-
1
-
-
85048661641
-
Discrepancies between classic and digital epidemiology in searching for the Mayaro Virus: Preliminary qualitative and quantitative analysis of Google Trends
-
Adawi, M., Bragazzi, N. L., Watad, A., Sharif, K., Amital, H., & Mahroum, N. (2017). Discrepancies between classic and digital epidemiology in searching for the Mayaro Virus: Preliminary qualitative and quantitative analysis of Google Trends. JMIR Public Health and Surveillance, 3(4), e93. https://doi.org/10.2196/publichealth.9136
-
(2017)
JMIR Public Health and Surveillance
, vol.3
, Issue.4
-
-
Adawi, M.1
Bragazzi, N.L.2
Watad, A.3
Sharif, K.4
Amital, H.5
Mahroum, N.6
-
2
-
-
84962424457
-
Assessing Ebola-related web search behaviour: Insights and implications from an analytical study of Google Trends-based query volumes
-
Alicino, C., Bragazzi, N. L., Faccio, V., Amicizia, D., Panatto, D., Gasparini, R., … Orsi, A. (2015). Assessing Ebola-related web search behaviour: Insights and implications from an analytical study of Google Trends-based query volumes. Infectious Diseases of Poverty, 4, 54. https://doi.org/10.1186/s40249-015-0090-9
-
(2015)
Infectious Diseases of Poverty
, vol.4
, pp. 54
-
-
Alicino, C.1
Bragazzi, N.L.2
Faccio, V.3
Amicizia, D.4
Panatto, D.5
Gasparini, R.6
Orsi, A.7
-
3
-
-
0031753106
-
Use of time-series analysis in infectious disease surveillance
-
Allard, R. (1998). Use of time-series analysis in infectious disease surveillance. Bulletin of the World Health Organization, 76(4), 327–333.
-
(1998)
Bulletin of the World Health Organization
, vol.76
, Issue.4
, pp. 327-333
-
-
Allard, R.1
-
4
-
-
85019417388
-
The potential of social media and Internet-based data in preventing and fighting infectious diseases: From Internet to Twitter
-
Al-Surimi, K., Khalifa, M., Bahkali, S., El-Metwally, A., & Househ, M. (2017). The potential of social media and Internet-based data in preventing and fighting infectious diseases: From Internet to Twitter. Advances in Experimental Medicine and Biology, 972, 131–139. https://doi.org/10.1007/5584_2016_132
-
(2017)
Advances in Experimental Medicine and Biology
, vol.972
, pp. 131-139
-
-
Al-Surimi, K.1
Khalifa, M.2
Bahkali, S.3
El-Metwally, A.4
Househ, M.5
-
5
-
-
80052395153
-
Prediction of dengue incidence using search query surveillance
-
Althouse, B. M., Ng, Y. Y., & Cummings, D. A. (2011). Prediction of dengue incidence using search query surveillance. PLoS Neglected Tropical Diseases, 5(8), e1258. https://doi.org/10.1371/journal.pntd.0001258
-
(2011)
PLoS Neglected Tropical Diseases
, vol.5
, Issue.8
-
-
Althouse, B.M.1
Ng, Y.Y.2
Cummings, D.A.3
-
6
-
-
84921645203
-
Using Google Flu Trends data in forecasting influenza-like–illness related ED visits in Omaha, Nebraska
-
Araz, O. M., Bentley, D., & Muelleman, R. L. (2014). Using Google Flu Trends data in forecasting influenza-like–illness related ED visits in Omaha, Nebraska. The American Journal of Emergency Medicine, 32(9), 1016–1023. https://doi.org/10.1016/j.ajem.2014.05.052
-
(2014)
The American Journal of Emergency Medicine
, vol.32
, Issue.9
, pp. 1016-1023
-
-
Araz, O.M.1
Bentley, D.2
Muelleman, R.L.3
-
7
-
-
85052636338
-
Impact of recent and future climate change on vector-borne diseases
-
Advance online publication.
