonb/ma.html. Accessed 3 October 2017.
    • (2010) Meta-analysis stuff
    • Wilson, B.D.1
  • 109
    • 33745909737 scopus 로고    scopus 로고
    • metaf.sps, 2010;, Accessed 3 October 2017
    • Wilson B D. Meta-analysis stuff. metaf.sps 2010; http://mason.gmu.edu/~dwilsonb/ma.html. Accessed 3 October 2017.
    • Meta-analysis stuff
    • Wilson, B.D.1
  • 110
    • 33745909737 scopus 로고    scopus 로고
    • metareg.sps,, Accessed 3 October 2017
    • Wilson B D. Meta-analysis stuff. metareg.sps, 2010; http://mason.gmu.edu/~dwilsonb/ma.html. Accessed 3 October 2017.
    • (2010) Meta-analysis stuff
    • Wilson, B.D.1
  • 111
    • 85063078908 scopus 로고
    • RTA/BCS Modular Languages, Newsletter, Accessed 4 October 2017
    • Thomas A. BUGS: A statistical modelling package. RTA/BCS Modular Languages Newsletter 1994; https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-latest-news/the-winbugs-project-references-to-use-when-citing-bugs/. Accessed 4 October 2017.
    • (1994) BUGS: A statistical modelling package
    • Thomas, A.1
  • 113
    • 85063073307 scopus 로고    scopus 로고
    • A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses
    • Accepted
    • Langan D, Higgins JPT, Jackson D, et al. A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Res Synth Methods. 2018. Accepted
    • (2018) Res Synth Methods
    • Langan, D.1    Higgins, J.P.T.2    Jackson, D.3
  • 114
    • 85032985433 scopus 로고    scopus 로고
    • A comparison of 20 heterogeneity variance estimators in statistical synthesis of results from studies: a simulation study
    • Petropoulou M, Mavridis D. A comparison of 20 heterogeneity variance estimators in statistical synthesis of results from studies: a simulation study. Stat Med. 2017;36(27):4266-4280.
    • (2017) Stat Med , vol.36 , Issue.27 , pp. 4266-4280
    • Petropoulou, M.1    Mavridis, D.2
  • 115
    • 0033263106 scopus 로고    scopus 로고
    • An alternative method for meta-analysis
    • Hartung J. An alternative method for meta-analysis. Biom J. 1999;41(8):901-916.
    • (1999) Biom J , vol.41 , Issue.8 , pp. 901-916
    • Hartung, J.1
  • 116
    • 0035973279 scopus 로고    scopus 로고
    • On tests of the overall treatment effect in meta-analysis with normally distributed responses
    • Hartung J, Knapp G. On tests of the overall treatment effect in meta-analysis with normally distributed responses. Stat Med. 2001;20(12):1771-1782.
    • (2001) Stat Med , vol.20 , Issue.12 , pp. 1771-1782
    • Hartung, J.1    Knapp, G.2
  • 117
    • 0032886748 scopus 로고    scopus 로고
    • Valid inference in random effects meta-analysis
    • Follmann DA, Proschan MA. Valid inference in random effects meta-analysis. Biometrics. 1999;55(3):732-737.
    • (1999) Biometrics , vol.55 , Issue.3 , pp. 732-737
    • Follmann, D.A.1    Proschan, M.A.2
  • 118
    • 0242382677 scopus 로고    scopus 로고
    • Reducing the number of unjustified significant results in meta-analysis
    • Hartung J, Makambi KH. Reducing the number of unjustified significant results in meta-analysis. Commun Stat Simul Comput. 2003;32(4):1179-1190.
    • (2003) Commun Stat Simul Comput , vol.32 , Issue.4 , pp. 1179-1190
    • Hartung, J.1    Makambi, K.H.2
  • 119
    • 2642542398 scopus 로고    scopus 로고
    • The effect of the heterogeneity variance estimator on some tests of treatment efficacy
    • Makambi KH. The effect of the heterogeneity variance estimator on some tests of treatment efficacy. J Biopharm Stat. 2004;14(2):439-449.
