-
1
-
-
0002178053
-
Bias reduction of maximum likelihood estimates
-
Firth D. Bias reduction of maximum likelihood estimates. Biometrika 1993; 80(1):27–38.
-
(1993)
Biometrika
, vol.80
, Issue.1
, pp. 27-38
-
-
Firth, D.1
-
2
-
-
0037199788
-
A solution to the problem of separation in logistic regression
-
Heinze G, Schemper M. A solution to the problem of separation in logistic regression. Statistics in Medicine 2002; 21(16):2409–2419.
-
(2002)
Statistics in Medicine
, vol.21
, Issue.16
, pp. 2409-2419
-
-
Heinze, G.1
Schemper, M.2
-
3
-
-
84942195422
-
Penalised logistic regression and dynamic prediction for discrete-time recurrent event data
-
Elgmati E, Fiaccone RL, Henderson R, Matthews JNS. Penalised logistic regression and dynamic prediction for discrete-time recurrent event data. Lifetime Data Analysis 2015; 21(4):542–560.
-
(2015)
Lifetime Data Analysis
, vol.21
, Issue.4
, pp. 542-560
-
-
Elgmati, E.1
Fiaccone, R.L.2
Henderson, R.3
Matthews, J.N.S.4
-
4
-
-
84941024439
-
Penalization, bias reduction, and default priors in logistic and related categorical and survival regressions
-
Greenland S, Mansournia MA. Penalization, bias reduction, and default priors in logistic and related categorical and survival regressions. Statistics in Medicine 2015; 34(23):3133–3143.
-
(2015)
Statistics in Medicine
, vol.34
, Issue.23
, pp. 3133-3143
-
-
Greenland, S.1
Mansournia, M.A.2
-
5
-
-
84865371361
-
A weakly informative default prior distribution for logistic and other regression models
-
Gelman A, Jakulin A, Pittau MG, Su Y-S. A weakly informative default prior distribution for logistic and other regression models. The Annals of Applied Statistics 2008; 2(4):1360–1383.
-
(2008)
The Annals of Applied Statistics
, vol.2
, Issue.4
, pp. 1360-1383
-
-
Gelman, A.1
Jakulin, A.2
Pittau, M.G.3
Su, Y.-S.4
-
6
-
-
4544259831
-
Logistic regression in rare events data
-
King G, Zeng L. Logistic regression in rare events data. Political Analysis 2001; 9(2):137–163.
-
(2001)
Political Analysis
, vol.9
, Issue.2
, pp. 137-163
-
-
King, G.1
Zeng, L.2
-
7
-
-
79961009495
-
Simpson's paradox from adding constants in contingency tables as an example of bayesian noncollapsibility
-
Greenland S. Simpson's paradox from adding constants in contingency tables as an example of bayesian noncollapsibility. The American Statistician 2010; 64(4):340–344.
-
(2010)
The American Statistician
, vol.64
, Issue.4
, pp. 340-344
-
-
Greenland, S.1
-
10
-
-
73849094087
-
Assessing the performance of prediction models: a framework for traditional and novel measures
-
Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, Pencina MJ, Kattan MW. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 2010; 21(1):128–138.
-
(2010)
Epidemiology
, vol.21
, Issue.1
, pp. 128-138
-
-
Steyerberg, E.W.1
Vickers, A.J.2
Cook, N.R.3
Gerds, T.4
Gonen, M.5
Obuchowski, N.6
Pencina, M.J.7
Kattan, M.W.8
-
11
-
-
85020587282
-
-
Technical Report FDM-Preprint 105, University of Freiburg,, Germany
-
Binder H, Sauerbrei W, Royston P. Multivariable model-building with continuous covariates: 1. Performance measures and simulation design, Technical Report FDM-Preprint 105, University of Freiburg, Germany, 2011.
-
(2011)
Multivariable model-building with continuous covariates: 1. Performance measures and simulation design
-
-
Binder, H.1
Sauerbrei, W.2
Royston, P.3
-
13
-
-
33845869707
-
-
Technical Report 2, Medical University of Vienna,, Austria
-
Heinze G, Ploner M. A SAS macro, S-PLUS library and R Package to perform logistic regression without convergence problems. Technical Report 2, Medical University of Vienna, Austria, 2004 http://tinyurl.com/fllogistfTR.
-
(2004)
A SAS macro, S-PLUS library and R Package to perform logistic regression without convergence problems
-
-
Heinze, G.1
Ploner, M.2
|