메뉴 건너뛰기




Volumn 31, Issue 4, 2018, Pages 513-519

MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling

Author keywords

Convolutional neural networks; Deep learning; Endocrinology; Machine learning; Pediatric radiology; Radiology

Indexed keywords

BONE; COMPUTER AIDED DIAGNOSIS; CONVOLUTION; ENDOCRINOLOGY; ERRORS; IMAGE SEGMENTATION; LEARNING SYSTEMS; MEAN SQUARE ERROR; MEDICAL IMAGING; NETWORK ARCHITECTURE; NETWORK LAYERS; NEURAL NETWORKS; PEDIATRICS; PICTURE ARCHIVING AND COMMUNICATION SYSTEMS; RADIATION; RADIOGRAPHY; RADIOLOGY; STATISTICAL TESTS;

EID: 85045052300     PISSN: 08971889     EISSN: 1618727X     Source Type: Journal    
DOI: 10.1007/s10278-018-0053-3     Document Type: Article
Times cited : (76)

References (31)
  • 1
    • 84966713026 scopus 로고    scopus 로고
    • Bone age assessment practices in infants and older children among Society for Pediatric Radiology members
    • PID: 27173981
    • Breen MA et al.: Bone age assessment practices in infants and older children among Society for Pediatric Radiology members. Pediatr Radiol 46(9):1269–1274, 2016
    • (2016) Pediatr Radiol , vol.46 , Issue.9 , pp. 1269-1274
    • Breen, M.A.1
  • 2
    • 0032777655 scopus 로고    scopus 로고
    • Bone age assessment: a large scale comparison of the Greulich and Pyle, and Tanner and Whitehouse (TW2) methods
    • PID: 10490531
    • Bull RK et al.: Bone age assessment: a large scale comparison of the Greulich and Pyle, and Tanner and Whitehouse (TW2) methods. Arch Dis Child 81(2):172–173, 1999
    • (1999) Arch Dis Child , vol.81 , Issue.2 , pp. 172-173
    • Bull, R.K.1
  • 3
    • 77957658511 scopus 로고    scopus 로고
    • Validation and reference values of automated bone age determination for four ethnicities
    • PID: 20691616
    • Thodberg HH, Sävendahl L: Validation and reference values of automated bone age determination for four ethnicities. Acad Radiol 17(11):1425–1432, 2010
    • (2010) Acad Radiol , vol.17 , Issue.11 , pp. 1425-1432
    • Thodberg, H.H.1    Sävendahl, L.2
  • 4
    • 0029907883 scopus 로고    scopus 로고
    • Bone age in children of diverse ethnicity
    • PID: 8956565
    • Ontell FK et al.: Bone age in children of diverse ethnicity. AJR. Am J Roentgenol 167(6):1395–1398, 1996
    • (1996) AJR. Am J Roentgenol , vol.167 , Issue.6 , pp. 1395-1398
    • Ontell, F.K.1
  • 5
    • 0035139728 scopus 로고    scopus 로고
    • Effect of knowledge of chronologic age on the variability of pediatric bone age determined using the Greulich and Pyle standards
    • Berst MJ et al.: Effect of knowledge of chronologic age on the variability of pediatric bone age determined using the Greulich and Pyle standards. Am J Roentgenol 176(2):507–510, 2001
    • (2001) Am J Roentgenol , vol.176 , Issue.2 , pp. 507-510
    • Berst, M.J.1
  • 6
    • 84993995751 scopus 로고    scopus 로고
    • Deep learning for automated skeletal bone age assessment in X-ray images
    • PID: 27816861
    • Spampinato C et al.: Deep learning for automated skeletal bone age assessment in X-ray images. Medical image analysis 36:41–51, 2017
    • (2017) Medical image analysis , vol.36 , pp. 41-51
    • Spampinato, C.1
  • 7
    • 58049191066 scopus 로고    scopus 로고
    • The BoneXpert method for automated determination of skeletal maturity
    • PID: 19116188
    • Thodberg HH et al.: The BoneXpert method for automated determination of skeletal maturity. IEEE Trans Med Imaging 28(1):52–66, 2009
    • (2009) IEEE Trans Med Imaging , vol.28 , Issue.1 , pp. 52-66
    • Thodberg, H.H.1
  • 8
    • 85014613499 scopus 로고    scopus 로고
    • Fully Automated Deep Learning System for Bone Age Assessment
    • Lee H, et al: Fully Automated Deep Learning System for Bone Age Assessment. J Digit Imaging (2017): 1–15
    • (2017) J Digit Imaging , pp. 1-15
    • Lee, H.1
  • 9
    • 84983670549 scopus 로고    scopus 로고
    • Multi-scale Convolutional Neural Networks for Lung Nodule Classification
    • PID: 26221705
    • Shen W, Zhou M, Yang F, Yang C, Tian J: Multi-scale Convolutional Neural Networks for Lung Nodule Classification. Inf Process Med Imaging 24:588–599, 2015
    • (2015) Inf Process Med Imaging , vol.24 , pp. 588-599
    • Shen, W.1    Zhou, M.2    Yang, F.3    Yang, C.4    Tian, J.5
  • 10
    • 84968662241 scopus 로고    scopus 로고
    • Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network
    • [Internet], May [cited 2017 Jul 2], Available from
    • Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S: Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network. IEEE Trans Med Imaging [Internet]. 2016 May [cited 2017 Jul 2];35(5):1207–16. Available from: http://ieeexplore.ieee.org/document/7422082/
