메뉴 건너뛰기




Volumn 66, Issue 1, 2019, Pages 101-107

Can Google Trends data improve forecasting of Lyme disease incidence?

Author keywords

forecasting; Lyme disease; mathematical modelling; Web browser

Indexed keywords

ARTICLE; DATA BASE; FORECASTING; GERMANY; INCIDENCE; INTERNET; LYME DISEASE; PERFORMANCE; PREDICTION; PRIORITY JOURNAL; TIME SERIES ANALYSIS; WEB BROWSER; HEALTH SURVEY; HUMAN; PROCEDURES; TIME FACTOR;

EID: 85056624395     PISSN: 18631959     EISSN: 18632378     Source Type: Journal    
DOI: 10.1111/zph.12539     Document Type: Article
Times cited : (33)

References (45)
  • 1
    • 85048661641 scopus 로고    scopus 로고
    • Discrepancies between classic and digital epidemiology in searching for the Mayaro Virus: Preliminary qualitative and quantitative analysis of Google Trends
    • Adawi, M., Bragazzi, N. L., Watad, A., Sharif, K., Amital, H., & Mahroum, N. (2017). Discrepancies between classic and digital epidemiology in searching for the Mayaro Virus: Preliminary qualitative and quantitative analysis of Google Trends. JMIR Public Health and Surveillance, 3(4), e93. https://doi.org/10.2196/publichealth.9136
    • (2017) JMIR Public Health and Surveillance , vol.3 , Issue.4
    • Adawi, M.1    Bragazzi, N.L.2    Watad, A.3    Sharif, K.4    Amital, H.5    Mahroum, N.6
  • 2
    • 84962424457 scopus 로고    scopus 로고
    • Assessing Ebola-related web search behaviour: Insights and implications from an analytical study of Google Trends-based query volumes
    • Alicino, C., Bragazzi, N. L., Faccio, V., Amicizia, D., Panatto, D., Gasparini, R., … Orsi, A. (2015). Assessing Ebola-related web search behaviour: Insights and implications from an analytical study of Google Trends-based query volumes. Infectious Diseases of Poverty, 4, 54. https://doi.org/10.1186/s40249-015-0090-9
    • (2015) Infectious Diseases of Poverty , vol.4 , pp. 54
    • Alicino, C.1    Bragazzi, N.L.2    Faccio, V.3    Amicizia, D.4    Panatto, D.5    Gasparini, R.6    Orsi, A.7
  • 3
    • 0031753106 scopus 로고    scopus 로고
    • Use of time-series analysis in infectious disease surveillance
    • Allard, R. (1998). Use of time-series analysis in infectious disease surveillance. Bulletin of the World Health Organization, 76(4), 327–333.
    • (1998) Bulletin of the World Health Organization , vol.76 , Issue.4 , pp. 327-333
    • Allard, R.1
  • 4
    • 85019417388 scopus 로고    scopus 로고
    • The potential of social media and Internet-based data in preventing and fighting infectious diseases: From Internet to Twitter
    • Al-Surimi, K., Khalifa, M., Bahkali, S., El-Metwally, A., & Househ, M. (2017). The potential of social media and Internet-based data in preventing and fighting infectious diseases: From Internet to Twitter. Advances in Experimental Medicine and Biology, 972, 131–139. https://doi.org/10.1007/5584_2016_132
    • (2017) Advances in Experimental Medicine and Biology , vol.972 , pp. 131-139
    • Al-Surimi, K.1    Khalifa, M.2    Bahkali, S.3    El-Metwally, A.4    Househ, M.5
  • 5
    • 80052395153 scopus 로고    scopus 로고
    • Prediction of dengue incidence using search query surveillance
    • Althouse, B. M., Ng, Y. Y., & Cummings, D. A. (2011). Prediction of dengue incidence using search query surveillance. PLoS Neglected Tropical Diseases, 5(8), e1258. https://doi.org/10.1371/journal.pntd.0001258
    • (2011) PLoS Neglected Tropical Diseases , vol.5 , Issue.8
    • Althouse, B.M.1    Ng, Y.Y.2    Cummings, D.A.3
  • 6
    • 84921645203 scopus 로고    scopus 로고
    • Using Google Flu Trends data in forecasting influenza-like–illness related ED visits in Omaha, Nebraska
    • Araz, O. M., Bentley, D., & Muelleman, R. L. (2014). Using Google Flu Trends data in forecasting influenza-like–illness related ED visits in Omaha, Nebraska. The American Journal of Emergency Medicine, 32(9), 1016–1023. https://doi.org/10.1016/j.ajem.2014.05.052
    • (2014) The American Journal of Emergency Medicine , vol.32 , Issue.9 , pp. 1016-1023
    • Araz, O.M.1    Bentley, D.2    Muelleman, R.L.3
  • 7
    • 85052636338 scopus 로고    scopus 로고
    • Impact of recent and future climate change on vector-borne diseases
    • Advance online publication.
