메뉴 건너뛰기




Volumn 1436, Issue 1, 2019, Pages 19-35

Land–atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges

Author keywords

drought; heatwave; land feedback; land atmospheric interactions

Indexed keywords

RAIN;

EID: 85060813428     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/nyas.13912     Document Type: Article
Times cited : (536)

References (165)
  • 1
    • 85046890068 scopus 로고    scopus 로고
    • Future climate risk from compound events
    • Zscheischler, J. et al. 2018. Future climate risk from compound events. Nat. Clim. Change 8: 469–477.
    • (2018) Nat. Clim. Change , vol.8 , pp. 469-477
    • Zscheischler, J.1
  • 2
    • 85034098392 scopus 로고    scopus 로고
    • Dependence of drivers affects risks associated with compound events
    • &
    • Zscheischler, J. & S.I. Seneviratne. 2017. Dependence of drivers affects risks associated with compound events. Sci. Adv. 3: e1700263.
    • (2017) Sci. Adv. , vol.3
    • Zscheischler, J.1    Seneviratne, S.I.2
  • 3
    • 84941671296 scopus 로고    scopus 로고
    • Substantial increase in concurrent droughts and heatwaves in the United States
    • &
    • Mazdiyasni, O. & A. AghaKouchak. 2015. Substantial increase in concurrent droughts and heatwaves in the United States. Proc. Natl. Acad. Sci. USA 112: 11484–11489.
    • (2015) Proc. Natl. Acad. Sci. USA , vol.112 , pp. 11484-11489
    • Mazdiyasni, O.1    AghaKouchak, A.2
  • 5
    • 84953867186 scopus 로고    scopus 로고
    • Agriculture intensifies soil moisture decline in Northern China
    • Liu, Y. et al. 2015. Agriculture intensifies soil moisture decline in Northern China. Sci. Rep. 5: 11261.
    • (2015) Sci. Rep. , vol.5 , pp. 11261
    • Liu, Y.1
  • 6
    • 84924353432 scopus 로고    scopus 로고
    • Drought impact on forest carbon dynamics and fluxes in Amazonia
    • Doughty, C.E. et al. 2015. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519: 78–82.
    • (2015) Nature , vol.519 , pp. 78-82
    • Doughty, C.E.1
  • 7
    • 84939793139 scopus 로고    scopus 로고
    • Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models
    • &
    • Anderegg, W.R.L., C. Schwalm, F. Biondi & J.J. Camarero. 2015. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349: 528–532.
    • (2015) Science , vol.349 , pp. 528-532
    • Anderegg, W.R.L.1    Schwalm, C.2    Biondi, F.3    Camarero, J.J.4
  • 8
    • 84871840877 scopus 로고    scopus 로고
    • Increasing drought under global warming in observations and models
    • Dai, A. 2013. Increasing drought under global warming in observations and models. Nat. Clim. Change 3: 52–58.
    • (2013) Nat. Clim. Change , vol.3 , pp. 52-58
    • Dai, A.1
  • 9
    • 84928053849 scopus 로고    scopus 로고
    • Changes in Climate Extremes and their Impacts on the Natural Physical Environment
    • C.B. Field, Eds., Cambridge University Press
    • Seneviratne, S.I. et al. 2012. Changes in Climate Extremes and their Impacts on the Natural Physical Environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. C.B. Field et al., Eds.: 109–230. Cambridge University Press.
    • (2012) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation , pp. 109-230
    • Seneviratne, S.I.1
  • 10
    • 84895812661 scopus 로고    scopus 로고
    • Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment
    • Prudhomme, C. et al. 2014. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl. Acad. Sci. USA 111: 3262–3267.
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 3262-3267
    • Prudhomme, C.1
  • 12
    • 84925837020 scopus 로고    scopus 로고
    • A global water cycle reanalysis (2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble
    • &
    • van Dijk, A.I.J.M., L.J. Renzullo, Y. Wada & P. Tregoning 2014. A global water cycle reanalysis (2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble. Hydrol. Earth Syst. Sci. 18: 2955–2973.
    • (2014) Hydrol. Earth Syst. Sci. , vol.18 , pp. 2955-2973
    • van Dijk, A.I.J.M.1    Renzullo, L.J.2    Wada, Y.3    Tregoning, P.4
  • 13
    • 84905174872 scopus 로고    scopus 로고
    • A drought monitoring and forecasting system for Sub-Sahara African water resources and food security
    • Sheffield, J. et al. 2014. A drought monitoring and forecasting system for Sub-Sahara African water resources and food security. Bull. Am. Meteorol. Soc. 95: 861–882.
    • (2014) Bull. Am. Meteorol. Soc. , vol.95 , pp. 861-882
    • Sheffield, J.1
  • 14
    • 84901456499 scopus 로고    scopus 로고
    • On the reliability of seasonal climate forecasts
    • &
    • Weisheimer, A. & T.N. Palmer. 2014. On the reliability of seasonal climate forecasts. J. R. Soc. Interface 11: 20131162.
    • (2014) J. R. Soc. Interface , vol.11 , pp. 20131162
    • Weisheimer, A.1    Palmer, T.N.2
  • 15
    • 58049130483 scopus 로고    scopus 로고
    • Evaluating uncertainties in the projection of future drought
    • &
    • Burke, E.J. & S.J. Brown. 2008. Evaluating uncertainties in the projection of future drought. J. Hydrometeorol. 9: 292–299.
    • (2008) J. Hydrometeorol. , vol.9 , pp. 292-299
    • Burke, E.J.1    Brown, S.J.2
  • 16
    • 84901687166 scopus 로고    scopus 로고
    • Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle
    • Poulter, B. et al. 2014. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509: 600–603.
    • (2014) Nature , vol.509 , pp. 600-603
    • Poulter, B.1
  • 17
    • 84901731308 scopus 로고    scopus 로고
    • Impact of large-scale climate extremes on biospheric carbon fluxes: an intercomparison based on MsTMIP data
    • Zscheischler, J. et al. 2014. Impact of large-scale climate extremes on biospheric carbon fluxes: an intercomparison based on MsTMIP data. Global Biogeochem. Cycles 28: 585–600.
    • (2014) Global Biogeochem. Cycles , vol.28 , pp. 585-600
    • Zscheischler, J.1
  • 18
    • 84881648459 scopus 로고    scopus 로고
    • Climate extremes and the carbon cycle
    • Reichstein, M. et al. 2013. Climate extremes and the carbon cycle. Nature 500: 287–295.
    • (2013) Nature , vol.500 , pp. 287-295
    • Reichstein, M.1
  • 19
    • 79955639123 scopus 로고    scopus 로고
    • Drought and ecosystem carbon cycling
    • van der Molen, M.K. et al. 2011. Drought and ecosystem carbon cycling. Agric. For. Meteorol. 151: 765–773.
    • (2011) Agric. For. Meteorol. , vol.151 , pp. 765-773
    • van der Molen, M.K.1
  • 20
    • 85011347254 scopus 로고    scopus 로고
    • Hydrological and biogeochemical constraints on terrestrial carbon cycle feedbacks
    • &
    • Mystakidis, S., S.I. Seneviratne, N. Gruber & E.L. Davin. 2017. Hydrological and biogeochemical constraints on terrestrial carbon cycle feedbacks. Environ. Res. Lett. 12: 014009–014012.
    • (2017) Environ. Res. Lett. , vol.12 , pp. 014009-014012
    • Mystakidis, S.1    Seneviratne, S.I.2    Gruber, N.3    Davin, E.L.4
  • 21
    • 77952549483 scopus 로고    scopus 로고
    • Investigating soil moisture–climate interactions in a changing climate: a review
    • Seneviratne, S.I. et al. 2010. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99: 125–161.
    • (2010) Earth Sci. Rev. , vol.99 , pp. 125-161
    • Seneviratne, S.I.1
  • 22
    • 67650550780 scopus 로고    scopus 로고
    • Projected midlatitude continental summer drying: North America versus Europe
    • Rowell, D.P. 2009. Projected midlatitude continental summer drying: North America versus Europe. J. Clim. 22: 2813–2833.