    • (2016) IEEE Trans Med Imaging , vol.35 , Issue.5 , pp. 1207-1216
    • Anthimopoulos, M.1    Christodoulidis, S.2    Ebner, L.3    Christe, A.4    Mougiakakou, S.5
  • 11
    • 84980350859 scopus 로고    scopus 로고
    • Large scale deep learning for computer aided detection of mammographic lesions
    • Internet, Elsevier, Jan 1 [cited 2017 Sep 18]; 35:303–12. Available from
    • Kooi T, Litjens G, van Ginneken B, Gubern-Mérida A, Sánchez CI, Mann R, et al: Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal [Internet]. Elsevier; 2017 Jan 1 [cited 2017 Sep 18]; 35:303–12. Available from: http://www.sciencedirect.com/science/article/pii/S1361841516301244
    • (2017) Med Image Anal
    • Kooi, T.1    Litjens, G.2    van Ginneken, B.3    Gubern-Mérida, A.4    Sánchez, C.I.5    Mann, R.6
  • 12
    • 84968542337 scopus 로고    scopus 로고
    • Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks
    • Internet, May, cited 2017 Jul 2
    • Dou Q, Chen H, Yu L, Zhao L, Qin J, Wang D, et al: Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks. IEEE Trans Med Imaging [Internet]. 2016 May [cited 2017 Jul 2];35(5):1182–95. Available from: http://ieeexplore.ieee.org/document/7403984/
    • (2016) IEEE Trans Med Imaging , vol.35 , Issue.5 , pp. 1182-1195
    • Dou, Q.1    Chen, H.2    Yu, L.3    Zhao, L.4    Qin, J.5    Wang, D.6
  • 13
    • 84968610616 scopus 로고    scopus 로고
    • Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images
    • Internet, May, cited 2017 Jul 2
    • Pereira S, Pinto A, Alves V, Silva CA: Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images. IEEE Trans Med Imaging [Internet]. 2016 May [cited 2017 Jul 2];35(5):1240–51. Available from: http://ieeexplore.ieee.org/document/7426413/
    • (2016) IEEE Trans Med Imaging , vol.35 , Issue.5 , pp. 1240-1251
    • Pereira, S.1    Pinto, A.2    Alves, V.3    Silva, C.A.4
  • 14
    • 85018683581 scopus 로고    scopus 로고
    • Fully Convolutional Deep Residual Neural Networks for Brain Tumor Segmentation
    • Crimi A, Menze B, Maier O, Reyes M, Winzeck S, Handels H, editors, with the Challenges on BRATS, ISLES and mTOP 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016, Revised [Internet]. Cham: Springer International Publishing; 2016, Available from
    • Chang PD: Fully Convolutional Deep Residual Neural Networks for Brain Tumor Segmentation. In: Crimi A, Menze B, Maier O, Reyes M, Winzeck S, Handels H, editors. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: Second International Workshop, BrainLes 2016, with the Challenges on BRATS, ISLES and mTOP 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016, Revised [Internet]. Cham: Springer International Publishing; 2016. p. 108–18. Available from: 10.1007/978-3-319-55524-9_11
    • (2016) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: Second International Workshop, Brainles , pp. 108-118
    • Chang, P.D.1
  • 15
    • 85016300110 scopus 로고    scopus 로고
    • A multi-resolution approach for spinal metastasis detection using deep Siamese neural networks
    • PID: 28364643
    • Wang J, Fang Z, Lang N, Yuan H, Su MY, Baldi P: A multi-resolution approach for spinal metastasis detection using deep Siamese neural networks. Comput Biol Med 84:137–146, 2017
    • (2017) Comput Biol Med , vol.84 , pp. 137-146
    • Wang, J.1    Fang, Z.2    Lang, N.3    Yuan, H.4    Su, M.Y.5    Baldi, P.6
  • 16
    • 0034668333 scopus 로고    scopus 로고
    • Digital hand atlas and web-based bone age assessment: system design and implementation
    • PID: 10940607
    • Cao F et al.: Digital hand atlas and web-based bone age assessment: system design and implementation. Comput Med Imaging Graph 24(5):297–307, 2000
    • (2000) Comput Med Imaging Graph , vol.24 , Issue.5 , pp. 297-307
    • Cao, F.1
  • 17
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y et al.: Gradient-based learning applied to document recognition. Proceed IEEE 86(11):2278–2324, 1998
    • (1998) Proceed IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1
  • 19
    • 85028013193 scopus 로고    scopus 로고
    • Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
    • Szegedy C, et al: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. AAAI. 2017
    • (2017) AAAI
    • Szegedy, C.1
  • 26
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: a simple way to prevent neural networks from overfitting
    • Srivastava N et al.: Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958, 2014
    • (2014) J Mach Learn Res , vol.15 , Issue.1 , pp. 1929-1958
    • Srivastava, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.