    • (2004) J Biopharm Stat , vol.14 , Issue.2 , pp. 439-449
    • Makambi, K.H.1
  • 120
    • 33646897928 scopus 로고    scopus 로고
    • Robust variance estimation for random effects meta-analysis
    • Sidik K, Jonkman JN. Robust variance estimation for random effects meta-analysis. Comput Stat Data Anal. 2006;50(12):3681-3701.
    • (2006) Comput Stat Data Anal , vol.50 , Issue.12 , pp. 3681-3701
    • Sidik, K.1    Jonkman, J.N.2
  • 121
    • 0242382667 scopus 로고    scopus 로고
    • On constructing confidence intervals for a standardized mean difference in meta-analysis
    • Sidik K, Jonkman JN. On constructing confidence intervals for a standardized mean difference in meta-analysis. Commun Stat Simul Comput. 2003;32(4):1191-1203.
    • (2003) Commun Stat Simul Comput , vol.32 , Issue.4 , pp. 1191-1203
    • Sidik, K.1    Jonkman, J.N.2
  • 122
    • 35648955091 scopus 로고    scopus 로고
    • A simple method for inference on an overall effect in meta-analysis
    • Brockwell SE, Gordon IR. A simple method for inference on an overall effect in meta-analysis. Stat Med. 2007;26(25):4531-4543.
    • (2007) Stat Med , vol.26 , Issue.25 , pp. 4531-4543
    • Brockwell, S.E.1    Gordon, I.R.2
  • 123
    • 14544281532 scopus 로고    scopus 로고
    • Simple heterogeneity variance estimation for meta-analysis
    • Sidik K, Jonkman JN. Simple heterogeneity variance estimation for meta-analysis. J Roy Stat Soc. 2005;54(2):367-384.
    • (2005) J Roy Stat Soc , vol.54 , Issue.2 , pp. 367-384
    • Sidik, K.1    Jonkman, J.N.2
  • 124
    • 71649090479 scopus 로고    scopus 로고
    • The significance level of the standard test for a treatment effect in meta-analysis
    • Jackson D. The significance level of the standard test for a treatment effect in meta-analysis. Stat Biopharm Res. 2009;1(1):92-100.
    • (2009) Stat Biopharm Res , vol.1 , Issue.1 , pp. 92-100
    • Jackson, D.1
  • 125
    • 0042926567 scopus 로고    scopus 로고
    • Improved tests for a random effects meta-regression with a single covariate
    • Knapp G, Hartung J. Improved tests for a random effects meta-regression with a single covariate. Stat Med. 2003;22(17):2693-2710.
    • (2003) Stat Med , vol.22 , Issue.17 , pp. 2693-2710
    • Knapp, G.1    Hartung, J.2
  • 126
    • 0036964095 scopus 로고    scopus 로고
    • Positive estimation of the between-study variance in meta-analysis: theory and methods
    • Hartung J, Makambi KH. Positive estimation of the between-study variance in meta-analysis: theory and methods. S Afr Stat J. 2002;36(1):55-76.
    • (2002) S Afr Stat J , vol.36 , Issue.1 , pp. 55-76
    • Hartung, J.1    Makambi, K.H.2
  • 127
    • 61749099575 scopus 로고    scopus 로고
    • A re-evaluation of the ‘quantile approximation method’ for random effects meta-analysis
    • Jackson D, Bowden J. A re-evaluation of the ‘quantile approximation method’ for random effects meta-analysis. Stat Med. 2009;28(2):338-348.
    • (2009) Stat Med , vol.28 , Issue.2 , pp. 338-348
    • Jackson, D.1    Bowden, J.2
  • 128
    • 84892485024 scopus 로고    scopus 로고
    • A refined method for multivariate meta-analysis and meta-regression
    • Jackson D, Riley RD. A refined method for multivariate meta-analysis and meta-regression. Stat Med. 2014;33(4):541-554.
    • (2014) Stat Med , vol.33 , Issue.4 , pp. 541-554
    • Jackson, D.1    Riley, R.D.2
  • 129
    • 84992170662 scopus 로고    scopus 로고
    • Confidence intervals for the between-study variance in random-effects meta-analysis using generalised heterogeneity statistics: should we use unequal tails?
