메뉴 건너뛰기




Volumn 138, Issue , 2017, Pages 49-56

Classification of CT brain images based on deep learning networks

Author keywords

3D CNN; Classification; Convolutional neural network; CT brain images; Deep learning; KAZE

Indexed keywords

BRAIN MAPPING; CLASSIFICATION (OF INFORMATION); COMPUTER AIDED DIAGNOSIS; CONVOLUTION; DECISION MAKING; DEEP LEARNING; IMAGE CLASSIFICATION; LEARNING ALGORITHMS; NETWORK ARCHITECTURE; NEURAL NETWORKS; NEURODEGENERATIVE DISEASES;

EID: 84992650028     PISSN: 01692607     EISSN: 18727565     Source Type: Journal    
DOI: 10.1016/j.cmpb.2016.10.007     Document Type: Article
Times cited : (320)

References (26)
  • 1
    • 85043825985 scopus 로고    scopus 로고
    • The dementia timebomb
    • Retrieved: 31 March 2016
    • [1] BBC, The dementia timebomb. http://www.bbc.co.uk/science/0/21878238 Retrieved: 31 March 2016.
    • BBC1
  • 2
    • 85043824377 scopus 로고    scopus 로고
    • Dementia
    • Retrieved: 31 March 2016
    • [2] UK Government, Dementia. https://www.gov.uk/government/news/ Retrieved: 31 March 2016.
    • UK Government1
  • 3
    • 38349183050 scopus 로고    scopus 로고
    • Usefulness of computed tomography linear measurements in diagnosing Alzheimer's disease
    • [3] Zhang, Y., Londos, E., Minthon, L., Wattmo, C., Liu, H., Wahlund, L.O., Usefulness of computed tomography linear measurements in diagnosing Alzheimer's disease. Acta Radiol 49:1 (2008), 91–97.
    • (2008) Acta Radiol , vol.49 , Issue.1 , pp. 91-97
    • Zhang, Y.1    Londos, E.2    Minthon, L.3    Wattmo, C.4    Liu, H.5    Wahlund, L.O.6
  • 4
    • 0345382711 scopus 로고    scopus 로고
    • Accuracy of ct scan measurements of the medial temporal lobe in routine dementia diagnostics
    • [4] Oksengaard, A.R., Haakonsen, M., Dullerud, R., Engedal, K., Laake, K., Accuracy of ct scan measurements of the medial temporal lobe in routine dementia diagnostics. Int. J. Geriatr. Psychiatry 18 (2003), 308–312.
    • (2003) Int. J. Geriatr. Psychiatry , vol.18 , pp. 308-312
    • Oksengaard, A.R.1    Haakonsen, M.2    Dullerud, R.3    Engedal, K.4    Laake, K.5
  • 5
    • 0019152630 scopus 로고
    • Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • [5] Fukushima, K., Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cyb 36 (1980), 193–202.
    • (1980) Biol. Cyb , vol.36 , pp. 193-202
    • Fukushima, K.1
  • 6
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • [6] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. IEEE 86:11 (1998), 2278–2324.
    • (1998) IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 7
    • 5044231640 scopus 로고    scopus 로고
    • Learning methods for generic object recognition with invariance to pose and lighting
    • Proceedings of Computer Vision and Pattern Recognition (CVPR), 2:II97–104
    • [7] LeCun, Y., Huang, F.J., Bottou, L., Learning methods for generic object recognition with invariance to pose and lighting. Proceedings of Computer Vision and Pattern Recognition (CVPR), 2:II97–104, 2004.
    • (2004)
    • LeCun, Y.1    Huang, F.J.2    Bottou, L.3
  • 8
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • [8] LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521 (2015), 436–444.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 9
    • 34948870900 scopus 로고    scopus 로고
    • Unsupervised learning of invariant feature hierarchies with applications to object recognition
    • Proceedings of Computer Vision and Pattern Recognition (CVPR), pages 1–8
    • [9] Ranzato, M., Huang, F.J., Boureau, Y., LeCun, Y., Unsupervised learning of invariant feature hierarchies with applications to object recognition. Proceedings of Computer Vision and Pattern Recognition (CVPR), pages 1–8, 2007.