    • (2009) J. Clim. , vol.22 , pp. 2813-2833
    • Rowell, D.P.1
  • 23
    • 84902097224 scopus 로고    scopus 로고
    • Atmosphere and ocean origins of North American droughts
    • &
    • Seager, R. & M. Hoerling. 2014. Atmosphere and ocean origins of North American droughts. J. Clim. 27: 4581–4606.
    • (2014) J. Clim. , vol.27 , pp. 4581-4606
    • Seager, R.1    Hoerling, M.2
  • 24
    • 34250749796 scopus 로고    scopus 로고
    • Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit
    • Vautard, R. et al. 2007. Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophys. Res. Lett. 34: L07711.
    • (2007) Geophys. Res. Lett. , vol.34 , pp. L07711
    • Vautard, R.1
  • 25
    • 84865811667 scopus 로고    scopus 로고
    • Asymmetric European summer heat predictability from wet and dry southern winters and springs
    • Quesada, B., R. Vautard, P. Yiou, et al. 2012. Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nat. Clim. Change 2: 736–741.
    • (2012) Nat. Clim. Change , vol.2 , pp. 736-741
    • Quesada, B.1    Vautard, R.2    Yiou, P.3
  • 26
    • 2942512760 scopus 로고    scopus 로고
    • The importance of interception and why we should delete the term evapotranspiration from our vocabulary
    • Savenije, H.H.G. 2004. The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrol. Process. 18: 1507–1511.
    • (2004) Hydrol. Process. , vol.18 , pp. 1507-1511
    • Savenije, H.H.G.1
  • 27
    • 84906099928 scopus 로고    scopus 로고
    • Impact of land–atmospheric coupling in CFSv2 on drought prediction
    • &
    • Roundy, J.K., C.R. Ferguson & E.F. Wood. 2013. Impact of land–atmospheric coupling in CFSv2 on drought prediction. Clim. Dyn. 43: 421–434.
    • (2013) Clim. Dyn. , vol.43 , pp. 421-434
    • Roundy, J.K.1    Ferguson, C.R.2    Wood, E.F.3
  • 28
    • 84875030687 scopus 로고    scopus 로고
    • Diagnosing the nature of land–atmosphere coupling: a case study of dry/wet extremes in the US Southern Great plains
    • &
    • Santanello, J.J.A. & C.D. Peters-Lidard. 2013. Diagnosing the nature of land–atmosphere coupling: a case study of dry/wet extremes in the US Southern Great plains. J. Hydrometeorol. 14: 3–24.
    • (2013) J. Hydrometeorol. , vol.14 , pp. 3-24
    • Santanello, J.J.A.1    Peters-Lidard, C.D.2
  • 29
    • 84875018508 scopus 로고    scopus 로고
    • Representation of soil moisture feedbacks during drought in NASA Unified WRF (NU-WRF)
    • &
    • Zaitchik, B.F., J.A. Santanello, S.V. Kumar & C.D. Peters-Lidard.  2013. Representation of soil moisture feedbacks during drought in NASA Unified WRF (NU-WRF). J. Hydrometeorol. 14: 360–367.
    • (2013) J. Hydrometeorol. , vol.14 , pp. 360-367
    • Zaitchik, B.F.1    Santanello, J.A.2    Kumar, S.V.3    Peters-Lidard, C.D.4
  • 30
    • 84866506610 scopus 로고    scopus 로고
    • Afternoon rain more likely over drier soils
    • Taylor, C.M., R.A. de Jeu, F. Guichard, et al. 2012. Afternoon rain more likely over drier soils. Nature 489: 423–426.
    • (2012) Nature , vol.489 , pp. 423-426
    • Taylor, C.M.1    de Jeu, R.A.2    Guichard, F.3
  • 31
    • 79959924790 scopus 로고    scopus 로고
    • Frequency of Sahelian storm initiation enhanced over mesoscale soil–moisture patterns
    • Taylor, C.M. et al. 2011. Frequency of Sahelian storm initiation enhanced over mesoscale soil–moisture patterns. Nat. Geosci. 4: 430–433.
    • (2011) Nat. Geosci. , vol.4 , pp. 430-433
    • Taylor, C.M.1
  • 32
    • 84924353783 scopus 로고    scopus 로고
    • Reconciling spatial and temporal soil moisture effects on afternoon rainfall
    • Guillod, B.P., B. Orlowsky, D.G. Miralles, et al. 2015. Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat. Commun. 6: 6443.
    • (2015) Nat. Commun. , vol.6 , pp. 6443
    • Guillod, B.P.1    Orlowsky, B.2    Miralles, D.G.3
  • 33
    • 0031947959 scopus 로고    scopus 로고
    • A soil moisture rainfall feedback mechanism 1. Theory and observations
    • Eltahir, E.A.B. 1998. A soil moisture rainfall feedback mechanism 1. Theory and observations. Water Resour. Res. 34: 765–776.
    • (1998) Water Resour. Res. , vol.34 , pp. 765-776
    • Eltahir, E.A.B.1
  • 34
    • 41849113105 scopus 로고    scopus 로고
    • Contrasting spectral changes limit albedo impact on land–atmosphere coupling during the 2003 European heat wave
    • &
    • Teuling, A.J. & S.I. Seneviratne. 2008. Contrasting spectral changes limit albedo impact on land–atmosphere coupling during the 2003 European heat wave. Geophys. Res. Lett. 35: L03401.
    • (2008) Geophys. Res. Lett. , vol.35 , pp. L03401
    • Teuling, A.J.1    Seneviratne, S.I.2
  • 35
    • 84942843891 scopus 로고    scopus 로고
    • Quantifying the land–atmosphere coupling behavior in modern reanalysis products over the U.S. southern Great Plains
    • &
    • Santanello, J.A., J. Roundy & P.A. Dirmeyer. 2015. Quantifying the land–atmosphere coupling behavior in modern reanalysis products over the U.S. southern Great Plains. J. Clim. 28: 5813–5829.
    • (2015) J. Clim. , vol.28 , pp. 5813-5829
    • Santanello, J.A.1    Roundy, J.2    Dirmeyer, P.A.3
  • 36
    • 34249895945 scopus 로고    scopus 로고
    • Contribution of land–atmosphere coupling to recent European summer heat waves
    • &
    • Fischer, E.M., S.I. Seneviratne, D. Luthi & C. Schar. 2007. Contribution of land–atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett. 34. https://doi.org/10.1029/2006gl029068.
    • (2007) Geophys. Res. Lett. , vol.34
    • Fischer, E.M.1    Seneviratne, S.I.2    Luthi, D.3    Schar, C.4
  • 37
    • 84938308776 scopus 로고    scopus 로고
    • An observation-constrained multi-physics WRF ensemble for simulating European mega heat waves
    • Stegehuis, A.I. et al. 2015. An observation-constrained multi-physics WRF ensemble for simulating European mega heat waves. Geosci. Model Dev. 8: 2285–2298.
    • (2015) Geosci. Model Dev. , vol.8 , pp. 2285-2298
    • Stegehuis, A.I.1
  • 38
    • 84864570133 scopus 로고    scopus 로고
    • Observational evidence for soil-moisture impact on hot extremes in southeastern Europe
    • Hirschi, M. et al. 2010. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci. 3: 1–5.
    • (2010) Nat. Geosci. , vol.3 , pp. 1-5
    • Hirschi, M.1
  • 39
    • 77957556457 scopus 로고    scopus 로고
    • Contrasting response of European forest and grassland energy exchange to heatwaves
    • Teuling, A.J. et al. 2010. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3: 722–727.
    • (2010) Nat. Geosci. , vol.3 , pp. 722-727
    • Teuling, A.J.1
  • 40
    • 4143112257 scopus 로고    scopus 로고
    • Regions of strong coupling between soil moisture and precipitation
    • Koster, R.D. et al. 2004. Regions of strong coupling between soil moisture and precipitation. Science 305: 1138–1140.
