메뉴 건너뛰기




Volumn 36, Issue 25, 2017, Pages 3923-3934

The Hartung-Knapp modification for random-effects meta-analysis: A useful refinement but are there any residual concerns?

Author keywords

random effects models; small sample inference; statistical conventions

Indexed keywords

ADOPTION; HUMAN; META ANALYSIS; MODEL; TAXONOMY; CLASSIFICATION; CONFIDENCE INTERVAL; META ANALYSIS (TOPIC); STATISTICAL MODEL;

EID: 85026407801     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.7411     Document Type: Article
Times cited : (128)

References (35)
  • 2
    • 27944450011 scopus 로고    scopus 로고
    • The interpretation of random-effects meta-analysis in decision models
    • Ades AE, Lu G, Higgins JPT. The interpretation of random-effects meta-analysis in decision models. Med Decis Making. 2005;25:646-654.
    • (2005) Med Decis Making , vol.25 , pp. 646-654
    • Ades, A.E.1    Lu, G.2    Higgins, J.P.T.3
  • 4
    • 84956942689 scopus 로고    scopus 로고
    • Approximate confidence intervals for moment-based estimators of the between-study variance in random effects meta-analysis
    • Jackson D, Bowden J, Baker R. Approximate confidence intervals for moment-based estimators of the between-study variance in random effects meta-analysis. Res Synth Methods. 2015;6:372-382.
    • (2015) Res Synth Methods , vol.6 , pp. 372-382
    • Jackson, D.1    Bowden, J.2    Baker, R.3
  • 5
    • 71649090646 scopus 로고    scopus 로고
    • Hoes does the DerSimonian and Laird procedure for random effects meta-analysis compare with its more efficient but harder to compute counterparts?
    • Jackson D, Bowden J, Baker R. Hoes does the DerSimonian and Laird procedure for random effects meta-analysis compare with its more efficient but harder to compute counterparts? J Stat Plann Inference. 2010;140:961-970.
    • (2010) J Stat Plann Inference , vol.140 , pp. 961-970
    • Jackson, D.1    Bowden, J.2    Baker, R.3
  • 6
    • 0033263106 scopus 로고    scopus 로고
    • An alternative method for meta-analysis
    • Hartung J. An alternative method for meta-analysis. Biometrical J. 1999;41:901-916.
    • (1999) Biometrical J , vol.41 , pp. 901-916
    • Hartung, J.1
  • 7
    • 0035973279 scopus 로고    scopus 로고
    • On tests of the overall treatment effect in meta-analysis with normally distributed responses
    • Hartung J, Knapp G. On tests of the overall treatment effect in meta-analysis with normally distributed responses. Stat Med. 2001;20:1771-1782.
    • (2001) Stat Med , vol.20 , pp. 1771-1782
    • Hartung, J.1    Knapp, G.2
  • 8
    • 0035977414 scopus 로고    scopus 로고
    • A refined method for the meta-analysis of controlled clinical trials with binary outcome
    • Hartung J, Knapp G. A refined method for the meta-analysis of controlled clinical trials with binary outcome. Stat Med. 2001;20:3875-3889.
    • (2001) Stat Med , vol.20 , pp. 3875-3889
    • Hartung, J.1    Knapp, G.2
  • 9
    • 0037110527 scopus 로고    scopus 로고
    • A simple confidence interval for meta-analysis
    • Sidik K, Jonkman JN. A simple confidence interval for meta-analysis. Stat Med. 2002;21:3153-3159.
    • (2002) Stat Med , vol.21 , pp. 3153-3159
    • Sidik, K.1    Jonkman, J.N.2
  • 10
    • 33646936223 scopus 로고    scopus 로고
    • Letters to the editor
    • Copas J. Letters to the editor. Stat Med. 2003;22:2667-2668.
    • (2003) Stat Med , vol.22 , pp. 2667-2668
    • Copas, J.1
  • 12
    • 84899478410 scopus 로고    scopus 로고
    • The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method
    • IntHout J, Ioannidis JPA, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med Research Method. 2014;14:25.
    • (2014) BMC Med Research Method , vol.14 , pp. 25
    • IntHout, J.1    Ioannidis, J.P.A.2    Borm, G.F.3
  • 13
    • 84963850958 scopus 로고    scopus 로고
    • Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies
    • Röver C, Knapp G, Friede T. Hartung-Knapp-Sidik-Jonkman approach and its modification for random-effects meta-analysis with few studies. BMC Med Res Method. 2015;15:99.
    • (2015) BMC Med Res Method , vol.15 , pp. 99
    • Röver, C.1    Knapp, G.2    Friede, T.3
  • 14
    • 77958110812 scopus 로고    scopus 로고
    • Conducting meta-analyses in R with the metafor package
    • Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Software. 2010;36:1-48.
    • (2010) J Stat Software , vol.36 , pp. 1-48
    • Viechtbauer, W.1
  • 15
    • 65349169770 scopus 로고    scopus 로고
    • meta: An R package for meta-analysis
    • Schwarzer G. meta: An R package for meta-analysis. R News. 2007;7:40-45.
    • (2007) R News , vol.7 , pp. 40-45
    • Schwarzer, G.1
  • 16
    • 0042926567 scopus 로고    scopus 로고
    • Improved tests for a random effects meta-regression with a single covariate
    • Knapp G, Hartung J. Improved tests for a random effects meta-regression with a single covariate. Stat Med. 2003;22:2293-2710.
    • (2003) Stat Med , vol.22 , pp. 2293-2710
    • Knapp, G.1    Hartung, J.2
  • 17
    • 84892485024 scopus 로고    scopus 로고
    • A refined method for multivariate meta-analysis and meta-regression
    • Jackson D, Riley RD. A refined method for multivariate meta-analysis and meta-regression. Stat Med. 2014;33:541-554.
    • (2014) Stat Med , vol.33 , pp. 541-554
    • Jackson, D.1    Riley, R.D.2
  • 18
    • 61749099575 scopus 로고    scopus 로고
    • A re-evaluation of the ‘quantile approximation method’ for random effects meta-analysis
    • Jackson D, Bowden J. A re-evaluation of the ‘quantile approximation method’ for random effects meta-analysis. Stat Med. 2009;28:338-348.
    • (2009) Stat Med , vol.28 , pp. 338-348
    • Jackson, D.1    Bowden, J.2
  • 19
    • 81955161941 scopus 로고    scopus 로고
    • Confidence intervals for a random-effects meta-analysis based on Bartlett-type corrections
    • Noma H. Confidence intervals for a random-effects meta-analysis based on Bartlett-type corrections. Stat Med. 2011;30:3304-3312.
    • (2011) Stat Med , vol.30 , pp. 3304-3312
    • Noma, H.1
  • 20
    • 84892476509 scopus 로고    scopus 로고
    • Meta-analysis inside and outside particle physics: two traditions that should converge?
    • Baker R, Jackson D. Meta-analysis inside and outside particle physics: two traditions that should converge? Res Synth Methods. 2013;4:109-124.
    • (2013) Res Synth Methods , vol.4 , pp. 109-124
    • Baker, R.1    Jackson, D.2
  • 21
    • 84930391011 scopus 로고    scopus 로고
    • Meta-analysis inside and outside particle physics: convergence using the path of least resistance?
    • Jackson D, Baker R. Meta-analysis inside and outside particle physics: convergence using the path of least resistance? Res Synth Methods. 2013;4:125-126.
    • (2013) Res Synth Methods , vol.4 , pp. 125-126
    • Jackson, D.1    Baker, R.2
  • 22
    • 84959297600 scopus 로고    scopus 로고
    • Methods to estimate the between-study variance and its uncertainty in meta-analysis
    • Veroniki AA, Jackson D, Viechtbauer W, et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods. 2016;7:55-79.
    • (2016) Res Synth Methods , vol.7 , pp. 55-79
    • Veroniki, A.A.1    Jackson, D.2    Viechtbauer, W.3
  • 23
    • 0037098199 scopus 로고    scopus 로고
    • Quantifying heterogeneity in a meta-analysis
    • Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539-1558.
    • (2002) Stat Med , vol.21 , pp. 1539-1558
    • Higgins, J.P.T.1    Thompson, S.G.2
  • 24
    • 33646338881 scopus 로고    scopus 로고
    • Assessing the amount of heterogeneity in random-effects meta-analysis
    • Knapp G, Biggerstaff BJ, Harting J. Assessing the amount of heterogeneity in random-effects meta-analysis. Biometrical J. 2006;48:271-285.
