-
1
-
-
84966713026
-
Bone age assessment practices in infants and older children among Society for Pediatric Radiology members
-
PID: 27173981
-
Breen MA et al.: Bone age assessment practices in infants and older children among Society for Pediatric Radiology members. Pediatr Radiol 46(9):1269–1274, 2016
-
(2016)
Pediatr Radiol
, vol.46
, Issue.9
, pp. 1269-1274
-
-
Breen, M.A.1
-
2
-
-
0032777655
-
Bone age assessment: a large scale comparison of the Greulich and Pyle, and Tanner and Whitehouse (TW2) methods
-
PID: 10490531
-
Bull RK et al.: Bone age assessment: a large scale comparison of the Greulich and Pyle, and Tanner and Whitehouse (TW2) methods. Arch Dis Child 81(2):172–173, 1999
-
(1999)
Arch Dis Child
, vol.81
, Issue.2
, pp. 172-173
-
-
Bull, R.K.1
-
3
-
-
77957658511
-
Validation and reference values of automated bone age determination for four ethnicities
-
PID: 20691616
-
Thodberg HH, Sävendahl L: Validation and reference values of automated bone age determination for four ethnicities. Acad Radiol 17(11):1425–1432, 2010
-
(2010)
Acad Radiol
, vol.17
, Issue.11
, pp. 1425-1432
-
-
Thodberg, H.H.1
Sävendahl, L.2
-
4
-
-
0029907883
-
Bone age in children of diverse ethnicity
-
PID: 8956565
-
Ontell FK et al.: Bone age in children of diverse ethnicity. AJR. Am J Roentgenol 167(6):1395–1398, 1996
-
(1996)
AJR. Am J Roentgenol
, vol.167
, Issue.6
, pp. 1395-1398
-
-
Ontell, F.K.1
-
5
-
-
0035139728
-
Effect of knowledge of chronologic age on the variability of pediatric bone age determined using the Greulich and Pyle standards
-
Berst MJ et al.: Effect of knowledge of chronologic age on the variability of pediatric bone age determined using the Greulich and Pyle standards. Am J Roentgenol 176(2):507–510, 2001
-
(2001)
Am J Roentgenol
, vol.176
, Issue.2
, pp. 507-510
-
-
Berst, M.J.1
-
6
-
-
84993995751
-
Deep learning for automated skeletal bone age assessment in X-ray images
-
PID: 27816861
-
Spampinato C et al.: Deep learning for automated skeletal bone age assessment in X-ray images. Medical image analysis 36:41–51, 2017
-
(2017)
Medical image analysis
, vol.36
, pp. 41-51
-
-
Spampinato, C.1
-
7
-
-
58049191066
-
The BoneXpert method for automated determination of skeletal maturity
-
PID: 19116188
-
Thodberg HH et al.: The BoneXpert method for automated determination of skeletal maturity. IEEE Trans Med Imaging 28(1):52–66, 2009
-
(2009)
IEEE Trans Med Imaging
, vol.28
, Issue.1
, pp. 52-66
-
-
Thodberg, H.H.1
-
8
-
-
85014613499
-
Fully Automated Deep Learning System for Bone Age Assessment
-
Lee H, et al: Fully Automated Deep Learning System for Bone Age Assessment. J Digit Imaging (2017): 1–15
-
(2017)
J Digit Imaging
, pp. 1-15
-
-
Lee, H.1
-
9
-
-
84983670549
-
Multi-scale Convolutional Neural Networks for Lung Nodule Classification
-
PID: 26221705
-
Shen W, Zhou M, Yang F, Yang C, Tian J: Multi-scale Convolutional Neural Networks for Lung Nodule Classification. Inf Process Med Imaging 24:588–599, 2015
-
(2015)
Inf Process Med Imaging
, vol.24
, pp. 588-599
-
-
Shen, W.1
Zhou, M.2
Yang, F.3
Yang, C.4
Tian, J.5
-
10
-
-
84968662241
-
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network
-
[Internet], May [cited 2017 Jul 2], Available from
-
Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S: Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network. IEEE Trans Med Imaging [Internet]. 2016 May [cited 2017 Jul 2];35(5):1207–16. Available from: http://ieeexplore.ieee.org/document/7422082/
-
(2016)
IEEE Trans Med Imaging
, vol.35
, Issue.5
, pp. 1207-1216
-
-
Anthimopoulos, M.1
Christodoulidis, S.2
Ebner, L.3
Christe, A.4
Mougiakakou, S.5
-
11
-
-
84980350859
-
Large scale deep learning for computer aided detection of mammographic lesions
-
Internet, Elsevier, Jan 1 [cited 2017 Sep 18]; 35:303–12. Available from