-
Caminade, C., McIntyre, K. M., & Jones, A. E. (2018). Impact of recent and future climate change on vector-borne diseases. Annals of the New York Academy of Sciences. Advance online publication. https://doi.org/10.1111/nyas.13950
-
(2018)
Annals of the New York Academy of Sciences
-
-
Caminade, C.1
McIntyre, K.M.2
Jones, A.E.3
-
8
-
-
85041961500
-
Lyme disease surveillance in the United States: Looking for ways to cut the Gordian knot
-
Cartter, M. L., Lynfield, R., Feldman, K. A., Hook, S. A., & Hinckley, A. F. (2018). Lyme disease surveillance in the United States: Looking for ways to cut the Gordian knot. Zoonoses and Public Health, 65(2), 227–229. https://doi.org/10.1111/zph.12448
-
(2018)
Zoonoses and Public Health
, vol.65
, Issue.2
, pp. 227-229
-
-
Cartter, M.L.1
Lynfield, R.2
Feldman, K.A.3
Hook, S.A.4
Hinckley, A.F.5
-
9
-
-
80051831902
-
Assessing Google Flu Trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic
-
Cook, S., Conrad, C., Fowlkes, A. L., & Mohebbi, M. H. (2011). Assessing Google Flu Trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic. PLoS ONE, 6(8), e23610. https://doi.org/10.1371/journal.pone.0023610
-
(2011)
PLoS ONE
, vol.6
, Issue.8
-
-
Cook, S.1
Conrad, C.2
Fowlkes, A.L.3
Mohebbi, M.H.4
-
10
-
-
84891911558
-
-
Retrieved from
-
Copeland, P., Romano, R., Zhang, T., Hecht, G., Zigmond, D., & Stefansen, C. (2013). Google disease trends: An update. Retrieved from https://ai.google/research/pubs/pub41763
-
(2013)
Google disease trends: An update
-
-
Copeland, P.1
Romano, R.2
Zhang, T.3
Hecht, G.4
Zigmond, D.5
Stefansen, C.6
-
11
-
-
0035995715
-
Comparing predictive accuracy
-
Diebold, F. X., & Mariano, R. S. (2002). Comparing predictive accuracy. Journal of Business & Economic Statistics, 20(1), 134–144. https://doi.org/10.1198/073500102753410444
-
(2002)
Journal of Business & Economic Statistics
, vol.20
, Issue.1
, pp. 134-144
-
-
Diebold, F.X.1
Mariano, R.S.2
-
12
-
-
84856717649
-
Google Flu Trends: Correlation with emergency department influenza rates and crowding metrics
-
Dugas, A. F., Hsieh, Y. H., Levin, S. R., Pines, J. M., Mareiniss, D. P., Mohareb, A., … Rothman, R. E. (2012). Google Flu Trends: Correlation with emergency department influenza rates and crowding metrics. Clinical Infectious Diseases, 54(4), 463–469. https://doi.org/10.1093/cid/cir883
-
(2012)
Clinical Infectious Diseases
, vol.54
, Issue.4
, pp. 463-469
-
-
Dugas, A.F.1
Hsieh, Y.H.2
Levin, S.R.3
Pines, J.M.4
Mareiniss, D.P.5
Mohareb, A.6
Rothman, R.E.7
-
13
-
-
84874002846
-
Influenza forecasting with Google Flu Trends
-
Dugas, A. F., Jalalpour, M., Gel, Y., Levin, S., Torcaso, F., Igusa, T., & Rothman, R. E. (2013). Influenza forecasting with Google Flu Trends. PLoS ONE, 8(2), e56176. https://doi.org/10.1371/journal.pone.0056176
-
(2013)
PLoS ONE
, vol.8
, Issue.2
-
-
Dugas, A.F.1
Jalalpour, M.2
Gel, Y.3
Levin, S.4
Torcaso, F.5
Igusa, T.6
Rothman, R.E.7
-
14
-
-
60549098239
-
Detecting influenza epidemics using search engine query data
-
Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012–1014. https://doi.org/10.1038/nature07634
-
(2009)
Nature
, vol.457
, Issue.7232
, pp. 1012-1014
-
-
Ginsberg, J.1
Mohebbi, M.H.2
Patel, R.S.3
Brammer, L.4
Smolinski, M.S.5
Brilliant, L.6
-
15
-
-
84895745212
-
Evaluation of Internet-based dengue query data: Google Dengue Trends
-
Gluskin, R. T., Johansson, M. A., Santillana, M., & Brownstein, J. S. (2014). Evaluation of Internet-based dengue query data: Google Dengue Trends. PLoS Neglected Tropical Diseases, 8(2), e2713. https://doi.org/10.1371/journal.pntd.0002713
-
(2014)
PLoS Neglected Tropical Diseases
, vol.8
, Issue.2
-
-
Gluskin, R.T.1
Johansson, M.A.2
Santillana, M.3
Brownstein, J.S.4
-
16
-
-
84929191358
-
Review of Twitter for infectious diseases clinicians: Useful or a waste of time?
