메뉴 건너뛰기




Volumn 47, Issue 3, 2019, Pages 401-412

Extracting Urban Impervious Surface from WorldView-2 and Airborne LiDAR Data Using 3D Convolutional Neural Networks

Author keywords

Airborne light detection and ranging (LiDAR); Convolutional neural networks (CNNs); Impervious surface; Support vector machine (SVM); WorldView 2

Indexed keywords

ARTIFICIAL NEURAL NETWORK; DATA SET; ENVIRONMENTAL IMPACT; IMAGE ANALYSIS; LIDAR; PIXEL; SATELLITE DATA; SATELLITE SENSOR; SUPPORT VECTOR MACHINE; THREE-DIMENSIONAL MODELING; URBAN AREA; URBANIZATION; WORLDVIEW;

EID: 85058113382     PISSN: 0255660X     EISSN: 09743006     Source Type: Journal    
DOI: 10.1007/s12524-018-0917-5     Document Type: Article
Times cited : (30)

References (39)
  • 1
    • 85050116820 scopus 로고    scopus 로고
    • Generalizing machine learning regression models using multi-site spectral libraries for mapping vegetation-impervious-soil fractions across multiple cities
    • Akpona, O., Frank, C., Sam, D. C., Jeroen, D., et al. (2018). Generalizing machine learning regression models using multi-site spectral libraries for mapping vegetation-impervious-soil fractions across multiple cities. Remote Sensing of Environment, 216, 482–496. 10.1016/j.rse.2018.07.011.
    • (2018) Remote Sensing of Environment , vol.216 , pp. 482-496
    • Akpona, O.1    Frank, C.2    Sam, D.C.3    Jeroen, D.4
  • 2
    • 84978805819 scopus 로고    scopus 로고
    • Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
    • Chen, Y. S., Jiang, H. L., Li, C. Y., Jia, X. P., & Ghamisi, P. (2016a). Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 54(10), 6232–6251. 10.14358/PERS.80.1.91.
    • (2016) IEEE Transactions on Geoscience and Remote Sensing , vol.54 , Issue.10 , pp. 6232-6251
    • Chen, Y.S.1    Jiang, H.L.2    Li, C.Y.3    Jia, X.P.4    Ghamisi, P.5
  • 3
    • 84992303973 scopus 로고    scopus 로고
    • Target classification using the deep convolutional networks for SAR images
    • Chen, S. Z., Wang, H. P., Xu, F., & Jin, Y. Q. (2016b). Target classification using the deep convolutional networks for SAR images. IEEE Transactions on Geoscience and Remote Sensing, 54(8), 4806–4817. 10.1109/TGRS.2016.2551720.
    • (2016) IEEE Transactions on Geoscience and Remote Sensing , vol.54 , Issue.8 , pp. 4806-4817
    • Chen, S.Z.1    Wang, H.P.2    Xu, F.3    Jin, Y.Q.4
  • 4
    • 85027047340 scopus 로고    scopus 로고
    • Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images
    • Cheng, G., Zhou, P. C., & Han, J. W. (2016). Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 54(12), 7405–7415. 10.1109/TGRS.2016.2601622.
    • (2016) IEEE Transactions on Geoscience and Remote Sensing , vol.54 , Issue.12 , pp. 7405-7415
    • Cheng, G.1    Zhou, P.C.2    Han, J.W.3
  • 5
    • 84961338765 scopus 로고    scopus 로고
    • Convolutional neural network with data augmentation for SAR target recognition
    • Ding, J., Chen, B., Liu, H., & Huang, M. (2016). Convolutional neural network with data augmentation for SAR target recognition. IEEE Geoscience and Remote Sensing Letters, 13(3), 364–368. 10.1109/LGRS.2015.2513754.
    • (2016) IEEE Geoscience and Remote Sensing Letters , vol.13 , Issue.3 , pp. 364-368
    • Ding, J.1    Chen, B.2    Liu, H.3    Huang, M.4
  • 6
    • 85042537436 scopus 로고    scopus 로고
    • Hyperspectral image classification using convolutional neural networks and multiple feature learning
    • Gao, Q., Lim, S., & Jia, X. (2018). Hyperspectral image classification using convolutional neural networks and multiple feature learning. Remote Sensing, 10, 1–18. 10.3390/rs10020299.