-
Kooi T, Litjens G, van Ginneken B, Gubern-Mérida A, Sánchez CI, Mann R, et al: Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal [Internet]. Elsevier; 2017 Jan 1 [cited 2017 Sep 18]; 35:303–12. Available from: http://www.sciencedirect.com/science/article/pii/S1361841516301244
-
(2017)
Med Image Anal
-
-
Kooi, T.1
Litjens, G.2
van Ginneken, B.3
Gubern-Mérida, A.4
Sánchez, C.I.5
Mann, R.6
-
12
-
-
84968542337
-
Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks
-
Internet, May, cited 2017 Jul 2
-
Dou Q, Chen H, Yu L, Zhao L, Qin J, Wang D, et al: Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks. IEEE Trans Med Imaging [Internet]. 2016 May [cited 2017 Jul 2];35(5):1182–95. Available from: http://ieeexplore.ieee.org/document/7403984/
-
(2016)
IEEE Trans Med Imaging
, vol.35
, Issue.5
, pp. 1182-1195
-
-
Dou, Q.1
Chen, H.2
Yu, L.3
Zhao, L.4
Qin, J.5
Wang, D.6
-
13
-
-
84968610616
-
Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images
-
Internet, May, cited 2017 Jul 2
-
Pereira S, Pinto A, Alves V, Silva CA: Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images. IEEE Trans Med Imaging [Internet]. 2016 May [cited 2017 Jul 2];35(5):1240–51. Available from: http://ieeexplore.ieee.org/document/7426413/
-
(2016)
IEEE Trans Med Imaging
, vol.35
, Issue.5
, pp. 1240-1251
-
-
Pereira, S.1
Pinto, A.2
Alves, V.3
Silva, C.A.4
-
14
-
-
85018683581
-
Fully Convolutional Deep Residual Neural Networks for Brain Tumor Segmentation
-
Crimi A, Menze B, Maier O, Reyes M, Winzeck S, Handels H, editors, with the Challenges on BRATS, ISLES and mTOP 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016, Revised [Internet]. Cham: Springer International Publishing; 2016, Available from
-
Chang PD: Fully Convolutional Deep Residual Neural Networks for Brain Tumor Segmentation. In: Crimi A, Menze B, Maier O, Reyes M, Winzeck S, Handels H, editors. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: Second International Workshop, BrainLes 2016, with the Challenges on BRATS, ISLES and mTOP 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016, Revised [Internet]. Cham: Springer International Publishing; 2016. p. 108–18. Available from: 10.1007/978-3-319-55524-9_11
-
(2016)
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: Second International Workshop, Brainles
, pp. 108-118
-
-
Chang, P.D.1
-
15
-
-
85016300110
-
A multi-resolution approach for spinal metastasis detection using deep Siamese neural networks
-
PID: 28364643
-
Wang J, Fang Z, Lang N, Yuan H, Su MY, Baldi P: A multi-resolution approach for spinal metastasis detection using deep Siamese neural networks. Comput Biol Med 84:137–146, 2017
-
(2017)
Comput Biol Med
, vol.84
, pp. 137-146
-
-
Wang, J.1
Fang, Z.2
Lang, N.3
Yuan, H.4
Su, M.Y.5
Baldi, P.6
-
16
-
-
0034668333
-
Digital hand atlas and web-based bone age assessment: system design and implementation
-
PID: 10940607
-
Cao F et al.: Digital hand atlas and web-based bone age assessment: system design and implementation. Comput Med Imaging Graph 24(5):297–307, 2000
-
(2000)
Comput Med Imaging Graph
, vol.24
, Issue.5
, pp. 297-307
-
-
Cao, F.1
-
17
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun Y et al.: Gradient-based learning applied to document recognition. Proceed IEEE 86(11):2278–2324, 1998
-
(1998)
Proceed IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
-
19
-
-
85028013193
-
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
-
Szegedy C, et al: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. AAAI. 2017
-
(2017)
AAAI
-
-
Szegedy, C.1
-
26
-
-
84904163933
-
Dropout: a simple way to prevent neural networks from overfitting
-
Srivastava N et al.: Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958, 2014
-
(2014)
J Mach Learn Res
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
|