메뉴 건너뛰기




Volumn 517, Issue , 2014, Pages 236-245

A multi-scale relevance vector regression approach for daily urban water demand forecasting

Author keywords

Adaptive chaos particle swarm optimization; Multi scale; Relevance vector regression; Stationary wavelet transform; Water demand forecasting

Indexed keywords

CHAOS PARTICLE SWARM OPTIMIZATIONS; MULTI-SCALE; RELEVANCE VECTOR REGRESSION; STATIONARY WAVELET TRANSFORMS; WATER DEMAND FORECASTING;

EID: 84904904412     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2014.05.033     Document Type: Article
Times cited : (86)

References (45)
  • 1
    • 41949086697 scopus 로고    scopus 로고
    • Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis
    • Adamowski J.F. Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis. J. Hydrol. 2008, 353(3-4):247-266.
    • (2008) J. Hydrol. , vol.353 , Issue.3-4 , pp. 247-266
    • Adamowski, J.F.1
  • 2
    • 77956838672 scopus 로고    scopus 로고
    • Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ANN learning algorithms
    • Adamowski J., Karapataki C. Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ANN learning algorithms. J. Hydrol. Eng. 2010, 15(10):729-743.
    • (2010) J. Hydrol. Eng. , vol.15 , Issue.10 , pp. 729-743
    • Adamowski, J.1    Karapataki, C.2
  • 3
    • 45349104955 scopus 로고    scopus 로고
    • Freshwater consumption in Kuwait: analysis and forecasting
    • Alhumoud J.M. Freshwater consumption in Kuwait: analysis and forecasting. J. Water Supply Res. Technol.-AQUA 2008, 57(4):279-288.
    • (2008) J. Water Supply Res. Technol.-AQUA , vol.57 , Issue.4 , pp. 279-288
    • Alhumoud, J.M.1
  • 4
    • 79952708249 scopus 로고    scopus 로고
    • Identifying prominent explanatory variables for water demand prediction using artificial neural networks: a case study of Bangkok
    • Babel M.S., Shinde V.R. Identifying prominent explanatory variables for water demand prediction using artificial neural networks: a case study of Bangkok. Water Resour. Manage. 2011, 25:1653-1676.
    • (2011) Water Resour. Manage. , vol.25 , pp. 1653-1676
    • Babel, M.S.1    Shinde, V.R.2
  • 5
    • 84860441149 scopus 로고    scopus 로고
    • A novel mixed method smart metering approach to reconciling differences between perceived and actual residential end use water consumption
    • Beal C.D., Stewart R.A., Fielding K. A novel mixed method smart metering approach to reconciling differences between perceived and actual residential end use water consumption. J. Cleaner Prod. 2011, 10.1016/j.jclepro.09.007.
    • (2011) J. Cleaner Prod.
    • Beal, C.D.1    Stewart, R.A.2    Fielding, K.3
  • 6
    • 0003627432 scopus 로고    scopus 로고
    • Forecasting Urban Water Demand
    • second ed. American Waterworks Association.
    • Billings, B., Jones, C., 2008. Forecasting Urban Water Demand, second ed. American Waterworks Association.
    • (2008)
    • Billings, B.1    Jones, C.2
  • 7
    • 80053344512 scopus 로고    scopus 로고
    • A hybrid CPSO-SQP method for economic dispatch considering the valve-point effects
    • Cai J., Li Q., Li L., Peng H., Yang Y. A hybrid CPSO-SQP method for economic dispatch considering the valve-point effects. Energy Convers. Manage. 2012, 53(1):175-181.
    • (2012) Energy Convers. Manage. , vol.53 , Issue.1 , pp. 175-181
    • Cai, J.1    Li, Q.2    Li, L.3    Peng, H.4    Yang, Y.5
  • 8
    • 77950622616 scopus 로고    scopus 로고
    • Performance of combined double seasonal univariate time series models for forecasting water demand
    • Caiado J. Performance of combined double seasonal univariate time series models for forecasting water demand. J. Hydrol. Eng. 2010, 15(3):215-222.
    • (2010) J. Hydrol. Eng. , vol.15 , Issue.3 , pp. 215-222
    • Caiado, J.1
  • 9
    • 84865528766 scopus 로고    scopus 로고
