메뉴 건너뛰기




Volumn 13, Issue 3, 2016, Pages 364-368

Convolutional Neural Network with Data Augmentation for SAR Target Recognition

Author keywords

Convolutional neural network (CNN); data augmentation; feature extraction; synthetic aperture radar (SAR) image; target recognition

Indexed keywords

CONVOLUTION; NEURAL NETWORKS; SPECKLE; SYNTHETIC APERTURE RADAR;

EID: 84961338765     PISSN: 1545598X     EISSN: None     Source Type: Journal    
DOI: 10.1109/LGRS.2015.2513754     Document Type: Article
Times cited : (699)

References (16)
  • 1
    • 0035300682 scopus 로고    scopus 로고
    • Support vector machine for SAR automatic target recognition
    • Feb.
    • Q. Zhao and J. C. Principe, "Support vector machine for SAR automatic target recognition," IEEE Trans. Aerosp. Electron. Syst., vol. 37, no. 2, pp. 643-654, Feb. 2001.
    • (2001) IEEE Trans. Aerosp. Electron. Syst. , vol.37 , Issue.2 , pp. 643-654
    • Zhao, Q.1    Principe, J.C.2
  • 2
    • 34248636550 scopus 로고    scopus 로고
    • Adaptive boosting for SAR automatic target recognition
    • Jan.
    • Y. Sun, Z. Liu, J. Li, "Adaptive boosting for SAR automatic target recognition," IEEE Trans. Aerosp. Electron. Syst., vol. 43, no. 1, pp. 112-125, Jan. 2007.
    • (2007) IEEE Trans. Aerosp. Electron. Syst. , vol.43 , Issue.1 , pp. 112-125
    • Sun, Y.1    Liu, Z.2    Li, J.3
  • 3
    • 80053560936 scopus 로고    scopus 로고
    • Automatic target recognition of SAR images based on global scattering center model
    • Oct.
    • J. X. Zhou, Z. G. Shi, X. Cheng, Q. Fu, "Automatic target recognition of SAR images based on global scattering center model," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3713-3729, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3713-3729
    • Zhou, J.X.1    Shi, Z.G.2    Cheng, X.3    Fu, Q.4
  • 4
    • 84870552741 scopus 로고    scopus 로고
    • New discrimination features for SAR automatic target recognition
    • Oct.
    • J. I. Park, S. H. Park, K. T. Kim, "New discrimination features for SAR automatic target recognition," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 3, pp. 476-480, Oct. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.3 , pp. 476-480
    • Park, J.I.1    Park, S.H.2    Kim, K.T.3
  • 6
    • 84906782155 scopus 로고    scopus 로고
    • Sparse representation of monogenic signal: With application to target recognition in SAR images
    • Aug.
    • G. Dong, N. Wang, G. Kuang, "Sparse representation of monogenic signal: With application to target recognition in SAR images," IEEE Signal Process. Lett., vol. 21, no. 8, pp. 952-956, Aug. 2014.
    • (2014) IEEE Signal Process. Lett. , vol.21 , Issue.8 , pp. 952-956
    • Dong, G.1    Wang, N.2    Kuang, G.3
  • 7
    • 84925849006 scopus 로고    scopus 로고
    • Pseudo-Zernike based multi-pass automatic target recognition from multi-channel SAR
    • Sep.
    • C. Clemente et al., "Pseudo-Zernike based multi-pass automatic target recognition from multi-channel SAR," IET Radar Sonar Navig., vol. 9, no. 4, pp. 457-466, Sep. 2015.
    • (2015) IET Radar Sonar Navig. , vol.9 , Issue.4 , pp. 457-466
    • Clemente, C.1
  • 9
    • 84937522268 scopus 로고    scopus 로고
    • Going deeper with convolutions
    • Boston, MA, USA, Jun. 8-10
    • C. Szegedy et al., "Going deeper with convolutions," in Proc. IEEE Comput. Vis. Pattern Recog., Boston, MA, USA, Jun. 8-10, 2015, pp. 1-9.
    • (2015) Proc. IEEE Comput. Vis. Pattern Recog. , pp. 1-9
    • Szegedy, C.1
  • 10
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • presented at
    • K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," presented at the Int. Conf. Learning Representations, 2015. [Online]. Available: http://arxiv.org/abs/1409.1556
    • (2015) The Int Conf. Learning Representations
    • Simonyan, K.1    Zisserman, A.2
  • 12
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle detection in satellite images by hybrid deep convolutional neural networks
    • Oct.
    • X. Chen, S. Xiang, C. Liu, C. Pan, "Vehicle detection in satellite images by hybrid deep convolutional neural networks," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 10, pp. 1797-1801, Oct. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.10 , pp. 1797-1801
    • Chen, X.1    Xiang, S.2    Liu, C.3    Pan, C.4
  • 13
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov.
    • Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 14
  • 15
    • 50949133669 scopus 로고    scopus 로고
    • Liblinear: A library for large linear classification
    • Aug.
    • R. E. Fan, K.W. Chang, C. J. Hsieh, X. R. Wang, C. J. Lin, "Liblinear: A library for large linear classification," J. Mach. Learn. Res., vol. 9, no. 8, pp. 1871-1874, Aug. 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , Issue.8 , pp. 1871-1874
    • Fan, R.E.1    Chang, K.W.2    Hsieh, C.J.3    Wang, X.R.4    Lin, C.J.5
  • 16


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.