    • (2004) Science , vol.305 , pp. 1138-1140
    • Koster, R.D.1
  • 41
    • 84884788919 scopus 로고    scopus 로고
    • Impact of soil moisture–climate feedbacks on CMIP5 projections: first results from the GLACE-CMIP5 experiment
    • Seneviratne, S.I. et al. 2013. Impact of soil moisture–climate feedbacks on CMIP5 projections: first results from the GLACE-CMIP5 experiment. Geophys. Res. Lett. 40: 5212–5217.
    • (2013) Geophys. Res. Lett. , vol.40 , pp. 5212-5217
    • Seneviratne, S.I.1
  • 42
    • 84868629207 scopus 로고    scopus 로고
    • Soil moisture–temperature coupling: a multiscale observational analysis
    • &
    • Miralles, D.G., M.J. van den Berg, A.J. Teuling & R.A.M. de Jeu. 2012. Soil moisture–temperature coupling: a multiscale observational analysis. Geophys. Res. Lett. 39. https://doi.org/10.1029/2012gl053703.
    • (2012) Geophys. Res. Lett. , vol.39
    • Miralles, D.G.1    van den Berg, M.J.2    Teuling, A.J.3    de Jeu, R.A.M.4
  • 43
    • 85041195426 scopus 로고    scopus 로고
    • Soil moisture–temperature coupling in a set of land surface models
    • Gevaert, A.I., D.G. Miralles, R.A.M. de Jeu, et al. 2018. Soil moisture–temperature coupling in a set of land surface models. J. Geophys. Res. Atmos. 123: 1481–1498.
    • (2018) J. Geophys. Res. Atmos. , vol.123 , pp. 1481-1498
    • Gevaert, A.I.1    Miralles, D.G.2    de Jeu, R.A.M.3
  • 44
    • 85020221281 scopus 로고    scopus 로고
    • Regionally strong feedbacks between the atmosphere and terrestrial biosphere
    • Green, J.K. et al. 2017. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10: 410–417.
    • (2017) Nat. Geosci. , vol.10 , pp. 410-417
    • Green, J.K.1
  • 45
    • 77958109758 scopus 로고    scopus 로고
    • Statistical analyses of land–atmosphere feedbacks and their possible pitfalls
    • &
    • Orlowsky, B. & S.I. Seneviratne. 2010. Statistical analyses of land–atmosphere feedbacks and their possible pitfalls. J. Clim. 23: 3918–3932.
    • (2010) J. Clim. , vol.23 , pp. 3918-3932
    • Orlowsky, B.1    Seneviratne, S.I.2
  • 46
    • 85019587572 scopus 로고    scopus 로고
    • A non-linear Granger-causality framework to investigate climate—vegetation dynamics
    • Papagiannopoulou, C. et al. 2017. A non-linear Granger-causality framework to investigate climate—vegetation dynamics. Geosci. Model Dev. 10: 1945–1960.
    • (2017) Geosci. Model Dev. , vol.10 , pp. 1945-1960
    • Papagiannopoulou, C.1
  • 47
    • 84963623629 scopus 로고    scopus 로고
    • Confronting weather and climate models with observational data from soil moisture networks over the United States
    • Dirmeyer, P.A. et al. 2016. Confronting weather and climate models with observational data from soil moisture networks over the United States. J. Hydrometeorol. 17: 1049–1067.
    • (2016) J. Hydrometeorol. , vol.17 , pp. 1049-1067
    • Dirmeyer, P.A.1
  • 48
    • 85042657580 scopus 로고    scopus 로고
    • Verification of land–atmosphere coupling in forecast models, reanalyses and land surface models using flux site observations
    • Dirmeyer, P.A. et al. 2018. Verification of land–atmosphere coupling in forecast models, reanalyses and land surface models using flux site observations. J. Hydrometeorol. 19: 375–392.
    • (2018) J. Hydrometeorol. , vol.19 , pp. 375-392
    • Dirmeyer, P.A.1
  • 49
    • 85042676394 scopus 로고    scopus 로고
    • Land–atmosphere interactions: the LoCo perspective
    • Santanello, J.A. et al. 2017. Land–atmosphere interactions: the LoCo perspective. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/bams-d-17-0001.1.
    • (2017) Bull. Am. Meteorol. Soc.
    • Santanello, J.A.1
  • 50
    • 84994845953 scopus 로고    scopus 로고
    • Oppressive heat events in Illinois related to antecedent wet soils
    • &
    • Ford, T.W. & J.T. Schoof. 2016. Oppressive heat events in Illinois related to antecedent wet soils. J. Hydrometeorol. 17: 2713–2726.
    • (2016) J. Hydrometeorol. , vol.17 , pp. 2713-2726
    • Ford, T.W.1    Schoof, J.T.2
  • 51
    • 84897974926 scopus 로고    scopus 로고
    • The impact of observed vegetation changes on land–atmosphere feedbacks during drought
    • &
    • Meng, X.H., J.P. Evans & M.F. McCabe. 2014. The impact of observed vegetation changes on land–atmosphere feedbacks during drought. J. Hydrometeorol. 15: 759–776.
    • (2014) J. Hydrometeorol. , vol.15 , pp. 759-776
    • Meng, X.H.1    Evans, J.P.2    McCabe, M.F.3
  • 52
    • 84958729356 scopus 로고    scopus 로고
    • Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: insights from two contrasting extreme events
    • Sun, Y. et al. 2015. Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: insights from two contrasting extreme events. J. Geophys. Res. Biogeosci. 120: 2427–2440.
    • (2015) J. Geophys. Res. Biogeosci. , vol.120 , pp. 2427-2440
    • Sun, Y.1
  • 53
    • 84957790817 scopus 로고
    • Natural evaporation from open water, bare soil and grass
    • Penman, H.L. 1948. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Ser. A 193: 120–145.
    • (1948) Proc. R. Soc. Lond. Ser. A , vol.193 , pp. 120-145
    • Penman, H.L.1
  • 54
    • 0001324598 scopus 로고
    • Rainfall interception
    • Horton, R.E. 1919. Rainfall interception. Mon. Weather Rev. 47: 603–623.
    • (1919) Mon. Weather Rev. , vol.47 , pp. 603-623
    • Horton, R.E.1
  • 55
    • 84901925705 scopus 로고    scopus 로고
    • Fifty years since Monteith's 1965 seminal paper: the emergence of global ecohydrology
    • &
    • Dolman, A.J., D.G. Miralles & R.A.M. de Jeu. 2014. Fifty years since Monteith's 1965 seminal paper: the emergence of global ecohydrology. Ecohydrology 7: 897–902.
    • (2014) Ecohydrology , vol.7 , pp. 897-902
    • Dolman, A.J.1    Miralles, D.G.2    de Jeu, R.A.M.3
  • 56
    • 84861654835 scopus 로고    scopus 로고
    • A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability
    • &
    • Wang, K. & R.E. Dickinson. 2012. A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability. Rev. Geophys. 50. https://doi.org/10.1029/2011rg000373.
    • (2012) Rev. Geophys. , vol.50
    • Wang, K.1    Dickinson, R.E.2
  • 57
    • 33748660216 scopus 로고    scopus 로고
    • Land–atmosphere coupling and climate change in Europe
    • &
    • Seneviratne, S.I., D. Luthi, M. Litschi & C. Schar. 2006. Land–atmosphere coupling and climate change in Europe. Nature 443: 205–209.
    • (2006) Nature , vol.443 , pp. 205-209
    • Seneviratne, S.I.1    Luthi, D.2    Litschi, M.3    Schar, C.4
  • 58
    • 77951910827 scopus 로고    scopus 로고
    • The Earth radiation balance as driver of the global hydrological cycle
    • &
    • Wild, M. & B. Liepert. 2010. The Earth radiation balance as driver of the global hydrological cycle. Environ. Res. Lett. 5: 025203.