    • Forecasting urban water demand via wavelet-denoising and neural network models, case study: city of Syracuse, Italy
    • Campisi-Pinto S., Adamowski J., Oron G. Forecasting urban water demand via wavelet-denoising and neural network models, case study: city of Syracuse, Italy. Water Resour. Manage. 2012, 26(12):3539-3558.
    • (2012) Water Resour. Manage. , vol.26 , Issue.12 , pp. 3539-3558
    • Campisi-Pinto, S.1    Adamowski, J.2    Oron, G.3
  • 10
    • 41149106828 scopus 로고    scopus 로고
    • Probabilistic prediction of urban water consumption using the SCEM-UA algorithm
    • Cutore P., Campisano A., Kapelan Z., Modica C., Savic D. Probabilistic prediction of urban water consumption using the SCEM-UA algorithm. Urban Water J. 2008, 5(2):125-132.
    • (2008) Urban Water J. , vol.5 , Issue.2 , pp. 125-132
    • Cutore, P.1    Campisano, A.2    Kapelan, Z.3    Modica, C.4    Savic, D.5
  • 12
    • 84904885687 scopus 로고    scopus 로고
    • GUI for computing center-frequency of the scale and wavelet functions and its applications
    • Fan J., Liu M., Hai Y., Wang L. GUI for computing center-frequency of the scale and wavelet functions and its applications. Sci. Technol. Rev. 2007, 25(24):36-39.
    • (2007) Sci. Technol. Rev. , vol.25 , Issue.24 , pp. 36-39
    • Fan, J.1    Liu, M.2    Hai, Y.3    Wang, L.4
  • 13
    • 77649187529 scopus 로고    scopus 로고
    • Comparative analysis of neural network techniques for predicting water consumption time series
    • Firat M., Turan M.E., Yurdusev M.A. Comparative analysis of neural network techniques for predicting water consumption time series. J. Hydrol. 2010, 384(1-2):46-51.
    • (2010) J. Hydrol. , vol.384 , Issue.1-2 , pp. 46-51
    • Firat, M.1    Turan, M.E.2    Yurdusev, M.A.3
  • 14
    • 78549256372 scopus 로고    scopus 로고
    • Predictive models for forecasting hourly urban water demand
    • Herrera M., Torgo L., Izquierdo J., Pe´rez-Garci´a R. Predictive models for forecasting hourly urban water demand. J. Hydrol. 2010, 387(1-2):141-150.
    • (2010) J. Hydrol. , vol.387 , Issue.1-2 , pp. 141-150
    • Herrera, M.1    Torgo, L.2    Izquierdo, J.3    Pe´rez-Garci´a, R.4
  • 15
    • 0001616408 scopus 로고
    • An approach to error-estimation in the application of dimension algorithms
    • Holzfuss J., Mayer-Kress G. An approach to error-estimation in the application of dimension algorithms. Dimensions Entropies Chaot. Syst. 1986, 32:114-122.
    • (1986) Dimensions Entropies Chaot. Syst. , vol.32 , pp. 114-122
    • Holzfuss, J.1    Mayer-Kress, G.2
  • 17
    • 80053171957 scopus 로고    scopus 로고
    • A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey
    • Kiran M.S., O¨zceylan E., Gu¨ndu¨z M., Paksoy T. A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey. Energy Convers. Manage. 2012, 53(1):75-83.
    • (2012) Energy Convers. Manage. , vol.53 , Issue.1 , pp. 75-83
    • Kiran, M.S.1    O¨zceylan, E.2    Gu¨ndu¨z, M.3    Paksoy, T.4
  • 18
    • 0002624834 scopus 로고    scopus 로고
    • State space reconstruction parameters in the analysis of chaotic time series the role of the time window length
    • Kugiumtzis D. State space reconstruction parameters in the analysis of chaotic time series the role of the time window length. Physics D 1996, 95(1):13-28.
    • (1996) Physics D , vol.95 , Issue.1 , pp. 13-28
    • Kugiumtzis, D.1
  • 19
    • 77954031823 scopus 로고    scopus 로고
    • Integration of particle swarm optimization-based fuzzy neural network and artificial neural network for supplier selection
    • Kuo R.J., Hong S.Y., Huang Y.C. Integration of particle swarm optimization-based fuzzy neural network and artificial neural network for supplier selection. Appl. Math. Model. 2010, 34(12):3976-3990.
