메뉴 건너뛰기




Volumn 36, Issue 14, 2017, Pages 2302-2317

Firth's logistic regression with rare events: accurate effect estimates and predictions?

Author keywords

bias reduction; data augmentation; Jeffreys prior; penalized likelihood; sparse data

Indexed keywords

ARTERY; EXPLANATORY VARIABLE; LOGISTIC REGRESSION ANALYSIS; MAXIMUM LIKELIHOOD METHOD; MINIMALLY INVASIVE CARDIAC SURGERY; PREDICTION; PROBABILITY; SIMULATION; ADVERSE DEVICE EFFECT; BIOSTATISTICS; COMPUTER SIMULATION; DEVICES; HEART SURGERY; HUMAN; MINIMALLY INVASIVE SURGERY; SAMPLE SIZE; STATISTICAL BIAS; STATISTICAL MODEL; STATISTICS AND NUMERICAL DATA; VASCULAR CLOSURE DEVICE;

EID: 85015204988     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.7273     Document Type: Article
Times cited : (225)

References (16)
  • 1
    • 0002178053 scopus 로고
    • Bias reduction of maximum likelihood estimates
    • Firth D. Bias reduction of maximum likelihood estimates. Biometrika 1993; 80(1):27–38.
    • (1993) Biometrika , vol.80 , Issue.1 , pp. 27-38
    • Firth, D.1
  • 2
    • 0037199788 scopus 로고    scopus 로고
    • A solution to the problem of separation in logistic regression
    • Heinze G, Schemper M. A solution to the problem of separation in logistic regression. Statistics in Medicine 2002; 21(16):2409–2419.
    • (2002) Statistics in Medicine , vol.21 , Issue.16 , pp. 2409-2419
    • Heinze, G.1    Schemper, M.2
  • 3
    • 84942195422 scopus 로고    scopus 로고
    • Penalised logistic regression and dynamic prediction for discrete-time recurrent event data
    • Elgmati E, Fiaccone RL, Henderson R, Matthews JNS. Penalised logistic regression and dynamic prediction for discrete-time recurrent event data. Lifetime Data Analysis 2015; 21(4):542–560.
    • (2015) Lifetime Data Analysis , vol.21 , Issue.4 , pp. 542-560
    • Elgmati, E.1    Fiaccone, R.L.2    Henderson, R.3    Matthews, J.N.S.4
  • 4
    • 84941024439 scopus 로고    scopus 로고
    • Penalization, bias reduction, and default priors in logistic and related categorical and survival regressions
    • Greenland S, Mansournia MA. Penalization, bias reduction, and default priors in logistic and related categorical and survival regressions. Statistics in Medicine 2015; 34(23):3133–3143.
    • (2015) Statistics in Medicine , vol.34 , Issue.23 , pp. 3133-3143
    • Greenland, S.1    Mansournia, M.A.2
  • 5
    • 84865371361 scopus 로고    scopus 로고
    • A weakly informative default prior distribution for logistic and other regression models
    • Gelman A, Jakulin A, Pittau MG, Su Y-S. A weakly informative default prior distribution for logistic and other regression models. The Annals of Applied Statistics 2008; 2(4):1360–1383.
    • (2008) The Annals of Applied Statistics , vol.2 , Issue.4 , pp. 1360-1383
    • Gelman, A.1    Jakulin, A.2    Pittau, M.G.3    Su, Y.-S.4
  • 6
    • 4544259831 scopus 로고    scopus 로고
    • Logistic regression in rare events data
    • King G, Zeng L. Logistic regression in rare events data. Political Analysis 2001; 9(2):137–163.
    • (2001) Political Analysis , vol.9 , Issue.2 , pp. 137-163
    • King, G.1    Zeng, L.2
  • 7
    • 79961009495 scopus 로고    scopus 로고
    • Simpson's paradox from adding constants in contingency tables as an example of bayesian noncollapsibility
    • Greenland S. Simpson's paradox from adding constants in contingency tables as an example of bayesian noncollapsibility. The American Statistician 2010; 64(4):340–344.
    • (2010) The American Statistician , vol.64 , Issue.4 , pp. 340-344
    • Greenland, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.