    • Caminade, C., McIntyre, K. M., & Jones, A. E. (2018). Impact of recent and future climate change on vector-borne diseases. Annals of the New York Academy of Sciences. Advance online publication. https://doi.org/10.1111/nyas.13950
    • (2018) Annals of the New York Academy of Sciences
    • Caminade, C.1    McIntyre, K.M.2    Jones, A.E.3
  • 8
    • 85041961500 scopus 로고    scopus 로고
    • Lyme disease surveillance in the United States: Looking for ways to cut the Gordian knot
    • Cartter, M. L., Lynfield, R., Feldman, K. A., Hook, S. A., & Hinckley, A. F. (2018). Lyme disease surveillance in the United States: Looking for ways to cut the Gordian knot. Zoonoses and Public Health, 65(2), 227–229. https://doi.org/10.1111/zph.12448
    • (2018) Zoonoses and Public Health , vol.65 , Issue.2 , pp. 227-229
    • Cartter, M.L.1    Lynfield, R.2    Feldman, K.A.3    Hook, S.A.4    Hinckley, A.F.5
  • 9
    • 80051831902 scopus 로고    scopus 로고
    • Assessing Google Flu Trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic
    • Cook, S., Conrad, C., Fowlkes, A. L., & Mohebbi, M. H. (2011). Assessing Google Flu Trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic. PLoS ONE, 6(8), e23610. https://doi.org/10.1371/journal.pone.0023610
    • (2011) PLoS ONE , vol.6 , Issue.8
    • Cook, S.1    Conrad, C.2    Fowlkes, A.L.3    Mohebbi, M.H.4
  • 12
    • 84856717649 scopus 로고    scopus 로고
    • Google Flu Trends: Correlation with emergency department influenza rates and crowding metrics
    • Dugas, A. F., Hsieh, Y. H., Levin, S. R., Pines, J. M., Mareiniss, D. P., Mohareb, A., … Rothman, R. E. (2012). Google Flu Trends: Correlation with emergency department influenza rates and crowding metrics. Clinical Infectious Diseases, 54(4), 463–469. https://doi.org/10.1093/cid/cir883
    • (2012) Clinical Infectious Diseases , vol.54 , Issue.4 , pp. 463-469
    • Dugas, A.F.1    Hsieh, Y.H.2    Levin, S.R.3    Pines, J.M.4    Mareiniss, D.P.5    Mohareb, A.6    Rothman, R.E.7
  • 14
    • 60549098239 scopus 로고    scopus 로고
    • Detecting influenza epidemics using search engine query data
    • Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012–1014. https://doi.org/10.1038/nature07634
    • (2009) Nature , vol.457 , Issue.7232 , pp. 1012-1014
    • Ginsberg, J.1    Mohebbi, M.H.2    Patel, R.S.3    Brammer, L.4    Smolinski, M.S.5    Brilliant, L.6
  • 16
    • 84929191358 scopus 로고    scopus 로고
    • Review of Twitter for infectious diseases clinicians: Useful or a waste of time?
    • Goff, D. A., Kullar, R., & Newland, J. G. (2015). Review of Twitter for infectious diseases clinicians: Useful or a waste of time? Clinical Infectious Diseases, 60(10), 1533–1540. https://doi.org/10.1093/cid/civ071
    • (2015) Clinical Infectious Diseases , vol.60 , Issue.10 , pp. 1533-1540
    • Goff, D.A.1    Kullar, R.2    Newland, J.G.3
  • 20
    • 84896056107 scopus 로고    scopus 로고
    • Big data. The parable of Google Flu: Traps in big data analysis
    • Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). Big data. The parable of Google Flu: Traps in big data analysis. Science, 343(6176), 1203–1205. https://doi.org/10.1126/science.1248506
    • (2014) Science , vol.343 , Issue.6176 , pp. 1203-1205
    • Lazer, D.1    Kennedy, R.2    King, G.3    Vespignani, A.4
  • 21
    • 85045261346 scopus 로고    scopus 로고
    • Capturing public interest toward new tools for controlling human immunodeficiency virus (HIV) infection exploiting data from Google Trends
    • Advance online publication.