    • (2018) Remote Sensing , vol.10 , pp. 1-18
    • Gao, Q.1    Lim, S.2    Jia, X.3
  • 7
    • 84892170402 scopus 로고    scopus 로고
    • Synergistic use of optical and PolSAR imagery for urban impervious surface estimation
    • Guo, H. D., Yang, H. N., Sun, Z. C., Li, X. W., & Wang, C. Z. (2014). Synergistic use of optical and PolSAR imagery for urban impervious surface estimation. Photogrammetric Engineering and Remote Sensing, 80(1), 91–102. 10.14358/PERS.80.1.91.
    • (2014) Photogrammetric Engineering and Remote Sensing , vol.80 , Issue.1 , pp. 91-102
    • Guo, H.D.1    Yang, H.N.2    Sun, Z.C.3    Li, X.W.4    Wang, C.Z.5
  • 8
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507. 10.1126/science.1127647.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 9
    • 67849114029 scopus 로고    scopus 로고
    • Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks
    • Hu, X., & Weng, Q. (2009). Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. Remote Sensing of Environment, 113(10), 2089–2102. 10.1016/j.rse.2009.05.014.
    • (2009) Remote Sensing of Environment , vol.113 , Issue.10 , pp. 2089-2102
    • Hu, X.1    Weng, Q.2
  • 10
    • 84855469971 scopus 로고    scopus 로고
    • Impervious surface quantification using a synthesis of artificial immune networks and decision/regression trees from multi-sensor data
    • Im, J. H., Lu, Z. Y., Rhee, J. Y., & Quackenbush, L. J. (2012). Impervious surface quantification using a synthesis of artificial immune networks and decision/regression trees from multi-sensor data. Remote Sensing of Environment, 117(1), 102–113. 10.1016/j.rse.2011.06.024.
    • (2012) Remote Sensing of Environment , vol.117 , Issue.1 , pp. 102-113
    • Im, J.H.1    Lu, Z.Y.2    Rhee, J.Y.3    Quackenbush, L.J.4
  • 12
    • 84965126569 scopus 로고    scopus 로고
    • The impact of impervious surface on water quality and its threshold in Korea
    • Kim, H., Jeong, H., Jeon, J., & Bae, S. J. (2016). The impact of impervious surface on water quality and its threshold in Korea. Water, 8(4,), 1–9. 10.3390/w8040111.
    • (2016) Water , vol.8 , Issue.4 , pp. 1-9
    • Kim, H.1    Jeong, H.2    Jeon, J.3    Bae, S.J.4
  • 13
    • 85017192157 scopus 로고    scopus 로고
    • Deep learning classification of land cover and crop types using remote sensing data
    • Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). Deep learning classification of land cover and crop types using remote sensing data. IEEE Geoscience and Remote Sensing Letters, 14(5), 778–782. 10.1109/LGRS.2017.2681128.
    • (2017) IEEE Geoscience and Remote Sensing Letters , vol.14 , Issue.5 , pp. 778-782
    • Kussul, N.1    Lavreniuk, M.2    Skakun, S.3    Shelestov, A.4
  • 14
    • 84971612769 scopus 로고    scopus 로고
    • Classification and segmentation of satellite orthoimagery using convolutional neural networks
    • Längkvist, M., Kiselev, A., Alirezaie, M., & Loutfi, A. (2016). Classification and segmentation of satellite orthoimagery using convolutional neural networks. Remote Sensing, 8(4), 1–21. 10.3390/rs8040329.
    • (2016) Remote Sensing , vol.8 , Issue.4 , pp. 1-21
    • Längkvist, M.1    Kiselev, A.2    Alirezaie, M.3    Loutfi, A.4
  • 15
    • 84930630277 scopus 로고    scopus 로고
    • Deeping learning
    • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deeping learning. Nature, 521(7553), 436–444. 10.1038/nature14539.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 16
    • 85050976951 scopus 로고    scopus 로고
    • Focal loss for dense object detection
    • Lin, T., Goyal, P., Girshick, R. B., He, K., & Doll, P. (2017). Focal loss for dense object detection. CoRR, abs/1708.02002, 1–10.