    • Jackson D, Bowden J. Confidence intervals for the between-study variance in random-effects meta-analysis using generalised heterogeneity statistics: should we use unequal tails? BMC Med Res Methodol. 2016;16(1):118.
    • (2016) BMC Med Res Methodol , vol.16 , Issue.1 , pp. 118
    • Jackson, D.1    Bowden, J.2
  • 130
    • 84988841481 scopus 로고    scopus 로고
    • Confidence intervals for the between-study variance in random effects meta-analysis using generalised Cochran heterogeneity statistics
    • Jackson D. Confidence intervals for the between-study variance in random effects meta-analysis using generalised Cochran heterogeneity statistics. Res Synth Methods. 2013;4(3):220-229.
    • (2013) Res Synth Methods. , vol.4 , Issue.3 , pp. 220-229
    • Jackson, D.1
  • 131
    • 33846253999 scopus 로고    scopus 로고
    • Confidence intervals for the amount of heterogeneity in meta-analysis
    • Viechtbauer W. Confidence intervals for the amount of heterogeneity in meta-analysis. Stat Med. 2007;26(1):37-52.
    • (2007) Stat Med , vol.26 , Issue.1 , pp. 37-52
    • Viechtbauer, W.1
  • 132
    • 84959387470 scopus 로고    scopus 로고
    • Hartung-Knapp method is not always conservative compared with fixed-effect meta-analysis
    • Wiksten A, Rücker G, Schwarzer G. Hartung-Knapp method is not always conservative compared with fixed-effect meta-analysis. Stat Med. 2016;35(15):2503-2515.
    • (2016) Stat Med , vol.35 , Issue.15 , pp. 2503-2515
    • Wiksten, A.1    Rücker, G.2    Schwarzer, G.3
  • 133
    • 85026407801 scopus 로고    scopus 로고
    • The Hartung-Knapp modification for random-effects meta-analysis: a useful refinement but are there any residual concerns?
    • Jackson D, Law M, Rucker G, Schwarzer G. The Hartung-Knapp modification for random-effects meta-analysis: a useful refinement but are there any residual concerns? Stat Med. 2017;36(25):3923-3934.
    • (2017) Stat Med , vol.36 , Issue.25 , pp. 3923-3934
    • Jackson, D.1    Law, M.2    Rucker, G.3    Schwarzer, G.4
  • 134
    • 84941260598 scopus 로고    scopus 로고
    • A comparison of procedures to test for moderators in mixed-effects meta-regression models
    • Viechtbauer W, López-López JA, Sanchez-Meca J, Marin-Martinez F. A comparison of procedures to test for moderators in mixed-effects meta-regression models. Psychol Methods. 2015;20(3):360-374.
    • (2015) Psychol Methods , vol.20 , Issue.3 , pp. 360-374
    • Viechtbauer, W.1    López-López, J.A.2    Sanchez-Meca, J.3    Marin-Martinez, F.4
  • 135
    • 84963850958 scopus 로고    scopus 로고
    • Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies
    • Röver C, Knapp G, Friede T. Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies. BMC Med Res Methodol. 2015;15(1):99.
    • (2015) BMC Med Res Methodol , vol.15 , Issue.1 , pp. 99
    • Röver, C.1    Knapp, G.2    Friede, T.3
  • 136
    • 0030880605 scopus 로고    scopus 로고
    • Small sample inference for fixed effects from restricted maximum likelihood
    • Kenward MG, Roger JH. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics. 1997;53(3):983-997.
    • (1997) Biometrics , vol.53 , Issue.3 , pp. 983-997
    • Kenward, M.G.1    Roger, J.H.2
  • 137
    • 1442357279 scopus 로고    scopus 로고
    • The 2000 Wald memorial lectures. Aymptotics and the theory of inference
    • Reid N. The 2000 Wald memorial lectures. Aymptotics and the theory of inference. Ann Stat. 2003;31(6):1695-1731.