    • Mahroum, N., Bragazzi, N. L., Brigo, F., Waknin, R., Sharif, K., Mahagna, H., … Watad, A. (2018). Capturing public interest toward new tools for controlling human immunodeficiency virus (HIV) infection exploiting data from Google Trends. Health Informatics Journal. Advance online publication. https://doi.org/10.1177/1460458218766573
    • (2018) Health Informatics Journal
    • Mahroum, N.1    Bragazzi, N.L.2    Brigo, F.3    Waknin, R.4    Sharif, K.5    Mahagna, H.6    Watad, A.7
  • 22
    • 84949535001 scopus 로고    scopus 로고
    • Google Flu Trends in Canada: A comparison of digital disease surveillance data with physician consultations and respiratory virus surveillance data, 2010–2014
    • Martin, L. J., Lee, B. E., & Yasui, Y. (2016). Google Flu Trends in Canada: A comparison of digital disease surveillance data with physician consultations and respiratory virus surveillance data, 2010–2014. Epidemiology and Infection, 144(2), 325–332. https://doi.org/10.1017/S0950268815001478
    • (2016) Epidemiology and Infection , vol.144 , Issue.2 , pp. 325-332
    • Martin, L.J.1    Lee, B.E.2    Yasui, Y.3
  • 23
    • 84928750394 scopus 로고    scopus 로고
    • Improving Google Flu Trends estimates for the United States through transformation
    • Martin, L. J., Xu, B., & Yasui, Y. (2014). Improving Google Flu Trends estimates for the United States through transformation. PLoS ONE, 9(12), e109209. https://doi.org/10.1371/journal.pone.0109209
    • (2014) PLoS ONE , vol.9 , Issue.12
    • Martin, L.J.1    Xu, B.2    Yasui, Y.3
  • 25
    • 85012923147 scopus 로고    scopus 로고
    • Forecasting Zika Incidence in the 2016 Latin America outbreak combining traditional disease surveillance with search, social media, and news report data
    • McGough, S. F., Brownstein, J. S., Hawkins, J. B., & Santillana, M. (2017). Forecasting Zika Incidence in the 2016 Latin America outbreak combining traditional disease surveillance with search, social media, and news report data. PLoS Neglected Tropical Diseases, 11(1), e0005295. https://doi.org/10.1371/journal.pntd.0005295
    • (2017) PLoS Neglected Tropical Diseases , vol.11 , Issue.1
    • McGough, S.F.1    Brownstein, J.S.2    Hawkins, J.B.3    Santillana, M.4
  • 26
    • 79955690250 scopus 로고    scopus 로고
    • Monitoring influenza activity in the United States: A comparison of traditional surveillance systems with Google Flu Trends
    • Ortiz, J. R., Zhou, H., Shay, D. K., Neuzil, K. M., Fowlkes, A. L., & Goss, C. H. (2011). Monitoring influenza activity in the United States: A comparison of traditional surveillance systems with Google Flu Trends. PLoS ONE, 6(4), e18687. https://doi.org/10.1371/journal.pone.0018687
    • (2011) PLoS ONE , vol.6 , Issue.4
    • Ortiz, J.R.1    Zhou, H.2    Shay, D.K.3    Neuzil, K.M.4    Fowlkes, A.L.5    Goss, C.H.6
  • 27
    • 85047506775 scopus 로고    scopus 로고
    • Health information-seeking patterns of the general public and indications for disease surveillance: Register-based study using Lyme disease
    • Pesala, S., Virtanen, M. J., Sane, J., Mustonen, P., Kaila, M., & Helve, O. (2017). Health information-seeking patterns of the general public and indications for disease surveillance: Register-based study using Lyme disease. JMIR Public Health and Surveillance, 3(4), e86. https://doi.org/10.2196/publichealth.8306
    • (2017) JMIR Public Health and Surveillance , vol.3 , Issue.4
    • Pesala, S.1    Virtanen, M.J.2    Sane, J.3    Mustonen, P.4    Kaila, M.5    Helve, O.6
  • 28
    • 85015154788 scopus 로고    scopus 로고
    • Evaluating Google Flu Trends in Latin America: Important lessons for the next phase of digital disease detection
    • Pollett, S., Boscardin, W. J., Azziz-Baumgartner, E., Tinoco, Y. O., Soto, G., Romero, C., … Rutherford, G. W. (2017). Evaluating Google Flu Trends in Latin America: Important lessons for the next phase of digital disease detection. Clinical Infectious Diseases, 64(1), 34–41. https://doi.org/10.1093/cid/ciw657
    • (2017) Clinical Infectious Diseases , vol.64 , Issue.1 , pp. 34-41
    • Pollett, S.1    Boscardin, W.J.2    Azziz-Baumgartner, E.3    Tinoco, Y.O.4    Soto, G.5    Romero, C.6    Rutherford, G.W.7
  • 29
    • 85026846968 scopus 로고    scopus 로고
    • Vienna, Austria, R Foundation for Statistical Computing, Retrieved from
    • R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/
    • (2017) R: A language and environment for statistical computing
  • 30
    • 79961207866 scopus 로고    scopus 로고
    • Retrieved from
    • Robert Koch Institut (2009). Epidemiologisches bulletin nr. 5. Retrieved from https://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2009/Ausgaben/05_09.pdf?__blob=publicationFile
    • (2009) Epidemiologisches bulletin nr. 5
  • 31
    • 85053703461 scopus 로고    scopus 로고
    • Impacts of misclassification on Lyme disease surveillance
    • Advance online publication.