    • (2010) Environ. Res. Lett. , vol.5 , pp. 025203
    • Wild, M.1    Liepert, B.2
  • 59
    • 84875774745 scopus 로고    scopus 로고
    • Increase in the range between wet and dry season precipitation
    • Chou, C. et al. 2013. Increase in the range between wet and dry season precipitation. Nat. Geosci. 6: 263–267.
    • (2013) Nat. Geosci. , vol.6 , pp. 263-267
    • Chou, C.1
  • 60
    • 0000561742 scopus 로고
    • The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field
    • Jarvis, P. 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. Lond. B Biol. Sci. 273: 593–610.
    • (1976) Philos. Trans. R. Soc. Lond. B Biol. Sci. , vol.273 , pp. 593-610
    • Jarvis, P.1
  • 61
    • 0013833806 scopus 로고
    • Evaporation and environment
    • Monteith, J.L. 1965. Evaporation and environment. Symp. Soc. Exp. Biol. 19: 205–234.
    • (1965) Symp. Soc. Exp. Biol. , vol.19 , pp. 205-234
    • Monteith, J.L.1
  • 62
    • 84896853602 scopus 로고    scopus 로고
    • Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration
    • Douville, H., A. Ribes, B. Decharme, et al. 2012. Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration. Nat. Clim. Change 2: 1–4.
    • (2012) Nat. Clim. Change , vol.2 , pp. 1-4
    • Douville, H.1    Ribes, A.2    Decharme, B.3
  • 63
    • 84869045028 scopus 로고    scopus 로고
    • Little change in global drought over the past 60 years
    • &
    • Sheffield, J., E.F. Wood & M.L. Roderick. 2012. Little change in global drought over the past 60 years. Nature 491: 435–438.
    • (2012) Nature , vol.491 , pp. 435-438
    • Sheffield, J.1    Wood, E.F.2    Roderick, M.L.3
  • 64
    • 0001633245 scopus 로고    scopus 로고
    • FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities
    • Baldocchi, D. et al. 2001. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82: 2415–2434.
    • (2001) Bull. Am. Meteorol. Soc. , vol.82 , pp. 2415-2434
    • Baldocchi, D.1
  • 65
    • 59749088975 scopus 로고    scopus 로고
    • Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data
    • &
    • Kalma, J.D., T.R. McVicar & M.F. McCabe. 2008. Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data. Surv. Geophys. 29: 421–469.
    • (2008) Surv. Geophys. , vol.29 , pp. 421-469
    • Kalma, J.D.1    McVicar, T.R.2    McCabe, M.F.3
  • 66
    • 79551691989 scopus 로고    scopus 로고
    • Global land-surface evaporation estimated from satellite-based observations
    • Miralles, D.G. et al. 2011. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15: 453–469.
    • (2011) Hydrol. Earth Syst. Sci. , vol.15 , pp. 453-469
    • Miralles, D.G.1
  • 67
    • 84885095366 scopus 로고    scopus 로고
    • Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis
    • Mueller, B. et al. 2013. Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrol. Earth Syst. Sci. 17: 3707–3720.
    • (2013) Hydrol. Earth Syst. Sci. , vol.17 , pp. 3707-3720
    • Mueller, B.1
  • 68
    • 84975687686 scopus 로고    scopus 로고
    • The WACMOS-ET project—part 2: evaluation of global land evaporation data sets
    • Miralles, D. et al. 2016. The WACMOS-ET project—part 2: evaluation of global land evaporation data sets. Hydrol. Earth Syst. Sci. 20: 823–842.
    • (2016) Hydrol. Earth Syst. Sci. , vol.20 , pp. 823-842
    • Miralles, D.1
  • 69
    • 79957615912 scopus 로고    scopus 로고
    • Improvements to a MODIS global terrestrial evapotranspiration algorithm
    • &
    • Mu, Q., M. Zhao & S.W. Running. 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115: 1781–1800.
    • (2011) Remote Sens. Environ. , vol.115 , pp. 1781-1800
    • Mu, Q.1    Zhao, M.2    Running, S.W.3
  • 70
    • 39749092576 scopus 로고    scopus 로고
    • Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites
    • &
    • Fisher, J.B., K.P. Tu & D.D. Baldocchi. 2008. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 112: 901–919.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 901-919
    • Fisher, J.B.1    Tu, K.P.2    Baldocchi, D.D.3
  • 71
    • 0036130714 scopus 로고    scopus 로고
    • The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes
    • Su, Z. 2002. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 6: 85–99.
    • (2002) Hydrol. Earth Syst. Sci. , vol.6 , pp. 85-99
    • Su, Z.1
  • 72
    • 78049234152 scopus 로고    scopus 로고
    • Recent decline in the global land evapotranspiration trend due to limited moisture supply
    • Jung, M. et al. 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467: 951–954.
    • (2010) Nature , vol.467 , pp. 951-954
    • Jung, M.1
  • 73
    • 84939985700 scopus 로고    scopus 로고
    • The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models
    • Wild, M. et al. 2014. The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Clim. Dyn. 44: 3393–3429.
    • (2014) Clim. Dyn. , vol.44 , pp. 3393-3429
    • Wild, M.1
  • 74
    • 84956694930 scopus 로고    scopus 로고
    • The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data
    • McCabe, M.F. et al. 2016. The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data. Geosci. Model Dev. 9: 283–305.
    • (2016) Geosci. Model Dev. , vol.9 , pp. 283-305
    • McCabe, M.F.1
  • 75
    • 84893465107 scopus 로고    scopus 로고
    • Transpiration in the global water cycle
    • &
    • Schlesinger, W.H. & S. Jasechko. 2014. Transpiration in the global water cycle. Agric. For. Meteorol. 189–190: 115–117.
    • (2014) Agric. For. Meteorol. , vol.189-190 , pp. 115-117
    • Schlesinger, W.H.1    Jasechko, S.2
  • 76
    • 84876284482 scopus 로고    scopus 로고
    • Terrestrial water fluxes dominated by transpiration
    • Jasechko, S. et al. 2013. Terrestrial water fluxes dominated by transpiration. Nature 496: 347–350.
    • (2013) Nature , vol.496 , pp. 347-350
    • Jasechko, S.1
  • 77
    • 84951805429 scopus 로고    scopus 로고
    • Do land surface models need to include differential plant species responses to drought? Examining model predictions across a latitudinal gradient in Europe
    • De Kauwe, M.G. et al. 2015. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a latitudinal gradient in Europe. Biogeosciences 12: 7503–7518.
    • (2015) Biogeosciences , vol.12 , pp. 7503-7518
    • De Kauwe, M.G.1
  • 78
    • 84870463035 scopus 로고    scopus 로고
    • US temperature and drought: recent anomalies and trends
    • Karl, T.R., et al. 2012. US temperature and drought: recent anomalies and trends. EOS 93: 473–474.
    • (2012) EOS , vol.93 , pp. 473-474
    • Karl, T.R.1
  • 79
    • 84879986437 scopus 로고    scopus 로고
    • Evapotranspiration amplifies European summer drought
    • Teuling, A.J. et al. 2013. Evapotranspiration amplifies European summer drought. Geophys. Res. Lett. 40: 2071–2075.
    • (2013) Geophys. Res. Lett. , vol.40 , pp. 2071-2075
    • Teuling, A.J.1
  • 80
    • 0000036909 scopus 로고
    • A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions in
    • &, I. Biggins, Ed., Martinus Nijhoff
    • Ball, J.T., I.E. Woodrow & J.A. Berry. 1987. A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions in Progress in Photosynthesis Research. I. Biggins, Ed.: 221–224. Martinus Nijhoff.
    • (1987) Progress in Photosynthesis Research , pp. 221-224
    • Ball, J.T.1    Woodrow, I.E.2    Berry, J.A.3
  • 81
    • 84884418196 scopus 로고    scopus 로고
    • Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought
    • Powell, T.L. et al. 2013. Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought. New Phytol. 200: 350–365.