    • (2003) Ann Stat. , vol.31 , Issue.6 , pp. 1695-1731
    • Reid, N.1
  • 138
    • 0000223087 scopus 로고
    • Properties of sufficiency and statistical tests
    • Bartlett MS. Properties of sufficiency and statistical tests. Proc Royal Soc A. 1937;160(901):268-282.
    • (1937) Proc Royal Soc A , vol.160 , Issue.901 , pp. 268-282
    • Bartlett, M.S.1
  • 139
    • 0000793096 scopus 로고    scopus 로고
    • An explicit large-deviation approximation to one-parameter tests
    • Skovgaard IM. An explicit large-deviation approximation to one-parameter tests. Ther Ber. 1996;2:145-165.
    • (1996) Ther Ber , vol.2 , pp. 145-165
    • Skovgaard, I.M.1
  • 140
    • 78851469648 scopus 로고    scopus 로고
    • Higher order inference for the consensus mean in inter-laboratory studies
    • Sharma G, Mathew T. Higher order inference for the consensus mean in inter-laboratory studies. Biom J. 2011;53(1):128-136.
    • (2011) Biom J , vol.53 , Issue.1 , pp. 128-136
    • Sharma, G.1    Mathew, T.2
  • 141
    • 85020710631 scopus 로고    scopus 로고
    • Random-effects meta-analysis: the number of studies matters
    • Guolo A, Varin C. Random-effects meta-analysis: the number of studies matters. Stat Methods Med Res. 2015;26(3):1500-1518.
    • (2015) Stat Methods Med Res , vol.26 , Issue.3 , pp. 1500-1518
    • Guolo, A.1    Varin, C.2
  • 142
    • 84947907617 scopus 로고    scopus 로고
    • Confidence regions and intervals for meta-analysis model parameters
    • Rukhin AL. Confidence regions and intervals for meta-analysis model parameters. Dent Tech. 2015;57(4):547-558.
    • (2015) Dent Tech , vol.57 , Issue.4 , pp. 547-558
    • Rukhin, A.L.1
  • 143
    • 85026912113 scopus 로고    scopus 로고
    • Improving the accuracy of likelihood-based inference in meta-analysis and meta-regression
    • asx001
    • Kosmidis I, Guolo A, Varin C. Improving the accuracy of likelihood-based inference in meta-analysis and meta-regression. Biometrika. 2017;asx001;104(3):751.
    • (2017) Biometrika , vol.104 , Issue.3 , pp. 751
    • Kosmidis, I.1    Guolo, A.2    Varin, C.3
  • 144
    • 84955212041 scopus 로고    scopus 로고
    • Advances in the meta-analysis of heterogeneous clinical trials I: the inverse variance heterogeneity model
    • Doi SA, Barendregt JJ, Khan S, Thalib L, Williams GM. Advances in the meta-analysis of heterogeneous clinical trials I: the inverse variance heterogeneity model. Contemp Clin Trials. 2015;45(Pt A):130-138.
    • (2015) Contemp Clin Trials , vol.45 , pp. 130-138
    • Doi, S.A.1    Barendregt, J.J.2    Khan, S.3    Thalib, L.4    Williams, G.M.5
  • 145
    • 67650366830 scopus 로고    scopus 로고
    • The exact distribution of Cochran's heterogeneity statistic in one-way random effects meta-analysis
    • Biggerstaff BJ, Jackson D. The exact distribution of Cochran's heterogeneity statistic in one-way random effects meta-analysis. Stat Med. 2008;27(29):6093-6110.
    • (2008) Stat Med , vol.27 , Issue.29 , pp. 6093-6110
    • Biggerstaff, B.J.1    Jackson, D.2
  • 146
    • 84941558025 scopus 로고    scopus 로고
    • On random-effects meta-analysis
    • Zeng D, Lin DY. On random-effects meta-analysis. Biometrika. 2015;102(2):281-294.