    • Rutz, H., Hogan, B., Hook, S., Hinckley, A., & Feldman, K. (2018). Impacts of misclassification on Lyme disease surveillance. Zoonoses and Public Health. Advance online publication. https://doi.org/10.1111/zph.12525
    • (2018) Zoonoses and Public Health
    • Rutz, H.1    Hogan, B.2    Hook, S.3    Hinckley, A.4    Feldman, K.5
  • 32
    • 84946026274 scopus 로고    scopus 로고
    • Combining search, social media, and traditional data sources to improve influenza surveillance
    • Santillana, M., Nguyen, A. T., Dredze, M., Paul, M. J., Nsoesie, E. O., & Brownstein, J. S. (2015). Combining search, social media, and traditional data sources to improve influenza surveillance. PLoS Computational Biology, 11(10), e1004513. https://doi.org/10.1371/journal.pcbi.1004513
    • (2015) PLoS Computational Biology , vol.11 , Issue.10
    • Santillana, M.1    Nguyen, A.T.2    Dredze, M.3    Paul, M.J.4    Nsoesie, E.O.5    Brownstein, J.S.6
  • 33
    • 85043456523 scopus 로고    scopus 로고
    • Global impact of World Sepsis Day on digital awareness of sepsis: An evaluation using Google Trends
    • Savelkoel, J., Claushuis, T. A. M., van Engelen, T. S. R., Scheres, L. J. J., & Wiersinga, W. J. (2018). Global impact of World Sepsis Day on digital awareness of sepsis: An evaluation using Google Trends. Critical Care, 22(1), 61. https://doi.org/10.1186/s13054-018-1981-5
    • (2018) Critical Care , vol.22 , Issue.1 , pp. 61
    • Savelkoel, J.1    Claushuis, T.A.M.2    van Engelen, T.S.R.3    Scheres, L.J.J.4    Wiersinga, W.J.5
  • 34
    • 85029609953 scopus 로고    scopus 로고
    • What can Google and Wikipedia can tell us about a disease? Big Data trends analysis in Systemic Lupus Erythematosus
    • Sciascia, S., & Radin, M. (2017). What can Google and Wikipedia can tell us about a disease? Big Data trends analysis in Systemic Lupus Erythematosus. Int J Med Inform, 107, 65–69. https://doi.org/10.1016/j.ijmedinf.2017.09.002
    • (2017) Int J Med Inform , vol.107 , pp. 65-69
    • Sciascia, S.1    Radin, M.2
  • 35
    • 77953036712 scopus 로고    scopus 로고
    • The utility of "Google Trends" for epidemiological research: Lyme disease as an example
    • Seifter, A., Schwarzwalder, A., Geis, K., & Aucott, J. (2010). The utility of "Google Trends" for epidemiological research: Lyme disease as an example. Geospatial Health, 4(2), 135–137. https://doi.org/10.4081/gh.2010.195
    • (2010) Geospatial Health , vol.4 , Issue.2 , pp. 135-137
    • Seifter, A.1    Schwarzwalder, A.2    Geis, K.3    Aucott, J.4
  • 36
    • 85042299225 scopus 로고    scopus 로고
    • Vector-borne diseases and climate change: A European perspective
    • Semenza, J. C., & Suk, J. E. (2018). Vector-borne diseases and climate change: A European perspective. FEMS Microbiology Letters, 365(2). https://doi.org/10.1093/femsle/fnx244
    • (2018) FEMS Microbiology Letters , vol.365 , Issue.2
    • Semenza, J.C.1    Suk, J.E.2
  • 37
    • 85019346031 scopus 로고    scopus 로고
    • Google Dengue Trends: An indicator of epidemic behavior. The Venezuelan Case
    • Strauss, R. A., Castro, J. S., Reintjes, R., & Torres, J. R. (2017). Google Dengue Trends: An indicator of epidemic behavior. The Venezuelan Case. Int J Med Inform, 104, 26–30. https://doi.org/10.1016/j.ijmedinf.2017.05.003
    • (2017) Int J Med Inform , vol.104 , pp. 26-30
    • Strauss, R.A.1    Castro, J.S.2    Reintjes, R.3    Torres, J.R.4
  • 38
    • 85009227815 scopus 로고    scopus 로고
