메뉴 건너뛰기




Volumn 760, Issue , 2013, Pages 25-33

Sample size planning for classification models

Author keywords

Classification; Design of experiments; Learning curve; Multivariate; Small sample size; Training; Validation

Indexed keywords

CLASSIFICATION MODELS; CLASSIFIER TRAINING; DATA SETS; EXTENSIVE SIMULATIONS; LEARNING CURVES; MODEL PERFORMANCE; MULTIVARIATE; RANDOM TESTING; SAMPLE SIZES; SINGLE CELLS; SMALL SAMPLE SIZE; TEST SAMPLES; TRAINING SAMPLE; TUMOUR CELLS; VALIDATION;

EID: 84871519258     PISSN: 00032670     EISSN: 18734324     Source Type: Journal    
DOI: 10.1016/j.aca.2012.11.007     Document Type: Article
Times cited : (359)

References (31)
  • 3
    • 33845404310 scopus 로고    scopus 로고
    • Sample size planning for developing classifiers using high-dimensional DNA microarray data
    • Dobbin K.K., Simon R.M. Sample size planning for developing classifiers using high-dimensional DNA microarray data. Biostatistics 2007, 8(1):101-117. 10.1093/biostatistics/kxj036.
    • (2007) Biostatistics , vol.8 , Issue.1 , pp. 101-117
    • Dobbin, K.K.1    Simon, R.M.2
  • 4
    • 40749107034 scopus 로고    scopus 로고
    • How large a training set is needed to develop a classifier for microarray data?
    • Dobbin K.K., Zhao Y., Simon R.M. How large a training set is needed to develop a classifier for microarray data?. Clin Cancer Res 2008, 14(1):108-114. 10.1158/1078-0432.CCR-07-0443.
    • (2008) Clin Cancer Res , vol.14 , Issue.1 , pp. 108-114
    • Dobbin, K.K.1    Zhao, Y.2    Simon, R.M.3
  • 5
    • 63249112814 scopus 로고
    • Dimensionality and sample size considerations in pattern recognition practice
    • North-Holland, Amsterdam, (Chapter 39), P.R. Krishnaiah, L. Kanal (Eds.)
    • Jain A., Chandrasekaran B. Dimensionality and sample size considerations in pattern recognition practice. Handbook of Statistics 1982, vol. II:835-855. North-Holland, Amsterdam, (Chapter 39). P.R. Krishnaiah, L. Kanal (Eds.).
    • (1982) Handbook of Statistics , vol.2 , pp. 835-855
    • Jain, A.1    Chandrasekaran, B.2
  • 6
    • 0026120032 scopus 로고
    • Small sample size effects in statistical pattern recognition: recommendations for practitioners
    • Raudys S., Jain A. Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13:252-264. http://doi.ieeecomputersociety.org/10.1109/34.75512.
    • (1991) IEEE Trans. Pattern Anal. Mach. Intell. , vol.13 , pp. 252-264
    • Raudys, S.1    Jain, A.2
  • 8
    • 78349288080 scopus 로고    scopus 로고
    • Towards detection and identification of circulating tumour cells using Raman spectroscopy
    • Neugebauer U., Bocklitz T., Clement J.H., Krafft C., Popp J. Towards detection and identification of circulating tumour cells using Raman spectroscopy. Analyst 2010, 135(12):3178-3182. 10.1039/c0an00608d.
    • (2010) Analyst , vol.135 , Issue.12 , pp. 3178-3182
    • Neugebauer, U.1    Bocklitz, T.2    Clement, J.H.3    Krafft, C.4    Popp, J.5
  • 9
    • 77957340867 scopus 로고    scopus 로고
    • Identification and differentiation of single cells from peripheral blood by Raman spectroscopic imaging
    • doi:10.1002/jbio.201000020
    • Neugebauer U., Clement J.H., Bocklitz T., Krafft C., Popp J. Identification and differentiation of single cells from peripheral blood by Raman spectroscopic imaging. J. Biophotonics 2010, 3(8-9):579-587. doi:10.1002/jbio.201000020.
    • (2010) J. Biophotonics , vol.3 , Issue.8-9 , pp. 579-587
    • Neugebauer, U.1    Clement, J.H.2    Bocklitz, T.3    Krafft, C.4    Popp, J.5
  • 12
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Morgan Kaufmann, USA, C.S. Mellish (Ed.)
    • Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Artificial Intelligence Proceedings 14th International Joint Conference 1995, 1137-1145. Morgan Kaufmann, USA. C.S. Mellish (Ed.).