    • (2013) New Phytol , vol.200 , pp. 350-365
    • Powell, T.L.1
  • 82
    • 84895995612 scopus 로고    scopus 로고
    • Modeling plant transpiration under limited soil water: comparison of different plant and soil hydraulic parameterizations and preliminary implications for their use in land surface models
    • &
    • Verhoef, A. & G. Egea. 2014. Modeling plant transpiration under limited soil water: comparison of different plant and soil hydraulic parameterizations and preliminary implications for their use in land surface models. Agric. For. Meteorol. 191: 22–32.
    • (2014) Agric. For. Meteorol. , vol.191 , pp. 22-32
    • Verhoef, A.1    Egea, G.2
  • 83
    • 84949035155 scopus 로고    scopus 로고
    • Plant water-stress parameterization determines the strength of land–atmosphere coupling
    • &
    • Combe, M., J.V.G. de Arellano, H.G. Ouwersloot & W. Peters. 2016. Plant water-stress parameterization determines the strength of land–atmosphere coupling. Agric. For. Meteorol. 217: 61–73.
    • (2016) Agric. For. Meteorol. , vol.217 , pp. 61-73
    • Combe, M.1    de Arellano, J.V.G.2    Ouwersloot, H.G.3    Peters, W.4
  • 85
    • 84992623476 scopus 로고    scopus 로고
    • The increasing importance of atmospheric demand for ecosystem water and carbon fluxes
    • Novick, K.A. et al. 2016. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6: 1023–1027.
    • (2016) Nat. Clim. Change , vol.6 , pp. 1023-1027
    • Novick, K.A.1
  • 86
    • 85016981584 scopus 로고    scopus 로고
    • Closing the scale gap between land surface parameterizations and GCMs with a new scheme, SiB3-Bins
    • Baker, I.T. et al. 2017. Closing the scale gap between land surface parameterizations and GCMs with a new scheme, SiB3-Bins. J. Adv. Model. Earth Syst. 9: 691–711.
    • (2017) J. Adv. Model. Earth Syst. , vol.9 , pp. 691-711
    • Baker, I.T.1
  • 87
    • 0036700695 scopus 로고    scopus 로고
    • The drought monitor
    • Svoboda, M. et al. 2002. The drought monitor. Bull. Am. Meteorol. Soc. 83: 1181–1190.
    • (2002) Bull. Am. Meteorol. Soc. , vol.83 , pp. 1181-1190
    • Svoboda, M.1
  • 88
    • 85019385091 scopus 로고    scopus 로고
    • GLEAM v3: satellite-based land evaporation and root-zone soil moisture
    • Martens, B. et al. 2017. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10: 1903–1925.
    • (2017) Geosci. Model Dev. , vol.10 , pp. 1903-1925
    • Martens, B.1
  • 89
    • 85016936583 scopus 로고    scopus 로고
    • Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation
    • &
    • Konings, A.G., A.P. Williams & P. Gentine. 2017. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nat. Geosci. 10: 284–288.
    • (2017) Nat. Geosci. , vol.10 , pp. 284-288
    • Konings, A.G.1    Williams, A.P.2    Gentine, P.3
  • 90
    • 43449111570 scopus 로고    scopus 로고
    • Transpiration and hydraulic strategies in a pinon–juniper woodland
    • West, A.G., K.R. Hultine, J.S. Sperry, et al. 2008. Transpiration and hydraulic strategies in a pinon–juniper woodland. Ecol. Appl. 18: 911–927.
    • (2008) Ecol. Appl. , vol.18 , pp. 911-927
    • West, A.G.1    Hultine, K.R.2    Sperry, J.S.3
  • 91
    • 84885438410 scopus 로고    scopus 로고
    • Contrasting response of grassland versus forest carbon and water fluxes to spring drought in Switzerland
    • Wolf, S. et al. 2013. Contrasting response of grassland versus forest carbon and water fluxes to spring drought in Switzerland. Environ. Res. Lett. 8: 035007–035014.
    • (2013) Environ. Res. Lett. , vol.8 , pp. 035007-035014
    • Wolf, S.1
  • 92
    • 84961288527 scopus 로고    scopus 로고
    • Disentangling the response of forest and grassland energy exchange to heatwaves under idealized land–atmosphere coupling
    • &
    • van Heerwaarden, C.C. & A.J. Teuling. 2014. Disentangling the response of forest and grassland energy exchange to heatwaves under idealized land–atmosphere coupling. Biogeosciences 11: 6159–6171.
    • (2014) Biogeosciences , vol.11 , pp. 6159-6171
    • van Heerwaarden, C.C.1    Teuling, A.J.2
  • 93
    • 84990187877 scopus 로고    scopus 로고
    • High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil
    • Sulman, B.N. et al. 2016. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil. Geophys. Res. Lett. 43: 9686–9695.
    • (2016) Geophys. Res. Lett. , vol.43 , pp. 9686-9695
    • Sulman, B.N.1
  • 94
    • 33646473105 scopus 로고    scopus 로고
    • Europe's 2003 heat wave: a satellite view of impacts and land–atmosphere feedbacks
    • &
    • Zaitchik, B.F., A.K. Macalady, L.R. Bonneau & R.B. Smith. 2006. Europe's 2003 heat wave: a satellite view of impacts and land–atmosphere feedbacks. Int. J. Clim. 26: 743–769.
    • (2006) Int. J. Clim. , vol.26 , pp. 743-769
    • Zaitchik, B.F.1    Macalady, A.K.2    Bonneau, L.R.3    Smith, R.B.4
  • 95
    • 84871354967 scopus 로고    scopus 로고
    • Consequences of widespread tree mortality triggered by drought and temperature stress
    • &
    • Anderegg, W.R.L., J.M. Kane & L.D.L. Anderegg. 2012. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Change 3: 30–36.
    • (2012) Nat. Clim. Change , vol.3 , pp. 30-36
    • Anderegg, W.R.L.1    Kane, J.M.2    Anderegg, L.D.L.3
  • 96
    • 78650750981 scopus 로고    scopus 로고
    • Forest responses to increasing aridity and warmth in the southwestern United States
    • Williams, A.P. et al. 2010. Forest responses to increasing aridity and warmth in the southwestern United States. Proc. Natl. Acad. Sci. USA 107: 21289–21294.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 21289-21294
    • Williams, A.P.1
  • 97
    • 1642325242 scopus 로고    scopus 로고
    • Influence of soil moisture on boundary layer cloud development
    • &
    • Ek, M.B. & A.A.M. Holtslag. 2004. Influence of soil moisture on boundary layer cloud development. J. Hydrometeorol. 5: 86–99.
    • (2004) J. Hydrometeorol. , vol.5 , pp. 86-99
    • Ek, M.B.1    Holtslag, A.A.M.2
  • 98
    • 0029770489 scopus 로고    scopus 로고
    • Simulation of surface fluxes and boundary layer development over the pine forest in HAPEX-MOBILHY
    • &
    • Holtslag, A.A.M. & M. Ek. 1996. Simulation of surface fluxes and boundary layer development over the pine forest in HAPEX-MOBILHY. J. Appl. Meteorol. 35: 202–213.
    • (1996) J. Appl. Meteorol. , vol.35 , pp. 202-213
    • Holtslag, A.A.M.1    Ek, M.2
  • 99
    • 0030449209 scopus 로고    scopus 로고
    • The land surface–atmosphere interaction: a review based on observational and global modeling perspectives
    • Betts, A.K., J.H. Ball, A. Beljaars., et al. 1996. The land surface–atmosphere interaction: a review based on observational and global modeling perspectives. J. Geophys. Res. 101: 7209–7225.
    • (1996) J. Geophys. Res. , vol.101 , pp. 7209-7225
    • Betts, A.K.1    Ball, J.H.2    Beljaars, A.3
  • 101
    • 84977516968 scopus 로고    scopus 로고
    • The influence of soil moisture deficits on Australian heatwaves
    • &
    • Herold, N., J. Kala & L.V. Alexander. 2016. The influence of soil moisture deficits on Australian heatwaves. Environ. Res. Lett. 11: 1–8.