    • Dynamic forecasting of Zika epidemics using Google Trends
    • Teng, Y., Bi, D., Xie, G., Jin, Y., Huang, Y., Lin, B., … Tong, Y. (2017). Dynamic forecasting of Zika epidemics using Google Trends. PLoS ONE, 12(1), e0165085. https://doi.org/10.1371/journal.pone.0165085
    • (2017) PLoS ONE , vol.12 , Issue.1
    • Teng, Y.1    Bi, D.2    Xie, G.3    Jin, Y.4    Huang, Y.5    Lin, B.6    Tong, Y.7
  • 39
    • 84909991578 scopus 로고    scopus 로고
    • Emergency department and 'Google Flu Trends' data as syndromic surveillance indicators for seasonal influenza
    • Thompson, L. H., Malik, M. T., Gumel, A., Strome, T., & Mahmud, S. M. (2014). Emergency department and 'Google Flu Trends' data as syndromic surveillance indicators for seasonal influenza. Epidemiology and Infection, 142(11), 2397–2405. https://doi.org/10.1017/S0950268813003464
    • (2014) Epidemiology and Infection , vol.142 , Issue.11 , pp. 2397-2405
    • Thompson, L.H.1    Malik, M.T.2    Gumel, A.3    Strome, T.4    Mahmud, S.M.5
  • 41
    • 85047775170 scopus 로고    scopus 로고
    • Economic recession and obesity-related Internet search behavior in Taiwan: Analysis of Google Trends Data
    • Wang, H. W., & Chen, D. R. (2018). Economic recession and obesity-related Internet search behavior in Taiwan: Analysis of Google Trends Data. JMIR Public Health and Surveillance, 4(2), e37. https://doi.org/10.2196/publichealth.7314
    • (2018) JMIR Public Health and Surveillance , vol.4 , Issue.2
    • Wang, H.W.1    Chen, D.R.2
  • 42
    • 85041226484 scopus 로고    scopus 로고
    • Vesicular stomatitis forecasting based on Google Trends
    • Wang, J., Zhang, T., Lu, Y., Zhou, G., Chen, Q., & Niu, B. (2018). Vesicular stomatitis forecasting based on Google Trends. PLoS ONE, 13(1), e0192141. https://doi.org/10.1371/journal.pone.0192141
    • (2018) PLoS ONE , vol.13 , Issue.1
    • Wang, J.1    Zhang, T.2    Lu, Y.3    Zhou, G.4    Chen, Q.5    Niu, B.6
  • 43
    • 84947998511 scopus 로고    scopus 로고
    • Accurate estimation of influenza epidemics using Google search data via ARGO
    • Yang, S., Santillana, M., & Kou, S. C. (2015). Accurate estimation of influenza epidemics using Google search data via ARGO. Proceedings of the National Academy of Sciences USA, 112(47), 14473–14478. https://doi.org/10.1073/pnas.1515373112
    • (2015) Proceedings of the National Academy of Sciences USA , vol.112 , Issue.47 , pp. 14473-14478
    • Yang, S.1    Santillana, M.2    Kou, S.C.3
  • 44
    • 85047070411 scopus 로고    scopus 로고
    • Using Google Trends and ambient temperature to predict seasonal influenza outbreaks
    • Zhang, Y., Bambrick, H., Mengersen, K., Tong, S., & Hu, W. (2018). Using Google Trends and ambient temperature to predict seasonal influenza outbreaks. Environment International, 117, 284–291. https://doi.org/10.1016/j.envint.2018.05.016
    • (2018) Environment International , vol.117 , pp. 284-291
    • Zhang, Y.1    Bambrick, H.2    Mengersen, K.3    Tong, S.4    Hu, W.5
  • 45
    • 85047820555 scopus 로고    scopus 로고
    • Seasonality of cellulitis: Evidence from Google Trends
    • Zhang, X., Dang, S., Ji, F., Shi, J., Li, Y., Li, M., … Wang, W. (2018). Seasonality of cellulitis: Evidence from Google Trends. Infection and Drug Resistance, 11, 689–693. https://doi.org/10.2147/IDR.S163290
    • (2018) Infection and Drug Resistance , vol.11 , pp. 689-693
    • Zhang, X.1    Dang, S.2    Ji, F.3    Shi, J.4    Li, Y.5    Li, M.6    Wang, W.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.