    • (2007)
    • Ranzato, M.1    Huang, F.J.2    Boureau, Y.3    LeCun, Y.4
  • 10
    • 84870183903 scopus 로고    scopus 로고
    • 3d convolutional neural networks for human action recognition
    • [10] Ji, S., Xu, W., Yang, M., Yu, K., 3d convolutional neural networks for human action recognition. IEEE 35:1 (2015), 221–231.
    • (2015) IEEE , vol.35 , Issue.1 , pp. 221-231
    • Ji, S.1    Xu, W.2    Yang, M.3    Yu, K.4
  • 11
    • 84962815548 scopus 로고    scopus 로고
    • Matconvnet convolutional neural networks for matlab
    • Proceedings of the 23rd ACM international conference on Multimedia, pages 689–692
    • [11] Vedaldi, A., Lenc, K., Matconvnet convolutional neural networks for matlab. Proceedings of the 23rd ACM international conference on Multimedia, pages 689–692, 2015.
    • (2015)
    • Vedaldi, A.1    Lenc, K.2
  • 12
    • 84911364368 scopus 로고    scopus 로고
    • Large-scale video classification with convolutional neural networks
    • The IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014), pages 1725–1732
    • [12] Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Li, F., Large-scale video classification with convolutional neural networks. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014), pages 1725–1732, 2014.
    • (2014)
    • Karpathy, A.1    Toderici, G.2    Shetty, S.3    Leung, T.4    Sukthankar, R.5    Li, F.6
  • 13
    • 84902265044 scopus 로고    scopus 로고
    • Feature-wise representation for both still and motion 3d medical images
    • IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), pages 1–4
    • [13] Gao, X., Feature-wise representation for both still and motion 3d medical images. IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), pages 1–4, 2014.
    • (2014)
    • Gao, X.1
  • 14
    • 7044235681 scopus 로고    scopus 로고
    • Construction and evaluation of an average ct brain image for inter-subject registration
    • [14] Jongen, C., Pluim, J.P.W., Nederkoorn, P.J., Viergever, M.A., Niessen, W., Construction and evaluation of an average ct brain image for inter-subject registration. Comput. Biol. Med 34:8 (2004), 647–662.
    • (2004) Comput. Biol. Med , vol.34 , Issue.8 , pp. 647-662
    • Jongen, C.1    Pluim, J.P.W.2    Nederkoorn, P.J.3    Viergever, M.A.4    Niessen, W.5
  • 15
    • 33846516584 scopus 로고    scopus 로고
    • Pattern Recognition and Machine Learning
    • Springer New York
    • [15] Bishop, C.M., Pattern Recognition and Machine Learning. 2006, Springer, New York.
    • (2006)
    • Bishop, C.M.1
  • 16
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • [16] Lowe, D., Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis 60 (2004), 91–110.
    • (2004) Int. J. Comput. Vis , vol.60 , pp. 91-110
    • Lowe, D.1
  • 17
    • 84867862402 scopus 로고    scopus 로고
    • Kaze features
    • Eur. Conf. on Computer Vision (ECCV), pages 214–227
    • [17] Alcantarilla, P.F., Bartoli, A., Davison, A.J., Kaze features. Eur. Conf. on Computer Vision (ECCV), pages 214–227, 2012.
    • (2012)
    • Alcantarilla, P.F.1    Bartoli, A.2    Davison, A.J.3
  • 18
    • 84875248258 scopus 로고    scopus 로고
    • Retrieval of 3d surgical path based on sparse coding for image-guided neurosurgery
    • [18] Qian, Y., Hui, R., Gao, X., Retrieval of 3d surgical path based on sparse coding for image-guided neurosurgery. Signal Process 93:6 (2013), 1673–1683.
    • (2013) Signal Process , vol.93 , Issue.6 , pp. 1673-1683
    • Qian, Y.1    Hui, R.2    Gao, X.3
  • 19