    • (2017) CoRR , vol.abs/1708.02002 , pp. 1-10
    • Lin, T.1    Goyal, P.2    Girshick, R.B.3    He, K.4    Doll, P.5
  • 17
    • 84961161828 scopus 로고    scopus 로고
    • A hierarchical analysis of the relationship between urban impervious surfaces and land surface temperatures: Spatial scale dependence, temporal variations, and bioclimatic modulation
    • Ma, Q., Wu, J. G., & He, C. Y. (2016). A hierarchical analysis of the relationship between urban impervious surfaces and land surface temperatures: Spatial scale dependence, temporal variations, and bioclimatic modulation. Landscape Ecology, 31(5), 1139–1153. 10.1007/s10980-016-0356-z.
    • (2016) Landscape Ecology , vol.31 , Issue.5 , pp. 1139-1153
    • Ma, Q.1    Wu, J.G.2    He, C.Y.3
  • 18
  • 19
    • 84949921276 scopus 로고    scopus 로고
    • Deep learning earth observation classification using ImageNet pretrained networks
    • Marmanis, D., Datcu, M., Esch, T., & Stilla, U. (2016). Deep learning earth observation classification using ImageNet pretrained networks. IEEE Geoscience and Remote Sensing Letters, 13(1), 105–109. 10.1109/LGRS.2015.2499239.
    • (2016) IEEE Geoscience and Remote Sensing Letters , vol.13 , Issue.1 , pp. 105-109
    • Marmanis, D.1    Datcu, M.2    Esch, T.3    Stilla, U.4
  • 20
    • 84887527417 scopus 로고    scopus 로고
    • Landsat and high resolution aerial photography
    • Parece, T. E., & Campbell, J. B. (2013a). Landsat and high resolution aerial photography. Remote Sensing, 5(10), 4942–4960. 10.3390/rs5104942.
    • (2013) Remote Sensing , vol.5 , Issue.10 , pp. 4942-4960
    • Parece, T.E.1    Campbell, J.B.2
  • 22
    • 85013301566 scopus 로고    scopus 로고
    • Training deep convolutional neural networks for land–cover classification of high-resolution imagery
    • Scott, G. J., England, M. R., Starms, W. A., Marcum, R. A., & Davis, C. H. (2017). Training deep convolutional neural networks for land–cover classification of high-resolution imagery. IEEE Geoscience and Remote Sensing Letters, 14(4), 549–553. 10.1109/LGRS.2017.2657778.
    • (2017) IEEE Geoscience and Remote Sensing Letters , vol.14 , Issue.4 , pp. 549-553
    • Scott, G.J.1    England, M.R.2    Starms, W.A.3    Marcum, R.A.4    Davis, C.H.5
  • 23
    • 84979492419 scopus 로고    scopus 로고
    • Convolutional neural network based automatic object detection on aerial images
    • Sevo, I., & Avramovic, A. (2016). Convolutional neural network based automatic object detection on aerial images. IEEE Geoscience and Remote Sensing Letters, 13(5), 740–744. 10.1109/LGRS.2016.2542358.
    • (2016) IEEE Geoscience and Remote Sensing Letters , vol.13 , Issue.5 , pp. 740-744
    • Sevo, I.1    Avramovic, A.2
  • 24
    • 84855233791 scopus 로고    scopus 로고
    • Estimating urban impervious surfaces from landsat-5 TM imagery using multilayer perceptron neural network and support vector machine
    • Sun, Z. C., Guo, H. D., Li, X. W., Lu, L. L., & Du, X. P. (2011). Estimating urban impervious surfaces from landsat-5 TM imagery using multilayer perceptron neural network and support vector machine. Journal of Applied Remote Sensing, 5(1), 053501. 10.1117/1.3539767.