-
Goff, D. A., Kullar, R., & Newland, J. G. (2015). Review of Twitter for infectious diseases clinicians: Useful or a waste of time? Clinical Infectious Diseases, 60(10), 1533–1540. https://doi.org/10.1093/cid/civ071
-
(2015)
Clinical Infectious Diseases
, vol.60
, Issue.10
, pp. 1533-1540
-
-
Goff, D.A.1
Kullar, R.2
Newland, J.G.3
-
18
-
-
84900815447
-
-
Retrieved from
-
Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O'Hara-Wild, M., …Yasmeen, F. (2018). forecast: Forecasting functions for time series and linear models. R package version 8.4. Retrieved from https://pkg.robjhyndman.com/forecast
-
(2018)
forecast: Forecasting functions for time series and linear models. R package version 8.4
-
-
Hyndman, R.1
Athanasopoulos, G.2
Bergmeir, C.3
Caceres, G.4
Chhay, L.5
O'Hara-Wild, M.6
Yasmeen, F.7
-
19
-
-
84977575167
-
Google Flu Trends spatial variability validated against emergency department influenza-related visits
-
Klembczyk, J. J., Jalalpour, M., Levin, S., Washington, R. E., Pines, J. M., Rothman, R. E., & Dugas, A. F. (2016). Google Flu Trends spatial variability validated against emergency department influenza-related visits. Journal of Medical Internet Research, 18(6), e175. https://doi.org/10.2196/jmir.5585
-
(2016)
Journal of Medical Internet Research
, vol.18
, Issue.6
-
-
Klembczyk, J.J.1
Jalalpour, M.2
Levin, S.3
Washington, R.E.4
Pines, J.M.5
Rothman, R.E.6
Dugas, A.F.7
-
20
-
-
84896056107
-
Big data. The parable of Google Flu: Traps in big data analysis
-
Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). Big data. The parable of Google Flu: Traps in big data analysis. Science, 343(6176), 1203–1205. https://doi.org/10.1126/science.1248506
-
(2014)
Science
, vol.343
, Issue.6176
, pp. 1203-1205
-
-
Lazer, D.1
Kennedy, R.2
King, G.3
Vespignani, A.4
-
21
-
-
85045261346
-
Capturing public interest toward new tools for controlling human immunodeficiency virus (HIV) infection exploiting data from Google Trends
-
Advance online publication.
-
Mahroum, N., Bragazzi, N. L., Brigo, F., Waknin, R., Sharif, K., Mahagna, H., … Watad, A. (2018). Capturing public interest toward new tools for controlling human immunodeficiency virus (HIV) infection exploiting data from Google Trends. Health Informatics Journal. Advance online publication. https://doi.org/10.1177/1460458218766573
-
(2018)
Health Informatics Journal
-
-
Mahroum, N.1
Bragazzi, N.L.2
Brigo, F.3
Waknin, R.4
Sharif, K.5
Mahagna, H.6
Watad, A.7
-
22
-
-
84949535001
-
Google Flu Trends in Canada: A comparison of digital disease surveillance data with physician consultations and respiratory virus surveillance data, 2010–2014
-
Martin, L. J., Lee, B. E., & Yasui, Y. (2016). Google Flu Trends in Canada: A comparison of digital disease surveillance data with physician consultations and respiratory virus surveillance data, 2010–2014. Epidemiology and Infection, 144(2), 325–332. https://doi.org/10.1017/S0950268815001478
-
(2016)
Epidemiology and Infection
, vol.144
, Issue.2
, pp. 325-332
-
-
Martin, L.J.1
Lee, B.E.2
Yasui, Y.3
-
23
-
-
84928750394
-
Improving Google Flu Trends estimates for the United States through transformation
-
Martin, L. J., Xu, B., & Yasui, Y. (2014). Improving Google Flu Trends estimates for the United States through transformation. PLoS ONE, 9(12), e109209. https://doi.org/10.1371/journal.pone.0109209
-
(2014)
PLoS ONE
, vol.9
, Issue.12
-
-
Martin, L.J.1
Xu, B.2
Yasui, Y.3
-
24
-
-
85044857418
-
Google search trends in psoriasis: A pilot evaluation of global population interests