    • (1995) Artificial Intelligence Proceedings 14th International Joint Conference , pp. 1137-1145
    • Kohavi, R.1
  • 14
    • 77951028114 scopus 로고    scopus 로고
    • Principles of proper validation: use and abuse of re-sampling for validation
    • Esbensen K.H., Geladi P. Principles of proper validation: use and abuse of re-sampling for validation. J. Chemometr. 2010, 24(3-4):168-187.
    • (2010) J. Chemometr. , vol.24 , Issue.3-4 , pp. 168-187
    • Esbensen, K.H.1    Geladi, P.2
  • 15
    • 79961135005 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna, Austria, ISBN: 3-900051-07-0, R Development Core Team
    • R Development Core Team R: A Language and Environment for Statistical Computing 2011, R Foundation for Statistical Computing, Vienna, Austria, ISBN: 3-900051-07-0.
    • (2011) R: A Language and Environment for Statistical Computing
  • 16
    • 84871483350 scopus 로고    scopus 로고
    • hyperSpec: A Package to Handle Hyperspectral Data Sets in R, R package v. 0.98-20120725
    • C. Beleites, V. Sergo, hyperSpec: A Package to Handle Hyperspectral Data Sets in R, R package v. 0.98-20120725, 2012.
    • (2012)
    • Beleites, C.1    Sergo, V.2
  • 19
    • 84871508545 scopus 로고    scopus 로고
    • cbmodels: Collection of "combined" Models: PCA-LDA, PLS-LDA, etc., R package v. 0.5-20120731.
    • C. Beleites, cbmodels: Collection of "combined" Models: PCA-LDA, PLS-LDA, etc., R package v. 0.5-20120731, 2012.
    • (2012)
    • Beleites, C.1
  • 20
    • 84871529531 scopus 로고    scopus 로고
    • pls: Partial Least Squares Regression (PLSR) and Principal Component Regression (PCR), R package version 2. 1-0
    • R. Wehrens, B.-H. Mevik, pls: Partial Least Squares Regression (PLSR) and Principal Component Regression (PCR), R package version 2. 1-0, 2007.
    • (2007)
    • Wehrens, R.1    Mevik, B.-H.2
  • 22
    • 0037350844 scopus 로고    scopus 로고
    • Partial least squares for discrimination
    • Barker M., Rayens W. Partial least squares for discrimination. J. Chemometr. 2003, 17(3):166-173.
    • (2003) J. Chemometr. , vol.17 , Issue.3 , pp. 166-173
    • Barker, M.1    Rayens, W.2
  • 23
    • 0000460102 scopus 로고    scopus 로고
    • Interval estimation for a binomial proportion
    • Brown L., Cai T., DasGupta A. Interval estimation for a binomial proportion. Stat. Sci. 2001, 16:101-133.
    • (2001) Stat. Sci. , vol.16 , pp. 101-133
    • Brown, L.1    Cai, T.2    DasGupta, A.3
  • 24
    • 72649099602 scopus 로고    scopus 로고
    • Interval estimators for a binomial proportion: comparison of twenty methods
    • Pires A.M., Amado C. Interval estimators for a binomial proportion: comparison of twenty methods. Revstat Stat. J. 2008, 6(2):165-197.
    • (2008) Revstat Stat. J. , vol.6 , Issue.2 , pp. 165-197
    • Pires, A.M.1    Amado, C.2
  • 25
    • 84871529960 scopus 로고    scopus 로고
    • binom: Binomial Confidence Intervals For Several Parameterizations, R package version 1. 0-5
    • S. Dorai-Raj, binom: Binomial Confidence Intervals For Several Parameterizations, R package version 1. 0-5, 2009.
    • (2009)
    • Dorai-Raj, S.1
  • 27
    • 84871475146 scopus 로고    scopus 로고
    • with contributions from many other users, Hmisc: Harrell Miscellaneous, R package v. 3.9-3
    • F.E. Harrell Jr., with contributions from many other users, Hmisc: Harrell Miscellaneous, R package v. 3.9-3, 2012.
    • (2012)
    • Harrell Jr., F.E.1
  • 28
    • 0000061230 scopus 로고
    • A simple approximation for calculating sample sizes for comparing independent proportions
    • Fleiss J.L., Tytun A., Ury H.K. A simple approximation for calculating sample sizes for comparing independent proportions. Biometrics 1980, 36(2):343-346. 10.2307/2529990.
    • (1980) Biometrics , vol.36 , Issue.2 , pp. 343-346
    • Fleiss, J.L.1    Tytun, A.2    Ury, H.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.