메뉴 건너뛰기




Volumn 65, Issue 5, 2012, Pages 503-510

Robust meta-analytic conclusions mandate the provision of prediction intervals in meta-analysis summaries

Author keywords

Bayesian analysis; Frequentist analysis; Meta analysis; Posterior probability; Prediction intervals; Predictive distribution; Random effects

Indexed keywords

ARTICLE; BAYES THEOREM; BIOMETRY; CONFIDENCE INTERVAL; CONTROLLED STUDY; EPIDEMIOLOGICAL DATA; HUMAN; INTENSIVE CARE; MEDLINE; META ANALYSIS (TOPIC); OUTCOME ASSESSMENT; PREDICTION; PRIORITY JOURNAL; PROBABILITY; RANDOM SAMPLE; RISK; RISK FACTOR; UNCERTAINTY; EPIDEMIOLOGY; META ANALYSIS; RESEARCH; STATISTICAL ANALYSIS; STATISTICS;

EID: 84861114064     PISSN: 08954356     EISSN: 18785921     Source Type: Journal    
DOI: 10.1016/j.jclinepi.2011.09.012     Document Type: Article
Times cited : (76)

References (39)
  • 2
    • 0026051480 scopus 로고
    • Can meta-analyses be trusted?
    • Thompson SG, Pocock SJ. Can meta-analyses be trusted? Lancet 1991;338:1127-30.
    • (1991) Lancet , vol.338 , pp. 1127-1130
    • Thompson, S.G.1    Pocock, S.J.2
  • 3
    • 0028826067 scopus 로고
    • Discordance between meta-analyses and large-scale randomized, controlled trials. Examples from the management of acute myocardial infarction
    • Borzak S, Ridker PM. Discordance between meta-analyses and large-scale randomized, controlled trials. Examples from the management of acute myocardial infarction. Ann Intern Med 1995; 123:873-7.
    • (1995) Ann Intern Med , vol.123 , pp. 873-877
    • Borzak, S.1    Ridker, P.M.2
  • 5
    • 1842376945 scopus 로고    scopus 로고
    • Discrepancies between meta-analyses and subsequent large randomized, controlled trials
    • LeLorier J, Gregoire G, Benhaddad A, Lapierre J, Derderian F. Discrepancies between meta-analyses and subsequent large randomized, controlled trials. N Engl J Med 1997;337:536-42.
    • (1997) N Engl J Med , vol.337 , pp. 536-542
    • LeLorier, J.1    Gregoire, G.2    Benhaddad, A.3    Lapierre, J.4    Derderian, F.5
  • 6
    • 0028911125 scopus 로고
    • Predictive ability of meta-analyses of randomised controlled trials
    • Villar J, Carroli G, Belizan JM. Predictive ability of meta-analyses of randomised controlled trials. Lancet 1995;345:772-6.
    • (1995) Lancet , vol.345 , pp. 772-776
    • Villar, J.1    Carroli, G.2    Belizan, J.M.3
  • 7
    • 0025819031 scopus 로고
    • Problems induced by meta-analyses
    • Chalmers TC. Problems induced by meta-analyses. Stat Med 1991;10:971-9.
    • (1991) Stat Med , vol.10 , pp. 971-979
    • Chalmers, T.C.1
  • 10
    • 0023270428 scopus 로고
    • Why do we need systematic overviews of randomized trials?
    • Peto R. Why do we need systematic overviews of randomized trials? Stat Med 1987;6:233-44.
    • (1987) Stat Med , vol.6 , pp. 233-244
    • Peto, R.1
  • 11
    • 0021745696 scopus 로고
    • Why do we need some large, simple randomized trials
    • Yusuf S, Collins R, Peto R. Why do we need some large, simple randomized trials. Stat Med 1984;3:409-20.
    • (1984) Stat Med , vol.3 , pp. 409-420
    • Yusuf, S.1    Collins, R.2    Peto, R.3
  • 12
    • 72249112718 scopus 로고    scopus 로고
    • The need for large-scale randomized evidence without undue emphasis on small trials, meta-analyses, or subgroup analyses
    • Hennekens CH, Demets D. The need for large-scale randomized evidence without undue emphasis on small trials, meta-analyses, or subgroup analyses. JAMA 2009;302:2361-2.
    • (2009) JAMA , vol.302 , pp. 2361-2362
    • Hennekens, C.H.1    Demets, D.2
  • 13
    • 79955544813 scopus 로고    scopus 로고
    • Interpretation of random effects meta-analyses
    • Riley RD, Higgins JPT, Deeks JJ. Interpretation of random effects meta-analyses. BMJ 2011;342:d549.
    • (2011) BMJ , vol.342