-
Martinez-Lopez, A., Ruiz-Villaverde, R., & Molina-Leyva, A. (2018). Google search trends in psoriasis: A pilot evaluation of global population interests. Journal of the European Academy of Dermatology and Venereology, 32(10), e370–e372. https://doi.org/10.1111/jdv.14944
-
(2018)
Journal of the European Academy of Dermatology and Venereology
, vol.32
, Issue.10
, pp. e370-e372
-
-
Martinez-Lopez, A.1
Ruiz-Villaverde, R.2
Molina-Leyva, A.3
-
25
-
-
85012923147
-
Forecasting Zika Incidence in the 2016 Latin America outbreak combining traditional disease surveillance with search, social media, and news report data
-
McGough, S. F., Brownstein, J. S., Hawkins, J. B., & Santillana, M. (2017). Forecasting Zika Incidence in the 2016 Latin America outbreak combining traditional disease surveillance with search, social media, and news report data. PLoS Neglected Tropical Diseases, 11(1), e0005295. https://doi.org/10.1371/journal.pntd.0005295
-
(2017)
PLoS Neglected Tropical Diseases
, vol.11
, Issue.1
-
-
McGough, S.F.1
Brownstein, J.S.2
Hawkins, J.B.3
Santillana, M.4
-
26
-
-
79955690250
-
Monitoring influenza activity in the United States: A comparison of traditional surveillance systems with Google Flu Trends
-
Ortiz, J. R., Zhou, H., Shay, D. K., Neuzil, K. M., Fowlkes, A. L., & Goss, C. H. (2011). Monitoring influenza activity in the United States: A comparison of traditional surveillance systems with Google Flu Trends. PLoS ONE, 6(4), e18687. https://doi.org/10.1371/journal.pone.0018687
-
(2011)
PLoS ONE
, vol.6
, Issue.4
-
-
Ortiz, J.R.1
Zhou, H.2
Shay, D.K.3
Neuzil, K.M.4
Fowlkes, A.L.5
Goss, C.H.6
-
27
-
-
85047506775
-
Health information-seeking patterns of the general public and indications for disease surveillance: Register-based study using Lyme disease
-
Pesala, S., Virtanen, M. J., Sane, J., Mustonen, P., Kaila, M., & Helve, O. (2017). Health information-seeking patterns of the general public and indications for disease surveillance: Register-based study using Lyme disease. JMIR Public Health and Surveillance, 3(4), e86. https://doi.org/10.2196/publichealth.8306
-
(2017)
JMIR Public Health and Surveillance
, vol.3
, Issue.4
-
-
Pesala, S.1
Virtanen, M.J.2
Sane, J.3
Mustonen, P.4
Kaila, M.5
Helve, O.6
-
28
-
-
85015154788
-
Evaluating Google Flu Trends in Latin America: Important lessons for the next phase of digital disease detection
-
Pollett, S., Boscardin, W. J., Azziz-Baumgartner, E., Tinoco, Y. O., Soto, G., Romero, C., … Rutherford, G. W. (2017). Evaluating Google Flu Trends in Latin America: Important lessons for the next phase of digital disease detection. Clinical Infectious Diseases, 64(1), 34–41. https://doi.org/10.1093/cid/ciw657
-
(2017)
Clinical Infectious Diseases
, vol.64
, Issue.1
, pp. 34-41
-
-
Pollett, S.1
Boscardin, W.J.2
Azziz-Baumgartner, E.3
Tinoco, Y.O.4
Soto, G.5
Romero, C.6
Rutherford, G.W.7
-
29
-
-
85026846968
-
-
Vienna, Austria, R Foundation for Statistical Computing, Retrieved from
-
R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/
-
(2017)
R: A language and environment for statistical computing
-
-
-
30
-
-
79961207866
-
-
Retrieved from
-
Robert Koch Institut (2009). Epidemiologisches bulletin nr. 5. Retrieved from https://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2009/Ausgaben/05_09.pdf?__blob=publicationFile
-
(2009)
Epidemiologisches bulletin nr. 5
-
-
-
31
-
-
85053703461
-
Impacts of misclassification on Lyme disease surveillance
-
Advance online publication.