    • (2006) Biometrical J , vol.48 , pp. 271-285
    • Knapp, G.1    Biggerstaff, B.J.2    Harting, J.3
  • 25
    • 33846253999 scopus 로고    scopus 로고
    • Confidence intervals for the amount of heterogeneity in meta-analysis
    • Viechtbauer W. Confidence intervals for the amount of heterogeneity in meta-analysis. Stat Med. 2007;26:37-52.
    • (2007) Stat Med , vol.26 , pp. 37-52
    • Viechtbauer, W.1
  • 26
    • 84959266078 scopus 로고    scopus 로고
    • Misunderstandings about Q and ‘Cochran's Q test' in meta-analysis
    • Hoaglin D. Misunderstandings about Q and ‘Cochran's Q test' in meta-analysis. Stat Med. 2016;35:485-495.
    • (2016) Stat Med , vol.35 , pp. 485-495
    • Hoaglin, D.1
  • 27
    • 84959387470 scopus 로고    scopus 로고
    • Hartung-Knapp method is not always conservative compared to fixed effect meta-analysis
    • Wiksten A, Rücker G, Schwarzer G. Hartung-Knapp method is not always conservative compared to fixed effect meta-analysis. Stat Med. 2016;35:2503-2515.
    • (2016) Stat Med , vol.35 , pp. 2503-2515
    • Wiksten, A.1    Rücker, G.2    Schwarzer, G.3
  • 28
    • 84864508284 scopus 로고    scopus 로고
    • Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews
    • Turner RM, Davey J, Clarke MJ, Thompson SG, Higgins JP. Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews. Int J Epidemiol. 2012;41:818-827.
    • (2012) Int J Epidemiol , vol.41 , pp. 818-827
    • Turner, R.M.1    Davey, J.2    Clarke, M.J.3    Thompson, S.G.4    Higgins, J.P.5
  • 30
    • 0033198316 scopus 로고    scopus 로고
    • Random-effects meta-analyses are not always conservative
    • Poole C, Greenland S. Random-effects meta-analyses are not always conservative. Am J Epidemiol. 1999;150:1-12.
    • (1999) Am J Epidemiol , vol.150 , pp. 1-12
    • Poole, C.1    Greenland, S.2
  • 31
    • 0020178780 scopus 로고
    • Concensus values and weighting factors
    • Paule RC, Mandel J. Concensus values and weighting factors. J Res Nat Bur Stand. 1982;87:377-385.
    • (1982) J Res Nat Bur Stand , vol.87 , pp. 377-385
    • Paule, R.C.1    Mandel, J.2
  • 32
    • 84860189994 scopus 로고    scopus 로고
    • Estimating common mean and heterogeneity variance in two study case meta-analysis
    • Rukhin AL. Estimating common mean and heterogeneity variance in two study case meta-analysis. Stat Probab Lett. 2012;82:1318-1325.
    • (2012) Stat Probab Lett , vol.82 , pp. 1318-1325
    • Rukhin, A.L.1
  • 33
    • 71649090479 scopus 로고    scopus 로고
    • The significance level of the standard test for a treatment effect in meta-analysis
    • Jackson D. The significance level of the standard test for a treatment effect in meta-analysis. Stat Biopharm Res. 2009;1:92-100.
    • (2009) Stat Biopharm Res , vol.1 , pp. 92-100
    • Jackson, D.1
  • 34
    • 0033557255 scopus 로고    scopus 로고
    • Tutorial in Biostatistics. Meta-analysis: formulating, evaluating, combining and reporting
    • Normand SL. Tutorial in Biostatistics. Meta-analysis: formulating, evaluating, combining and reporting. Stat Med. 1999;18:321-359.
    • (1999) Stat Med , vol.18 , pp. 321-359
    • Normand, S.L.1
  • 35
    • 82055175725 scopus 로고    scopus 로고
    • Characteristics of meta-analyses and their component studies in the Cochrane Database of Systematic Reviews: a cross-sectional, descriptive analysis
    • Davey J, Turner RM, Clarke MJ, Higgins JPT. Characteristics of meta-analyses and their component studies in the Cochrane Database of Systematic Reviews: a cross-sectional, descriptive analysis. BMC Med Res Method. 2011;11:160.
    • (2011) BMC Med Res Method , vol.11 , pp. 160
    • Davey, J.1    Turner, R.M.2    Clarke, M.J.3    Higgins, J.P.T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.