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • IEEE Conference on Computer Vision and Pattern Recognition, page 1794–1801
    • [19] Yang, J., Yu, K., Gong, Y., Huang, T., Linear spatial pyramid matching using sparse coding for image classification. IEEE Conference on Computer Vision and Pattern Recognition, page 1794–1801, 2009.
    • (2009)
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.4
  • 20
    • 0345414182 scopus 로고    scopus 로고
    • Kaze features
    • Video Google: A Text Retrieval Approach to Object Matching in Videos, pages 1470–1477
    • [20] Sivic, J., Zisserman, A., Kaze features. Video Google: A Text Retrieval Approach to Object Matching in Videos, pages 1470–1477, 2003.
    • (2003)
    • Sivic, J.1    Zisserman, A.2
  • 21
    • 84992648645 scopus 로고    scopus 로고
    • The synergy of 3d sift and sparse codes for classification of viewpoints from echocardiogram videos
    • H. Greenspan H. Muller T. Syeda-Mahmood Springer New York
    • [21] Qian, Y., Wang, L., Wang, C., Gao, X., The synergy of 3d sift and sparse codes for classification of viewpoints from echocardiogram videos. Greenspan, H., Muller, H., Syeda-Mahmood, T., (eds.) Medical Content-Based Retrieval for Clinical Decision Support, 2012, Springer, New York, 68–79.
    • (2012) Medical Content-Based Retrieval for Clinical Decision Support , pp. 68-79
    • Qian, Y.1    Wang, L.2    Wang, C.3    Gao, X.4
  • 22
    • 84952766202 scopus 로고    scopus 로고
    • The application of kaze feature to the classification of echocardiogram videos
    • MRMD 2015, LNCS, 9059:61–72
    • [22] Li, W., Qian, Y., Loomes, M., Gao, X., The application of kaze feature to the classification of echocardiogram videos. MRMD 2015, LNCS, 9059:61–72, 2015.
    • (2015)
    • Li, W.1    Qian, Y.2    Loomes, M.3    Gao, X.4
  • 23
    • 0026821645 scopus 로고
    • Image selective smoothing and edge detection by nonlinear diffusion
    • [23] Catte, F., Lions, P.L., Morel, J.M., Coll, T., Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal 29 (1992), 182–193.
    • (1992) SIAM J. Numer. Anal , vol.29 , pp. 182-193
    • Catte, F.1    Lions, P.L.2    Morel, J.M.3    Coll, T.4
  • 24
    • 78149348137 scopus 로고    scopus 로고
    • Improving the fisher kernel for large-scale image classification
    • ECCV 2010 (Part IV), 6314:143–156
    • [24] Perronnin, F., Sanchez, J., Mensink, T., Improving the fisher kernel for large-scale image classification. ECCV 2010 (Part IV), 6314:143–156, 2010.
    • (2010)
    • Perronnin, F.1    Sanchez, J.2    Mensink, T.3
  • 25
    • 78650994992 scopus 로고    scopus 로고
    • Vlfeat: An open and portable library of computer vision algorithms
    • Proceedings of the 18th annual ACM international conference on Multimedia
    • [25] Vedaldi, A., Fulkerson, B., Vlfeat: An open and portable library of computer vision algorithms. Proceedings of the 18th annual ACM international conference on Multimedia, 2010.
    • (2010)
    • Vedaldi, A.1    Fulkerson, B.2
  • 26
    • 0025161679 scopus 로고
    • Ct diagnostic features of Alzheimer disease: importance of the choroidal/hippocampal fissure complex
    • [26] George, A.E., de Leon, M.J., Stylopoulos, L.A., Miller, J., Kluger, A., Smith, G., et al. Ct diagnostic features of Alzheimer disease: importance of the choroidal/hippocampal fissure complex. AJNR Am. J. Neuroradiol 11:1 (1990), 101–107.
    • (1990) AJNR Am. J. Neuroradiol , vol.11 , Issue.1 , pp. 101-107
    • George, A.E.1    de Leon, M.J.2    Stylopoulos, L.A.3    Miller, J.4    Kluger, A.5    Smith, G.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.