    • (2016) Environ. Res. Lett. , vol.11 , pp. 1-8
    • Herold, N.1    Kala, J.2    Alexander, L.V.3
  • 102
    • 84947575094 scopus 로고    scopus 로고
    • The heated condensation framework. Part I: description and southern Great Plains case study
    • &
    • Tawfik, A.B., P.A. Dirmeyer & J.A. Santanello. 2015. The heated condensation framework. Part I: description and southern Great Plains case study. J. Hydrometeorol. 16: 1929–1945.
    • (2015) J. Hydrometeorol. , vol.16 , pp. 1929-1945
    • Tawfik, A.B.1    Dirmeyer, P.A.2    Santanello, J.A.3
  • 103
    • 79960012959 scopus 로고    scopus 로고
    • Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation
    • &
    • Findell, K.L., P. Gentine, B.R. Lintner & C. Kerr. 2011. Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci. 4: 434–439.
    • (2011) Nat. Geosci. , vol.4 , pp. 434-439
    • Findell, K.L.1    Gentine, P.2    Lintner, B.R.3    Kerr, C.4
  • 104
    • 4043154304 scopus 로고    scopus 로고
    • More intense, more frequent, and longer lasting heat waves in the 21st century
    • &
    • Meehl, G.A. & C. Tebaldi. 2004. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305: 994–997.
    • (2004) Science , vol.305 , pp. 994-997
    • Meehl, G.A.1    Tebaldi, C.2
  • 105
    • 85032833345 scopus 로고    scopus 로고
    • Understanding, modeling and predicting weather and climate extremes: challenges and opportunities
    • Sillmann, J. et al. 2017. Understanding, modeling and predicting weather and climate extremes: challenges and opportunities. Weather Clim. Extrem. 18: 65–74.
    • (2017) Weather Clim. Extrem. , vol.18 , pp. 65-74
    • Sillmann, J.1
  • 106
    • 85023196456 scopus 로고    scopus 로고
    • Effect of soil moisture on diurnal convection and precipitation in large-eddy simulations
    • &
    • Cioni, G. & C. Hohenegger. 2017. Effect of soil moisture on diurnal convection and precipitation in large-eddy simulations. J. Hydrometeorol. 18: 1885–1903.
    • (2017) J. Hydrometeorol. , vol.18 , pp. 1885-1903
    • Cioni, G.1    Hohenegger, C.2
  • 107
    • 84886727586 scopus 로고    scopus 로고
    • The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project
    • Vautard, R. et al. 2013. The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim. Dyn. 41: 2555–2575.
    • (2013) Clim. Dyn. , vol.41 , pp. 2555-2575
    • Vautard, R.1
  • 108
    • 34249867038 scopus 로고    scopus 로고
    • Soil moisture–atmosphere interactions during the 2003 European summer heat wave
    • Fischer, E.M., S.I. Seneviratne, P.L. Vidale, et al. 2007. Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Clim. 20: 5081–5099.
    • (2007) J. Clim. , vol.20 , pp. 5081-5099
    • Fischer, E.M.1    Seneviratne, S.I.2    Vidale, P.L.3
  • 109
    • 85003510883 scopus 로고    scopus 로고
    • Studying the influence of groundwater representations on land surface–atmosphere feedbacks during the European heat wave in 2003
    • Keune, J. et al. 2016. Studying the influence of groundwater representations on land surface–atmosphere feedbacks during the European heat wave in 2003. J. Geophys. Res. Atmos. 121: 13301–13325.
    • (2016) J. Geophys. Res. Atmos. , vol.121 , pp. 13301-13325
    • Keune, J.1
  • 110
    • 84885935998 scopus 로고    scopus 로고
    • Soil moisture–temperature feedbacks at meso-scale during summer heat waves over Western Europe
    • Stéfanon, M., P. Drobinski, F. D'Andrea, et al. 2013. Soil moisture–temperature feedbacks at meso-scale during summer heat waves over Western Europe. Clim. Dyn. 42: 1309–1324.
    • (2013) Clim. Dyn. , vol.42 , pp. 1309-1324
    • Stéfanon, M.1    Drobinski, P.2    D'Andrea, F.3
  • 112
    • 84961753640 scopus 로고    scopus 로고
    • Impact of the representation of stomatal conductance on model projections of heatwave intensity
    • Kala, J. et al. 2016. Impact of the representation of stomatal conductance on model projections of heatwave intensity. Sci. Rep. 6: 23418.
    • (2016) Sci. Rep. , vol.6 , pp. 23418
    • Kala, J.1
  • 113
    • 84977962691 scopus 로고    scopus 로고
    • Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia
    • &
    • Hauser, M., R. Orth & S.I. Seneviratne. 2016. Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia. Geophys. Res. Lett. 43: 2819–2826.
    • (2016) Geophys. Res. Lett. , vol.43 , pp. 2819-2826
    • Hauser, M.1    Orth, R.2    Seneviratne, S.I.3
  • 114
    • 85044237470 scopus 로고    scopus 로고
    • Future equivalent of 2010 Russian heatwave intensified by weakening soil moisture constraints
    • Rasmijn, L.M. et al. 2018. Future equivalent of 2010 Russian heatwave intensified by weakening soil moisture constraints. Nat. Clim. Change 8: 381–385.
    • (2018) Nat. Clim. Change , vol.8 , pp. 381-385
    • Rasmijn, L.M.1
  • 115
    • 85012092952 scopus 로고    scopus 로고
    • Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture–temperature feedbacks
    • Vogel, M.M. et al. 2017. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture–temperature feedbacks. Geophys. Res. Lett. 44: 1511–1519.
    • (2017) Geophys. Res. Lett. , vol.44 , pp. 1511-1519
    • Vogel, M.M.1
  • 116
    • 84956706313 scopus 로고    scopus 로고
    • 2 emissions based on regional and impact-related climate targets
    • 2 emissions based on regional and impact-related climate targets. Nature 529: 477–483.
    • (2016) Nature , vol.529 , pp. 477-483
    • Seneviratne, S.I.1    Donat, M.G.2    Pitman, A.J.3
  • 117
    • 1542280010 scopus 로고    scopus 로고
    • The role of increasing temperature variability in European summer heatwaves
    • Schar, C. et al. 2004. The role of increasing temperature variability in European summer heatwaves. Nature 427: 332–336.
    • (2004) Nature , vol.427 , pp. 332-336
    • Schar, C.1
  • 118
    • 79953814612 scopus 로고    scopus 로고
    • The hot summer of 2010: redrawing the temperature record map of Europe
    • Barriopedro, D., E.M. Fischer, J. Luterbacher, et al. 2011. The hot summer of 2010: redrawing the temperature record map of Europe. Science 332: 220–224.
    • (2011) Science , vol.332 , pp. 220-224
    • Barriopedro, D.1    Fischer, E.M.2    Luterbacher, J.3
  • 121
    • 79952981311 scopus 로고    scopus 로고
    • Was there a basis for anticipating the 2010 Russian heat wave
    • Dole, R. et al. 2011. Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett. 38: L06702.
    • (2011) Geophys. Res. Lett. , vol.38 , pp. L06702
    • Dole, R.1
  • 123
    • 70849097380 scopus 로고    scopus 로고
    • The soil moisture–precipitation feedback in simulations with explicit and parameterized convection
    • &
    • Hohenegger, C., P. Brockhaus, C.S. Bretherton & C. Schär. 2009. The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Clim. 22: 5003–5020.
    • (2009) J. Clim. , vol.22 , pp. 5003-5020
    • Hohenegger, C.1    Brockhaus, P.2    Bretherton, C.S.3    Schär, C.4
  • 124
    • 85030232005 scopus 로고    scopus 로고
    • Influence of superparameterization and a higher-order turbulence closure on rainfall bias over Amazonia in Community Atmosphere Model version 5
    • Zhang, K. et al. 2017. Influence of superparameterization and a higher-order turbulence closure on rainfall bias over Amazonia in Community Atmosphere Model version 5. J. Geophys. Res. Atmos. 122: 9879–9902.