    • (2011) Journal of Applied Remote Sensing , vol.5 , Issue.1 , pp. 053501
    • Sun, Z.C.1    Guo, H.D.2    Li, X.W.3    Lu, L.L.4    Du, X.P.5
  • 25
    • 84890673020 scopus 로고    scopus 로고
    • Long-term effects of land use/land cover change on surface runoff in urban areas of Beijing, China
    • Sun, Z. C., Li, X. U., Fu, W. X., Li, Y. K., & Tang, D. S. (2014). Long-term effects of land use/land cover change on surface runoff in urban areas of Beijing, China. Journal of Applied Remote Sensing, 8(1), 084596. 10.1117/1.JRS.8.084596.
    • (2014) Journal of Applied Remote Sensing , vol.8 , Issue.1 , pp. 084596
    • Sun, Z.C.1    Li, X.U.2    Fu, W.X.3    Li, Y.K.4    Tang, D.S.5
  • 26
    • 85029367824 scopus 로고    scopus 로고
    • A modified normalized difference impervious surface index (MNDISI) for automatic urban mapping from landsat imagery
    • Sun, Z. C., Wang, C. Z., Guo, H. D., & Shang, R. R. (2017). A modified normalized difference impervious surface index (MNDISI) for automatic urban mapping from landsat imagery. Remote Sensing, 9(9), 942. 10.3390/rs9090942.
    • (2017) Remote Sensing , vol.9 , Issue.9 , pp. 942
    • Sun, Z.C.1    Wang, C.Z.2    Guo, H.D.3    Shang, R.R.4
  • 27
    • 84960103501 scopus 로고    scopus 로고
    • Effect of increasing urban albedo on meteorology and air quality of Montreal (Canada)—Episodic simulation of heat wave in 2005
    • Touchaei, A. G., Akbari, H., & Tessum., C. W. (2016). Effect of increasing urban albedo on meteorology and air quality of Montreal (Canada)—Episodic simulation of heat wave in 2005. Atmospheric Environment, 132(1), 188–206. 10.1016/j.atmosenv.2016.02.033.
    • (2016) Atmospheric Environment , vol.132 , Issue.1 , pp. 188-206
    • Touchaei, A.G.1    Akbari, H.2    Tessum, C.W.3
  • 29
    • 84962815548 scopus 로고    scopus 로고
    • MatConvNet: Convolutional neural networks for MATLAB
    • Brisbane, Australia, 26–30 October 2015
    • Vedaldi, A. & Lenc, K. (2015). MatConvNet: Convolutional neural networks for MATLAB. In Proceedings of the 23rd ACM international conference on multimedia, Brisbane, Australia, 26–30 October 2015 (pp. 689–692). 10.1145/2733373.2807412.
    • (2015) Proceedings of the 23Rd ACM International Conference on Multimedia , pp. 689-692
    • Vedaldi, A.1    Lenc, K.2
  • 30
    • 85039067964 scopus 로고    scopus 로고
    • Improving impervious surface estimation: an integrated method of classification and regression trees (CART) and linear spectral mixture analysis (LSMA) based on error analysis
    • Wang, J., Wu, Z., Wu, C., Cao, Z., et al. (2018). Improving impervious surface estimation: an integrated method of classification and regression trees (CART) and linear spectral mixture analysis (LSMA) based on error analysis. GIScience and Remote Sensing, 55(4), 583–603. 10.1080/15481603.2017.1417690.
    • (2018) GIScience and Remote Sensing , vol.55 , Issue.4 , pp. 583-603
    • Wang, J.1    Wu, Z.2    Wu, C.3    Cao, Z.4
  • 31
    • 85063310114 scopus 로고    scopus 로고
    • Hyperspectral imagery for environmental urban planning
    • Weber, C., Aguejdad, R., Briottet, X., et al. (2018). Hyperspectral imagery for environmental urban planning. In IGARSS 2018.
    • (2018) IGARSS 2018.