    • (2015) Biometrika , vol.102 , Issue.2 , pp. 281-294
    • Zeng, D.1    Lin, D.Y.2
  • 147
    • 0001756906 scopus 로고
    • Bootstrap estimates of standard errors in validity generalization
    • Switzer FS, Paese PW, Drasgow F. Bootstrap estimates of standard errors in validity generalization. Journal of Applied Psychology. 1992;77(2):123-129.
    • (1992) Journal of Applied Psychology , vol.77 , Issue.2 , pp. 123-129
    • Switzer, F.S.1    Paese, P.W.2    Drasgow, F.3
  • 149
    • 0034736559 scopus 로고    scopus 로고
    • A multilevel model framework for meta-analysis of clinical trials with binary outcomes
    • Turner RM, Omar RZ, Yang M, Goldstein H, Thompson SG. A multilevel model framework for meta-analysis of clinical trials with binary outcomes. Stat Med. 2000;19(24):3417-3432.
    • (2000) Stat Med , vol.19 , Issue.24 , pp. 3417-3432
    • Turner, R.M.1    Omar, R.Z.2    Yang, M.3    Goldstein, H.4    Thompson, S.G.5
  • 150
    • 25144458639 scopus 로고    scopus 로고
    • Parametric and nonparametric bootstrap methods for meta-analysis
    • Van Den Noortgate W, Onghena P. Parametric and nonparametric bootstrap methods for meta-analysis. Behav Res Methods. 2005;37(1):11-22.
    • (2005) Behav Res Methods , vol.37 , Issue.1 , pp. 11-22
    • Van Den Noortgate, W.1    Onghena, P.2
  • 152
    • 2942695870 scopus 로고    scopus 로고
    • Controlling the risk of spurious findings from meta-regression
    • Higgins JP, Thompson SG. Controlling the risk of spurious findings from meta-regression. Stat Med. 2004;23(11):1663-1682.
    • (2004) Stat Med , vol.23 , Issue.11 , pp. 1663-1682
    • Higgins, J.P.1    Thompson, S.G.2
  • 153
    • 0029612242 scopus 로고
    • Bayesian approaches to random-effects meta-analysis: a comparative study
    • Smith TC, Spiegelhalter DJ, Thomas A. Bayesian approaches to random-effects meta-analysis: a comparative study. Stat Med. 1995;14(24):2685-2699.
    • (1995) Stat Med , vol.14 , Issue.24 , pp. 2685-2699
    • Smith, T.C.1    Spiegelhalter, D.J.2    Thomas, A.3
  • 154
    • 84872133438 scopus 로고    scopus 로고
    • Modelling heterogeneity variances in multiple treatment comparison meta-analysis-are informative priors the better solution?
    • Thorlund K, Thabane L, Mills EJ. Modelling heterogeneity variances in multiple treatment comparison meta-analysis-are informative priors the better solution? BMC Med Res Methodol. 2013;13(1):2.
    • (2013) BMC Med Res Methodol , vol.13 , Issue.1 , pp. 2
    • Thorlund, K.1    Thabane, L.2    Mills, E.J.3
  • 156
    • 23244434820 scopus 로고    scopus 로고
    • How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS
    • Lambert PC, Sutton AJ, Burton PR, Abrams KR, Jones DR. How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Stat Med. 2005;24(15):2401-2428.
    • (2005) Stat Med , vol.24 , Issue.15 , pp. 2401-2428
    • Lambert, P.C.1    Sutton, A.J.2    Burton, P.R.3    Abrams, K.R.4    Jones, D.R.5
  • 157
    • 84992322842 scopus 로고    scopus 로고
    • Implementing informative priors for heterogeneity in meta-analysis using meta-regression and pseudo data
    • Rhodes KM, Turner RM, White IR, Jackson D, Spiegelhalter DJ, Higgins JP. Implementing informative priors for heterogeneity in meta-analysis using meta-regression and pseudo data. Stat Med. 2016;35(29):5495-5511.
    • (2016) Stat Med , vol.35 , Issue.29 , pp. 5495-5511
    • Rhodes, K.M.1    Turner, R.M.2    White, I.R.3    Jackson, D.4    Spiegelhalter, D.J.5    Higgins, J.P.6
  • 158
    • 71649090646 scopus 로고    scopus 로고
    • How does the DerSimonian and Laird procedure for random effects meta-analysis compare with its more efficient but harder to compute counterparts?