-
Rutz, H., Hogan, B., Hook, S., Hinckley, A., & Feldman, K. (2018). Impacts of misclassification on Lyme disease surveillance. Zoonoses and Public Health. Advance online publication. https://doi.org/10.1111/zph.12525
-
(2018)
Zoonoses and Public Health
-
-
Rutz, H.1
Hogan, B.2
Hook, S.3
Hinckley, A.4
Feldman, K.5
-
32
-
-
84946026274
-
Combining search, social media, and traditional data sources to improve influenza surveillance
-
Santillana, M., Nguyen, A. T., Dredze, M., Paul, M. J., Nsoesie, E. O., & Brownstein, J. S. (2015). Combining search, social media, and traditional data sources to improve influenza surveillance. PLoS Computational Biology, 11(10), e1004513. https://doi.org/10.1371/journal.pcbi.1004513
-
(2015)
PLoS Computational Biology
, vol.11
, Issue.10
-
-
Santillana, M.1
Nguyen, A.T.2
Dredze, M.3
Paul, M.J.4
Nsoesie, E.O.5
Brownstein, J.S.6
-
33
-
-
85043456523
-
Global impact of World Sepsis Day on digital awareness of sepsis: An evaluation using Google Trends
-
Savelkoel, J., Claushuis, T. A. M., van Engelen, T. S. R., Scheres, L. J. J., & Wiersinga, W. J. (2018). Global impact of World Sepsis Day on digital awareness of sepsis: An evaluation using Google Trends. Critical Care, 22(1), 61. https://doi.org/10.1186/s13054-018-1981-5
-
(2018)
Critical Care
, vol.22
, Issue.1
, pp. 61
-
-
Savelkoel, J.1
Claushuis, T.A.M.2
van Engelen, T.S.R.3
Scheres, L.J.J.4
Wiersinga, W.J.5
-
34
-
-
85029609953
-
What can Google and Wikipedia can tell us about a disease? Big Data trends analysis in Systemic Lupus Erythematosus
-
Sciascia, S., & Radin, M. (2017). What can Google and Wikipedia can tell us about a disease? Big Data trends analysis in Systemic Lupus Erythematosus. Int J Med Inform, 107, 65–69. https://doi.org/10.1016/j.ijmedinf.2017.09.002
-
(2017)
Int J Med Inform
, vol.107
, pp. 65-69
-
-
Sciascia, S.1
Radin, M.2
-
35
-
-
77953036712
-
The utility of "Google Trends" for epidemiological research: Lyme disease as an example
-
Seifter, A., Schwarzwalder, A., Geis, K., & Aucott, J. (2010). The utility of "Google Trends" for epidemiological research: Lyme disease as an example. Geospatial Health, 4(2), 135–137. https://doi.org/10.4081/gh.2010.195
-
(2010)
Geospatial Health
, vol.4
, Issue.2
, pp. 135-137
-
-
Seifter, A.1
Schwarzwalder, A.2
Geis, K.3
Aucott, J.4
-
36
-
-
85042299225
-
Vector-borne diseases and climate change: A European perspective
-
Semenza, J. C., & Suk, J. E. (2018). Vector-borne diseases and climate change: A European perspective. FEMS Microbiology Letters, 365(2). https://doi.org/10.1093/femsle/fnx244
-
(2018)
FEMS Microbiology Letters
, vol.365
, Issue.2
-
-
Semenza, J.C.1
Suk, J.E.2
-
37
-
-
85019346031
-
Google Dengue Trends: An indicator of epidemic behavior. The Venezuelan Case
-
Strauss, R. A., Castro, J. S., Reintjes, R., & Torres, J. R. (2017). Google Dengue Trends: An indicator of epidemic behavior. The Venezuelan Case. Int J Med Inform, 104, 26–30. https://doi.org/10.1016/j.ijmedinf.2017.05.003
-
(2017)
Int J Med Inform
, vol.104
, pp. 26-30
-
-
Strauss, R.A.1
Castro, J.S.2
Reintjes, R.3
Torres, J.R.4
-
38
-
-
85009227815
-
Dynamic forecasting of Zika epidemics using Google Trends
-
Teng, Y., Bi, D., Xie, G., Jin, Y., Huang, Y., Lin, B., … Tong, Y. (2017). Dynamic forecasting of Zika epidemics using Google Trends. PLoS ONE, 12(1), e0165085. https://doi.org/10.1371/journal.pone.0165085