    • Riley, R.D.1    Higgins, J.P.T.2    Deeks, J.J.3
  • 17
    • 0037098198 scopus 로고    scopus 로고
    • Bayesian random effects meta-analysis of trials with binary outcomes: Methods for the absolute risk difference and relative risk scales
    • Warn DE, Thompson SG, Spiegelhalter DJ. Bayesian random effects meta-analysis of trials with binary outcomes: methods for the absolute risk difference and relative risk scales. Stat Med 2002;21: 1601-23.
    • (2002) Stat Med , vol.21 , pp. 1601-1623
    • Warn, D.E.1    Thompson, S.G.2    Spiegelhalter, D.J.3
  • 19
    • 61649098674 scopus 로고    scopus 로고
    • Undue reliance on I(2) in assessing heterogeneity may mislead
    • doi:10.1186/1471-2288-8-79
    • Rucker G, Schwarzer G, Carpenter J, Schumacher M. Undue reliance on I(2) in assessing heterogeneity may mislead. BMC Med Res Meth-odol 2008;8:79. doi:10.1186/1471-2288-8-79.
    • (2008) BMC Med Res Meth-odol , vol.8 , pp. 79
    • Rucker, G.1    Schwarzer, G.2    Carpenter, J.3    Schumacher, M.4
  • 21
    • 0006407254 scopus 로고    scopus 로고
    • Win BUGS da bayes-ian modelling framework: Concepts, structure, and extensibility
    • Lunn DJ, Thomas A, Best N, Spiegel halter D. Win BUGS da Bayes-ian modelling framework: concepts, structure, and extensibility. Stat Comput 2000;10:325-37.
    • (2000) Stat Comput , vol.10 , pp. 325-337
    • Lunn, D.J.1    Thomas, A.2    Best, N.3    Spiegel Halter, D.4
  • 22
    • 80054821706 scopus 로고    scopus 로고
    • Accessed January 2009
    • Schwarzer G. meta: Meta-analysis with R. Available at http://cran.r-project.org/web/packages/meta/index.html2009. Accessed January 2009.
    • Meta: Meta-analysis with R
    • Schwarzer, G.1
  • 23
    • 27944450011 scopus 로고    scopus 로고
    • The interpretation of random-effects meta-analysis in decision models
    • Ades AE, Lu G, Higgins JPT. The interpretation of random-effects meta-analysis in decision models. Med Decis Making 2005;25: 646-54.
    • (2005) Med Decis Making , vol.25 , pp. 646-654
    • Ades, A.E.1    Lu, G.2    Higgins, J.P.T.3
  • 24
    • 78650512874 scopus 로고    scopus 로고
    • Meta-analyses of small numbers of trials often agree with longer-term results
    • Herbison P, Hay-Smith J, Gillespie WJ. Meta-analyses of small numbers of trials often agree with longer-term results. J Clin Epidemiol 2011;64:145-53.
    • (2011) J Clin Epidemiol , vol.64 , pp. 145-153
    • Herbison, P.1    Hay-Smith, J.2    Gillespie, W.J.3
  • 25
    • 70749125508 scopus 로고    scopus 로고
    • Impact of progressive resistance training on lipids and lipoproteins in adults: Another look at a meta-analysis using prediction intervals
    • Kelley GA, Kelley KS. Impact of progressive resistance training on lipids and lipoproteins in adults: another look at a meta-analysis using prediction intervals. Prev Med 2009;49:473-5.
    • (2009) Prev Med , vol.49 , pp. 473-475
    • Kelley, G.A.1    Kelley, K.S.2
  • 27
    • 0042183647 scopus 로고
    • A theory of randomness
    • Kendall MG. A theory of randomness. Biometrika 1941;32:1-15.
    • (1941) Biometrika , vol.32 , pp. 1-15
    • Kendall, M.G.1
  • 28
    • 0033198316 scopus 로고    scopus 로고
    • Random-effects meta-analyses are not always conservative
    • Poole C, Greenland S. Random-effects meta-analyses are not always conservative. Am J Epidemiol 1999;150:469-75.
    • (1999) Am J Epidemiol , vol.150 , pp. 469-475
    • Poole, C.1    Greenland, S.2
  • 29
    • 7944222428 scopus 로고    scopus 로고
    • Some general points in estimating heterogeneity variance with the DerSimonian-laird estimator
    • Bohning D, Malzahn U, Dietz E, Schlattmann P, Viwatwongkasem C, Biggeri A. Some general points in estimating heterogeneity variance with the DerSimonian-Laird estimator. Biostat 2002;3:445-57.
    • (2002) Biostat , vol.3 , pp. 445-457