    • (2017) J. Geophys. Res. Atmos. , vol.122 , pp. 9879-9902
    • Zhang, K.1
  • 125
    • 80051954273 scopus 로고    scopus 로고
    • The terrestrial segment of soil moisture–climate coupling
    • Dirmeyer, P.A. 2011. The terrestrial segment of soil moisture–climate coupling. Geophys. Res. Lett. 38. https://doi.org/10.1029/2011gl048268.
    • (2011) Geophys. Res. Lett. , vol.38
    • Dirmeyer, P.A.1
  • 126
    • 84928615048 scopus 로고    scopus 로고
    • Tree mortality predicted from drought-induced vascular damage
    • Anderegg, W.R.L. et al. 2015. Tree mortality predicted from drought-induced vascular damage. Nat. Geosci. 8: 367–371.
    • (2015) Nat. Geosci. , vol.8 , pp. 367-371
    • Anderegg, W.R.L.1
  • 127
    • 84880508927 scopus 로고    scopus 로고
    • Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise
    • Keenan, T.F. et al. 2013. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499: 324–327.
    • (2013) Nature , vol.499 , pp. 324-327
    • Keenan, T.F.1
  • 128
    • 85026386650 scopus 로고    scopus 로고
    • Recent increases in terrestrial carbon uptake at little cost to the water cycle
    • Cheng, L. et al. 2017. Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nat. Commun. 8: 110.
    • (2017) Nat. Commun. , vol.8 , pp. 110
    • Cheng, L.1
  • 129
    • 84988014658 scopus 로고    scopus 로고
    • 2 across spatial and temporal scales at the Duke Forest FACE experiment
    • 2 across spatial and temporal scales at the Duke Forest FACE experiment. Agric. For. Meteorol. 232: 367–383.
    • (2017) Agric. For. Meteorol. , vol.232 , pp. 367-383
    • Paschalis, A.1    Katul, G.G.2    Fatichi, S.3
  • 130
    • 85031096214 scopus 로고    scopus 로고
    • Plant water potential improves prediction of empirical stomatal models
    • Anderegg, W.R.L. et al. 2017. Plant water potential improves prediction of empirical stomatal models. PLoS One 12: e0185481.
    • (2017) PLoS One , vol.12
    • Anderegg, W.R.L.1
  • 131
    • 85027917220 scopus 로고    scopus 로고
    • Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests
    • Xu, X., D. Medvigy, J.S. Powers, et al. 2016. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests. New Phytol. 212: 80–95.
    • (2016) New Phytol , vol.212 , pp. 80-95
    • Xu, X.1    Medvigy, D.2    Powers, J.S.3
  • 132
    • 85017522729 scopus 로고    scopus 로고
    • The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources
    • Fisher, J.B. et al. 2017. The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 53: 2618–2626.
    • (2017) Water Resour. Res. , vol.53 , pp. 2618-2626
    • Fisher, J.B.1
  • 133
    • 85019592216 scopus 로고    scopus 로고
    • The future of Earth observation in hydrology
    • McCabe, M.F. et al. 2017. The future of Earth observation in hydrology. Hydrol. Earth Syst. Sci. 21: 3879–3914.
    • (2017) Hydrol. Earth Syst. Sci. , vol.21 , pp. 3879-3914
    • McCabe, M.F.1
  • 134
    • 77954683384 scopus 로고    scopus 로고
    • On the origin of continental precipitation
    • Gimeno, L., A. Drumond, R. Nieto, et al. 2010. On the origin of continental precipitation. Geophys. Res. Lett. 37. https://doi.org/10.1029/2010GL043712.
    • (2010) Geophys. Res. Lett. , vol.37
    • Gimeno, L.1    Drumond, A.2    Nieto, R.3
  • 137
    • 84862635464 scopus 로고    scopus 로고
    • Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions
    • Keys, P.W. et al. 2012. Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions. Biogeosciences 9: 733–746.
    • (2012) Biogeosciences , vol.9 , pp. 733-746
    • Keys, P.W.1
  • 138
    • 85008163197 scopus 로고    scopus 로고
    • Contribution of water-limited ecoregions to their own supply of rainfall
    • Miralles, D.G. et al. 2016. Contribution of water-limited ecoregions to their own supply of rainfall. Environ. Res. Lett. 11: 1–12.
    • (2016) Environ. Res. Lett. , vol.11 , pp. 1-12
    • Miralles, D.G.1
  • 139
    • 84900628130 scopus 로고    scopus 로고
    • Oceanic sources of continental precipitation
    • Gimeno, L. 2014. Oceanic sources of continental precipitation. Water Resour. Res. 50: 3647–3649.
    • (2014) Water Resour. Res. , vol.50 , pp. 3647-3649
    • Gimeno, L.1
  • 140
    • 84894079037 scopus 로고    scopus 로고
    • Comparing evaporative sources of terrestrial precipitation and their extremes in MERRA using relative entropy
    • &
    • Dirmeyer, P.A., J.F. Wei, M.G. Bosilovich & D.M. Mocko. 2014. Comparing evaporative sources of terrestrial precipitation and their extremes in MERRA using relative entropy. J. Hydrometeorol. 15: 102–116.
    • (2014) J. Hydrometeorol. , vol.15 , pp. 102-116
    • Dirmeyer, P.A.1    Wei, J.F.2    Bosilovich, M.G.3    Mocko, D.M.4
  • 141
    • 58749092637 scopus 로고    scopus 로고
    • Import and export of atmospheric water vapor between nations
    • &
    • Dirmeyer, P.A., K.L. Brubaker & T. DelSole. 2009. Import and export of atmospheric water vapor between nations. J. Hydrol. 365: 11–22.
    • (2009) J. Hydrol. , vol.365 , pp. 11-22
    • Dirmeyer, P.A.1    Brubaker, K.L.2    DelSole, T.3
  • 142
    • 80052631692 scopus 로고    scopus 로고
    • Atmospheric moisture transports from ocean to land and global energy flows in reanalyses
    • &
    • Trenberth, K.E., J.T. Fasullo & J. Mackaro. 2011. Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Clim. 24: 4907–4924.
    • (2011) J. Clim. , vol.24 , pp. 4907-4924
    • Trenberth, K.E.1    Fasullo, J.T.2    Mackaro, J.3
  • 143
    • 85025812108 scopus 로고    scopus 로고
    • Hydroclimatic variability and predictability: a survey of recent research
    • Koster, R.D. et al. 2017. Hydroclimatic variability and predictability: a survey of recent research. Hydrol. Earth Syst. Sci. 21: 3777–3798.
    • (2017) Hydrol. Earth Syst. Sci. , vol.21 , pp. 3777-3798
    • Koster, R.D.1
  • 144
    • 84919754228 scopus 로고    scopus 로고
    • A mechanism for land–atmosphere feedback involving planetary wave structures
    • &
    • Koster, R.D., Y. Chang & S.D. Schubert. 2014. A mechanism for land–atmosphere feedback involving planetary wave structures. J. Clim. 27: 9290–9301.
    • (2014) J. Clim. , vol.27 , pp. 9290-9301
    • Koster, R.D.1    Chang, Y.2    Schubert, S.D.3
  • 145
    • 85034632864 scopus 로고    scopus 로고
    • &, ECMWF Newsletter., June 15, 2018.
    • Hersbach, H. & D. Dee. 2016. ERA5 reanalysis is in production. ECMWF Newsletter. 147. June 15, 2018. https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production.
    • (2016) ERA5 reanalysis is in production , pp. 147
    • Hersbach, H.1    Dee, D.2
  • 146
    • 79955446270 scopus 로고    scopus 로고
    • The ERA-Interim reanalysis: configuration and performance of the data assimilation system
    • Dee, D.P. et al. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteorol. Soc. 137: 553–597.