-
(2017)
PLoS ONE
, vol.12
, Issue.1
-
-
Teng, Y.1
Bi, D.2
Xie, G.3
Jin, Y.4
Huang, Y.5
Lin, B.6
Tong, Y.7
-
39
-
-
84909991578
-
Emergency department and 'Google Flu Trends' data as syndromic surveillance indicators for seasonal influenza
-
Thompson, L. H., Malik, M. T., Gumel, A., Strome, T., & Mahmud, S. M. (2014). Emergency department and 'Google Flu Trends' data as syndromic surveillance indicators for seasonal influenza. Epidemiology and Infection, 142(11), 2397–2405. https://doi.org/10.1017/S0950268813003464
-
(2014)
Epidemiology and Infection
, vol.142
, Issue.11
, pp. 2397-2405
-
-
Thompson, L.H.1
Malik, M.T.2
Gumel, A.3
Strome, T.4
Mahmud, S.M.5
-
40
-
-
85021788238
-
Too far to care? Measuring public attention and fear for Ebola using Twitter
-
van Lent, L. G., Sungur, H., Kunneman, F. A., van de Velde, B., & Das, E. (2017). Too far to care? Measuring public attention and fear for Ebola using Twitter. Journal of Medical Internet Research, 19(6), e193. https://doi.org/10.2196/jmir.7219
-
(2017)
Journal of Medical Internet Research
, vol.19
, Issue.6
-
-
van Lent, L.G.1
Sungur, H.2
Kunneman, F.A.3
van de Velde, B.4
Das, E.5
-
41
-
-
85047775170
-
Economic recession and obesity-related Internet search behavior in Taiwan: Analysis of Google Trends Data
-
Wang, H. W., & Chen, D. R. (2018). Economic recession and obesity-related Internet search behavior in Taiwan: Analysis of Google Trends Data. JMIR Public Health and Surveillance, 4(2), e37. https://doi.org/10.2196/publichealth.7314
-
(2018)
JMIR Public Health and Surveillance
, vol.4
, Issue.2
-
-
Wang, H.W.1
Chen, D.R.2
-
42
-
-
85041226484
-
Vesicular stomatitis forecasting based on Google Trends
-
Wang, J., Zhang, T., Lu, Y., Zhou, G., Chen, Q., & Niu, B. (2018). Vesicular stomatitis forecasting based on Google Trends. PLoS ONE, 13(1), e0192141. https://doi.org/10.1371/journal.pone.0192141
-
(2018)
PLoS ONE
, vol.13
, Issue.1
-
-
Wang, J.1
Zhang, T.2
Lu, Y.3
Zhou, G.4
Chen, Q.5
Niu, B.6
-
43
-
-
84947998511
-
Accurate estimation of influenza epidemics using Google search data via ARGO
-
Yang, S., Santillana, M., & Kou, S. C. (2015). Accurate estimation of influenza epidemics using Google search data via ARGO. Proceedings of the National Academy of Sciences USA, 112(47), 14473–14478. https://doi.org/10.1073/pnas.1515373112
-
(2015)
Proceedings of the National Academy of Sciences USA
, vol.112
, Issue.47
, pp. 14473-14478
-
-
Yang, S.1
Santillana, M.2
Kou, S.C.3
-
44
-
-
85047070411
-
Using Google Trends and ambient temperature to predict seasonal influenza outbreaks
-
Zhang, Y., Bambrick, H., Mengersen, K., Tong, S., & Hu, W. (2018). Using Google Trends and ambient temperature to predict seasonal influenza outbreaks. Environment International, 117, 284–291. https://doi.org/10.1016/j.envint.2018.05.016
-
(2018)
Environment International
, vol.117
, pp. 284-291
-
-
Zhang, Y.1
Bambrick, H.2
Mengersen, K.3
Tong, S.4
Hu, W.5
-
45
-
-
85047820555
-
Seasonality of cellulitis: Evidence from Google Trends
-
Zhang, X., Dang, S., Ji, F., Shi, J., Li, Y., Li, M., … Wang, W. (2018). Seasonality of cellulitis: Evidence from Google Trends. Infection and Drug Resistance, 11, 689–693. https://doi.org/10.2147/IDR.S163290
-
(2018)
Infection and Drug Resistance
, vol.11
, pp. 689-693
-
-
Zhang, X.1
Dang, S.2
Ji, F.3
Shi, J.4
Li, Y.5
Li, M.6
Wang, W.7
|