    • Jackson D, Bowden J, Baker R. How does the DerSimonian and Laird procedure for random effects meta-analysis compare with its more efficient but harder to compute counterparts? J Stat Plan Infer. 2010;140(4):961-970.
    • (2010) J Stat Plan Infer , vol.140 , Issue.4 , pp. 961-970
    • Jackson, D.1    Bowden, J.2    Baker, R.3
  • 159
    • 84883027760 scopus 로고    scopus 로고
    • Alternatives for mixed-effects meta-regression models in the reliability generalization approach: a simulation study
    • López-López JA, Botella J, Sánchez-Meca J, Marín-Martínez F. Alternatives for mixed-effects meta-regression models in the reliability generalization approach: a simulation study. J Educ Behav Stat. 2013;38(5):443-469.
    • (2013) J Educ Behav Stat , vol.38 , Issue.5 , pp. 443-469
    • López-López, J.A.1    Botella, J.2    Sánchez-Meca, J.3    Marín-Martínez, F.4
  • 160
    • 0346656876 scopus 로고    scopus 로고
    • Authors reply
    • Sidik K, Jonkman JN. Authors reply. Stat Med. 2004;23(1):159-162.
    • (2004) Stat Med , vol.23 , Issue.1 , pp. 159-162
    • Sidik, K.1    Jonkman, J.N.2
  • 161
  • 162
    • 0347308489 scopus 로고    scopus 로고
    • Restricted maximum-likelihood estimation of a common mean and the Mandel-Paule algorithm
    • Rukhin AL, Biggerstaff BJ, Vangel MG. Restricted maximum-likelihood estimation of a common mean and the Mandel-Paule algorithm. J Stat Plan Infer. 2000;83(2):319-330.
    • (2000) J Stat Plan Infer. , vol.83 , Issue.2 , pp. 319-330
    • Rukhin, A.L.1    Biggerstaff, B.J.2    Vangel, M.G.3
  • 163
    • 84899486551 scopus 로고    scopus 로고
    • Comparison of statistical inferences from the DerSimonian-Laird and alternative random-effects model meta-analyses—an empirical assessment of 920 Cochrane primary outcome meta-analyses
    • Thorlund K, Wetterslev J, Awad T, Thabane L, Gluud C. Comparison of statistical inferences from the DerSimonian-Laird and alternative random-effects model meta-analyses—an empirical assessment of 920 Cochrane primary outcome meta-analyses. Res Synth Methods. 2011;2(4):238-253.
    • (2011) Res Synth Methods. , vol.2 , Issue.4 , pp. 238-253
    • Thorlund, K.1    Wetterslev, J.2    Awad, T.3    Thabane, L.4    Gluud, C.5
  • 164
    • 41049093347 scopus 로고
    • The combination of estimates from different experiments
    • Cochran WG. The combination of estimates from different experiments. Biometrics. 1954;10(1):101-129.
    • (1954) Biometrics , vol.10 , Issue.1 , pp. 101-129
    • Cochran, W.G.1
  • 165
    • 84907813077 scopus 로고    scopus 로고
    • Characteristics of a loop of evidence that affect detection and estimation of inconsistency: a simulation study
    • Veroniki AA, Mavridis D, Higgins JP, Salanti G. Characteristics of a loop of evidence that affect detection and estimation of inconsistency: a simulation study. BMC Med Res Methodol. 2014;14(1):106.
    • (2014) BMC Med Res Methodol , vol.14 , Issue.1 , pp. 106
    • Veroniki, A.A.1    Mavridis, D.2    Higgins, J.P.3    Salanti, G.4
  • 166
    • 84930399719 scopus 로고    scopus 로고
    • No solution yet for combining two independent studies in the presence of heterogeneity
    • Gonnermann A, Framke T, Grosshennig A, Koch A. No solution yet for combining two independent studies in the presence of heterogeneity. Stat Med. 2015;34(16):2476-2480.