    • Bohning, D.1    Malzahn, U.2    Dietz, E.3    Schlattmann, P.4    Viwatwongkasem, C.5    Biggeri, A.6
  • 30
    • 12144254145 scopus 로고    scopus 로고
    • A bayes-ian approach to evaluating net clinical benefit allowed for parameter uncertainty
    • Sutton AJ, Cooper NJ, Abrams KR, Lambert PC, Jones DR. A Bayes-ian approach to evaluating net clinical benefit allowed for parameter uncertainty. J Clin Epidemiol 2005;58:26-40.
    • (2005) J Clin Epidemiol , vol.58 , pp. 26-40
    • Sutton, A.J.1    Cooper, N.J.2    Abrams, K.R.3    Lambert, P.C.4    Jones, D.R.5
  • 31
    • 0032495819 scopus 로고    scopus 로고
    • Issues in comparisons between meta-analyses and large trials
    • Ioannidis JP, Cappelleri JC, Lau J. Issues in comparisons between meta-analyses and large trials. JAMA 1998;279:1089-93.
    • (1998) JAMA , vol.279 , pp. 1089-1093
    • Ioannidis, J.P.1    Cappelleri, J.C.2    Lau, J.3
  • 33
    • 77950992942 scopus 로고    scopus 로고
    • Can we rely on the best trial? A comparison of individual trials and systematic reviews
    • Glasziou P, Shepperd S, Brassey J. Can we rely on the best trial? A comparison of individual trials and systematic reviews. BMC Med Res Methodol 2010;10:23.
    • (2010) BMC Med Res Methodol , vol.10 , pp. 23
    • Glasziou, P.1    Shepperd, S.2    Brassey, J.3
  • 34
    • 65649146796 scopus 로고    scopus 로고
    • The evidence provided by a single trial is less reliable than its statistical analysis suggests
    • Borm GF, Lemmers O, Fransen J, Donders R. The evidence provided by a single trial is less reliable than its statistical analysis suggests. J Clin Epidemiol 2009;62:711-5.
    • (2009) J Clin Epidemiol , vol.62 , pp. 711-715
    • Borm, G.F.1    Lemmers, O.2    Fransen, J.3    Donders, R.4
  • 35
    • 38849162727 scopus 로고    scopus 로고
    • In the era of systematic reviews, does the size of an individual trial still matter?
    • Guyatt GH, Mills EJ, Elbourne D. In the era of systematic reviews, does the size of an individual trial still matter? PLoS Med 2008;5:e4.
    • (2008) PLoS Med , vol.5
    • Guyatt, G.H.1    Mills, E.J.2    Elbourne, D.3
  • 36
    • 33847323940 scopus 로고    scopus 로고
    • Mega-trials vs. meta-analysis: Precision vs. heterogeneity?
    • Shrier I, Platt RW, Steele RJ. Mega-trials vs. meta-analysis: precision vs. heterogeneity? Contemp Clin Trials 2007;28:324-8.
    • (2007) Contemp Clin Trials , vol.28 , pp. 324-328
    • Shrier, I.1    Platt, R.W.2    Steele, R.J.3
  • 37
    • 71649090646 scopus 로고    scopus 로고
    • How does the DerSimonian and laird procedure for random effects meta-analysis compare with its more efficient but harder to compute counterparts?
    • Jackson D, Bowden J, Baker R. How does the DerSimonian and Laird procedure for random effects meta-analysis compare with its more efficient but harder to compute counterparts? J Stat Plann Infer 2010;140:961-70.
    • (2010) J Stat Plann Infer , vol.140 , pp. 961-970
    • Jackson, D.1    Bowden, J.2    Baker, R.3
  • 38
    • 36849058782 scopus 로고    scopus 로고
    • The binomial distribution of meta-analysis was preferred to model within-study variability
    • Hamza TH, van Houwelingen HC, Stijnen T. The binomial distribution of meta-analysis was preferred to model within-study variability. J Clin Epidemiol 2008;61:41-51.
    • (2008) J Clin Epidemiol , vol.61 , pp. 41-51
    • Hamza, T.H.1    Van Houwelingen, H.C.2    Stijnen, T.3
  • 39
    • 33748090675 scopus 로고    scopus 로고
    • A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints
    • Harbord RM, Egger M, Sterne JA. A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med 2006;25:3443-57.
    • (2006) Stat Med , vol.25 , pp. 3443-3457
    • Harbord, R.M.1    Egger, M.2    Sterne, J.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.