    • (2011) Quart. J. Roy. Meteorol. Soc. , vol.137 , pp. 553-597
    • Dee, D.P.1
  • 147
    • 85045522520 scopus 로고    scopus 로고
    • Climate extremes, land–climate feedbacks, and land-use forcing at 1.5°C
    • Seneviratne, S. et al. 2018. Climate extremes, land–climate feedbacks, and land-use forcing at 1.5°C. Philos. Trans. A Math. Phys. Eng. Sci. 376. https://doi.org/10.1098/rsta.2016.0450
    • (2018) Philos. Trans. A Math. Phys. Eng. Sci. , vol.376
    • Seneviratne, S.1
  • 148
    • 85014155832 scopus 로고    scopus 로고
    • Can climate-effective land management reduce regional warming
    • Hirsch, A.L., M. Wilhelm, E.L. Davin, et al. 2017. Can climate-effective land management reduce regional warming? J. Geophys. Res. Atmos. 122: 2269–2288.
    • (2017) J. Geophys. Res. Atmos. , vol.122 , pp. 2269-2288
    • Hirsch, A.L.1    Wilhelm, M.2    Davin, E.L.3
  • 149
    • 85013662880 scopus 로고    scopus 로고
    • Present-day irrigation mitigates heat extremes
    • Thiery, W. et al. 2017. Present-day irrigation mitigates heat extremes. J. Geophys. Res. Atmos. 122: 1403–1422.
    • (2017) J. Geophys. Res. Atmos. , vol.122 , pp. 1403-1422
    • Thiery, W.1
  • 150
    • 58349109050 scopus 로고    scopus 로고
    • Tackling regional climate change by leaf albedo bio-geoengineering
    • &
    • Ridgwell, A., J.S. Singarayer, A.M. Hetherington & P.J. Valdes. 2009. Tackling regional climate change by leaf albedo bio-geoengineering. Curr. Biol. 19: 146–150.
    • (2009) Curr. Biol. , vol.19 , pp. 146-150
    • Ridgwell, A.1    Singarayer, J.S.2    Hetherington, A.M.3    Valdes, P.J.4
  • 151
    • 84904012703 scopus 로고    scopus 로고
    • Preferential cooling of hot extremes from cropland albedo management
    • Davin, E.L., S.I. Seneviratne, P. Ciais, et al. 2014. Preferential cooling of hot extremes from cropland albedo management. Proc. Natl. Acad. Sci. USA 111: 9757–9761.
    • (2014) Proc. Natl. Acad. Sci. USA , vol.111 , pp. 9757-9761
    • Davin, E.L.1    Seneviratne, S.I.2    Ciais, P.3
  • 152
    • 85041109704 scopus 로고    scopus 로고
    • Land radiative management as contributor to regional-scale climate adaptation and mitigation
    • Seneviratne, S.I. et al. 2018. Land radiative management as contributor to regional-scale climate adaptation and mitigation. Nat. Geosci. 11: 88–96.
    • (2018) Nat. Geosci. , vol.11 , pp. 88-96
    • Seneviratne, S.I.1
  • 153
    • 33749671375 scopus 로고    scopus 로고
    • Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences
    • &
    • Bréda, N., R. Huc, A. Granier & E. Dreyer 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63: 625–644.
    • (2006) Ann. For. Sci. , vol.63 , pp. 625-644
    • Bréda, N.1    Huc, R.2    Granier, A.3    Dreyer, E.4
  • 154
    • 84893635823 scopus 로고    scopus 로고
    • Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements
    • Gatti, L.V. et al. 2014. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 506: 76–80.
    • (2014) Nature , vol.506 , pp. 76-80
    • Gatti, L.V.1
  • 155
    • 45849092625 scopus 로고    scopus 로고
    • Forests and climate change: forcings, feedbacks, and the climate benefits of forests
    • Bonan, G.B. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320: 1444–1449.
    • (2008) Science , vol.320 , pp. 1444-1449
    • Bonan, G.B.1
  • 156
    • 34547113768 scopus 로고    scopus 로고
    • A review of vegetation–atmosphere interactions and their influences on mesoscale phenomena
    • McPherson, R.A. 2016. A review of vegetation–atmosphere interactions and their influences on mesoscale phenomena. Prog. Phys. Geogr. 31: 261–285.
    • (2016) Prog. Phys. Geogr. , vol.31 , pp. 261-285
    • McPherson, R.A.1
  • 157
    • 80054725773 scopus 로고    scopus 로고
    • Land use change exacerbates tropical South American drought by sea surface temperature variability
    • &
    • Lee, J.-E., B.R. Lintner, C.K. Boyce & P.J. Lawrence. 2011. Land use change exacerbates tropical South American drought by sea surface temperature variability. Geophys. Res. Lett. 38. https://doi.org/10.1029/2011gl049066.
    • (2011) Geophys. Res. Lett. , vol.38
    • Lee, J.-E.1    Lintner, B.R.2    Boyce, C.K.3    Lawrence, P.J.4
  • 158
    • 84892473208 scopus 로고    scopus 로고
    • Drought and deforestation: has land cover change influenced recent precipitation extremes in the Amazon
    • Bagley, J.E., A.R. Desai, K.J. Harding, et al. 2014. Drought and deforestation: has land cover change influenced recent precipitation extremes in the Amazon? J. Clim. 27: 345–361.
    • (2014) J. Clim. , vol.27 , pp. 345-361
    • Bagley, J.E.1    Desai, A.R.2    Harding, K.J.3
  • 159
    • 0030368891 scopus 로고    scopus 로고
    • The influence of land surface properties on Sahel climate. Part II. Afforestation
    • &
    • Xue, Y. & J. Shukla. 1996. The influence of land surface properties on Sahel climate. Part II. Afforestation. J. Clim. 9: 3260–3275.
    • (1996) J. Clim. , vol.9 , pp. 3260-3275
    • Xue, Y.1    Shukla, J.2
  • 160
    • 0027795694 scopus 로고
    • The influence of land surface properties on Sahel climate. Part 1: desertification
    • &
    • Xue, Y. & J. Shukla. 1993. The influence of land surface properties on Sahel climate. Part 1: desertification. J. Am. Meteorol. Soc. 6: 2232–2245.
    • (1993) J. Am. Meteorol. Soc. , vol.6 , pp. 2232-2245
    • Xue, Y.1    Shukla, J.2
  • 161
    • 48749085514 scopus 로고    scopus 로고
    • The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly
    • &
    • Koch, K. & H.J. Ensikat 2008. The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron 39: 759–772.
    • (2008) Micron , vol.39 , pp. 759-772
    • Koch, K.1    Ensikat, H.J.2
  • 162
    • 84055199756 scopus 로고    scopus 로고
    • Agricultural greenhouse gas mitigation potential globally, in Europe and in the UK: what have we learnt in the last 20 years
    • Smith, P. 2012. Agricultural greenhouse gas mitigation potential globally, in Europe and in the UK: what have we learnt in the last 20 years? Global Change Biol. 18: 35–43.
    • (2012) Global Change Biol , vol.18 , pp. 35-43
    • Smith, P.1
  • 163
    • 0029662868 scopus 로고    scopus 로고
    • Analysis of feedback mechanisms in land–atmosphere interaction
    • &
    • Brubaker, K.L. & D. Entekhabi. 1996. Analysis of feedback mechanisms in land–atmosphere interaction. Water Resour. Res. 32: 1343–1357.
    • (1996) Water Resour. Res. , vol.32 , pp. 1343-1357
    • Brubaker, K.L.1    Entekhabi, D.2
  • 164
    • 0000367686 scopus 로고
    • Variability in large-scale water-balance with land surface atmosphere interaction
    • &
    • Entekhabi, D., I. Rodriguez-Iturbe & R.L. Bras. 1992. Variability in large-scale water-balance with land surface atmosphere interaction. J. Clim. 5: 798–813.
    • (1992) J. Clim. , vol.5 , pp. 798-813
    • Entekhabi, D.1    Rodriguez-Iturbe, I.2    Bras, R.L.3
  • 165
    • 0000283586 scopus 로고
    • Use of mean soil moisture tension to evaluate the effect of soil on crop yields
    • Taylor, S.A. 1952. Use of mean soil moisture tension to evaluate the effect of soil on crop yields. Soil Sci. 74: 217–226.
    • (1952) Soil Sci , vol.74 , pp. 217-226
    • Taylor, S.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.