    • (2015) Stat Med , vol.34 , Issue.16 , pp. 2476-2480
    • Gonnermann, A.1    Framke, T.2    Grosshennig, A.3    Koch, A.4
  • 167
    • 84876158053 scopus 로고    scopus 로고
    • Generalised interval estimation in the random effects meta regression model
    • Friedrich T, Knapp G. Generalised interval estimation in the random effects meta regression model. Comput Stat Data Anal. 2013;64:165-179.
    • (2013) Comput Stat Data Anal , vol.64 , pp. 165-179
    • Friedrich, T.1    Knapp, G.2
  • 168
    • 85002427091 scopus 로고    scopus 로고
    • Bayesian estimation in random effects meta-analysis using a non-informative prior
    • Bodnar O, Link A, Arendacka B, Possolo A, Elster C. Bayesian estimation in random effects meta-analysis using a non-informative prior. Stat Med. 2017;36(2):378-399.
    • (2017) Stat Med , vol.36 , Issue.2 , pp. 378-399
    • Bodnar, O.1    Link, A.2    Arendacka, B.3    Possolo, A.4    Elster, C.5
  • 169
    • 84861114064 scopus 로고    scopus 로고
    • Robust meta-analytic conclusions mandate the provision of prediction intervals in meta-analysis summaries
    • Graham PL, Moran JL. Robust meta-analytic conclusions mandate the provision of prediction intervals in meta-analysis summaries. J Clin Epidemiol. 2012;65(5):503-510.
    • (2012) J Clin Epidemiol , vol.65 , Issue.5 , pp. 503-510
    • Graham, P.L.1    Moran, J.L.2
  • 170
    • 85000866393 scopus 로고    scopus 로고
    • Plea for routinely presenting prediction intervals in meta-analysis
    • IntHout J, Ioannidis JP, Rovers MM, Goeman JJ. Plea for routinely presenting prediction intervals in meta-analysis. BMJ Open. 2016;6(7):e010247.
    • (2016) BMJ Open , vol.6 , Issue.7
    • IntHout, J.1    Ioannidis, J.P.2    Rovers, M.M.3    Goeman, J.J.4
  • 171
    • 84990932195 scopus 로고    scopus 로고
    • Random effects meta-analysis: coverage performance of 95% confidence and prediction intervals following REML estimation
    • Partlett C, Riley RD. Random effects meta-analysis: coverage performance of 95% confidence and prediction intervals following REML estimation. Stat Med. 2017;36(2):301-317.
    • (2017) Stat Med , vol.36 , Issue.2 , pp. 301-317
    • Partlett, C.1    Riley, R.D.2
  • 172
    • 38949124690 scopus 로고    scopus 로고
    • Flexible parametric models for random-effects distributions
    • Lee KJ, Thompson SG. Flexible parametric models for random-effects distributions. Stat Med. 2008;27(3):418-434.
    • (2008) Stat Med , vol.27 , Issue.3 , pp. 418-434
    • Lee, K.J.1    Thompson, S.G.2
  • 173
    • 84863975528 scopus 로고    scopus 로고
    • Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: a simulation study
    • Kontopantelis E, Reeves D. Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: a simulation study. Stat Methods Med Res. 2012;21(4):409-426.
    • (2012) Stat Methods Med Res , vol.21 , Issue.4 , pp. 409-426
    • Kontopantelis, E.1    Reeves, D.2
  • 174
    • 79953689306 scopus 로고    scopus 로고
    • Quantifying, displaying and accounting for heterogeneity in the meta-analysis of RCTs using standard and generalised Q statistics
    • Bowden J, Tierney JF, Copas AJ, Burdett S. Quantifying, displaying and accounting for heterogeneity in the meta-analysis of RCTs using standard and generalised Q statistics. BMC Med Res Methodol. 2011;11(1):41.
    • (2011) BMC Med Res Methodol , vol.11 , Issue.1 , pp. 41
    • Bowden, J.1    Tierney, J.F.2    Copas, A.J.3    Burdett, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.