    • Weber, C.1    Aguejdad, R.2    Briottet, X.3
  • 32
    • 84868125267 scopus 로고    scopus 로고
    • Rule-based impervious surface mapping using high spatial resolution imagery
    • Xu, H. (2013). Rule-based impervious surface mapping using high spatial resolution imagery. International Journal of Remote Sensing, 34(1), 27–44. 10.1080/01431161.2012.703343.
    • (2013) International Journal of Remote Sensing , vol.34 , Issue.1 , pp. 27-44
    • Xu, H.1
  • 33
    • 85041495219 scopus 로고    scopus 로고
    • Measuring spatio-temporal dynamics of impervious surface in Guangzhou, China, from 1988 to 2015, using time-series Landsat imagery
    • Xu, J., Zhao, Y., Zhong, K., Zhang, F., Liu, X., & Sun, C. (2018a). Measuring spatio-temporal dynamics of impervious surface in Guangzhou, China, from 1988 to 2015, using time-series Landsat imagery. Science of the Total Environment, 627, 264–281. 10.1016/j.scitotenv.2018.01.155.
    • (2018) Science of the Total Environment , vol.627 , pp. 264-281
    • Xu, J.1    Zhao, Y.2    Zhong, K.3    Zhang, F.4    Liu, X.5    Sun, C.6
  • 34
  • 35
    • 85043390098 scopus 로고    scopus 로고
    • Multisource earth observation data for land-cover classification using random forest
    • Xu, Z., Chen, J., Xia, J., Du, P., et al. (2018b). Multisource earth observation data for land-cover classification using random forest. IEEE Geoscience and Remote Sensing Letters, 15(5), 789–793. 10.1109/LGRS.2018.2806223.
    • (2018) IEEE Geoscience and Remote Sensing Letters , vol.15 , Issue.5 , pp. 789-793
    • Xu, Z.1    Chen, J.2    Xia, J.3    Du, P.4
  • 36
    • 84994659865 scopus 로고    scopus 로고
    • Deep learning for hyperspectral data classification through exponential momentum deep convolution neural networks
    • Yue, Q., & Ma, C. (2016). Deep learning for hyperspectral data classification through exponential momentum deep convolution neural networks. Journal of Sensor, 2016, 1–9. 10.1155/2016/3150632.
    • (2016) Journal of Sensor , vol.2016 , pp. 1-9
    • Yue, Q.1    Ma, C.2
  • 37
    • 85052911462 scopus 로고    scopus 로고
    • Mapping seasonal impervious surface dynamics in Wuhan urban agglomeration, China from 2000 to 2016
    • Zhang, L., Zhang, M., & Yao, Y. (2018). Mapping seasonal impervious surface dynamics in Wuhan urban agglomeration, China from 2000 to 2016. International Journal of Applied Earth Observation and Geoinformation, 70, 51–61. 10.1016/j.jag.2018.04.005.
    • (2018) International Journal of Applied Earth Observation and Geoinformation , vol.70 , pp. 51-61
    • Zhang, L.1    Zhang, M.2    Yao, Y.3
  • 38
    • 85020742995 scopus 로고    scopus 로고
    • Airport detection on optical satellite images using deep convolutional neural networks
    • Zhang, P., Niu, X., Dou, Y., & Xia, F. (2017). Airport detection on optical satellite images using deep convolutional neural networks. IEEE Geoscience and Remote Sensing Letters, 14(8), 1183–1187. 10.1109/LGRS.2017.2673118.
    • (2017) IEEE Geoscience and Remote Sensing Letters , vol.14 , Issue.8 , pp. 1183-1187
    • Zhang, P.1    Niu, X.2    Dou, Y.3    Xia, F.4
  • 39
    • 84888083985 scopus 로고    scopus 로고
    • Improving the impervious surface estimation with combined use of optical and SAR remote sensing images
    • Zhang, Y., Zhang, H., & Lin, H. (2014). Improving the impervious surface estimation with combined use of optical and SAR remote sensing images. Remote Sensing of Environment, 141(2), 155–167. 10.1016/j.rse.2013.10.028.
    • (2014) Remote Sensing of Environment , vol.141 , Issue.2 , pp. 155-167
    • Zhang, Y.1    Zhang, H.2    Lin, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.