    • (2010) Appl. Math. Model. , vol.34 , Issue.12 , pp. 3976-3990
    • Kuo, R.J.1    Hong, S.Y.2    Huang, Y.C.3
  • 20
    • 77955057425 scopus 로고    scopus 로고
    • Space-time forecasting using soft geostatistics: a case study in forecasting municipal water demand for Phoenix, Arizona
    • Lee S., Wentz E., Gober P. Space-time forecasting using soft geostatistics: a case study in forecasting municipal water demand for Phoenix, Arizona. Stoch. Environ. Res. Risk Assess. 2010, 24(2):283-295.
    • (2010) Stoch. Environ. Res. Risk Assess. , vol.24 , Issue.2 , pp. 283-295
    • Lee, S.1    Wentz, E.2    Gober, P.3
  • 21
    • 42349100304 scopus 로고    scopus 로고
    • Integration of fuzzy logic and chaos theory
    • first ed. Springer Publishing Company.
    • Li, Z., Chen, G., 2010. Integration of fuzzy logic and chaos theory, first ed. Springer Publishing Company.
    • (2010)
    • Li, Z.1    Chen, G.2
  • 22
    • 79953234385 scopus 로고    scopus 로고
    • Separation of vibration-induced signal of oil debris sensor for vibration monitoring
    • Li C., Liang M. Separation of vibration-induced signal of oil debris sensor for vibration monitoring. Smart Mater. Struct. 2011, 20(4):045016.
    • (2011) Smart Mater. Struct. , vol.20 , Issue.4 , pp. 045016
    • Li, C.1    Liang, M.2
  • 23
    • 33745903385 scopus 로고    scopus 로고
    • Next-day power market clearing prince forecasting using artificial fish-swarm based neural network
    • Li C., Wang S. Next-day power market clearing prince forecasting using artificial fish-swarm based neural network. Lect. Notes Comput. Sci. 2006, 3972:1290-1295.
    • (2006) Lect. Notes Comput. Sci. , vol.3972 , pp. 1290-1295
    • Li, C.1    Wang, S.2
  • 24
    • 84861824519 scopus 로고    scopus 로고
    • Vibration suppression using two-terminal flywheel. Part I: Modeling and characterization
    • Li C., Liang M., Wang Y., Dong Y. Vibration suppression using two-terminal flywheel. Part I: Modeling and characterization. J. Vib. Control 2012, 18(8):1096-1105.
    • (2012) J. Vib. Control , vol.18 , Issue.8 , pp. 1096-1105
    • Li, C.1    Liang, M.2    Wang, Y.3    Dong, Y.4
  • 26
    • 41949140720 scopus 로고    scopus 로고
    • Wavelet decomposition and autoregressive model for time series prediction
    • Mabrouk A.B., Abdallah N.B., Dhifaoui Z. Wavelet decomposition and autoregressive model for time series prediction. Appl. Math. Comput. 2008, 199(1):334-340.
    • (2008) Appl. Math. Comput. , vol.199 , Issue.1 , pp. 334-340
    • Mabrouk, A.B.1    Abdallah, N.B.2    Dhifaoui, Z.3
  • 27
    • 84862663945 scopus 로고    scopus 로고
    • Multiscale nonlinear model for monthly stream flow forecasting: a wavelet based approach
    • Maheswaran R., Khosa R. Multiscale nonlinear model for monthly stream flow forecasting: a wavelet based approach. J. Hydroinform. 2012, 14(2):424-442.
    • (2012) J. Hydroinform. , vol.14 , Issue.2 , pp. 424-442
    • Maheswaran, R.1    Khosa, R.2
  • 29
    • 77957703234 scopus 로고    scopus 로고
    • Water demand forecasting in Umm Al-Quwain (UAE) using the IWR-MAIN specify forecasting model
    • Mohamed M., Al-Mualla A. Water demand forecasting in Umm Al-Quwain (UAE) using the IWR-MAIN specify forecasting model. Water Resour. Manage. 2010, 24(14):4093-4120.
    • (2010) Water Resour. Manage. , vol.24 , Issue.14 , pp. 4093-4120
    • Mohamed, M.1    Al-Mualla, A.2
  • 30
    • 79951579790 scopus 로고    scopus 로고
    • Forecasting monthly urban water demand using extended Kalman filter and genetic programming
    • Nasseri M., Moeini A., Tabesh M. Forecasting monthly urban water demand using extended Kalman filter and genetic programming. Expert Syst. Appl. 2011, 38:7387-7395.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 7387-7395
    • Nasseri, M.1    Moeini, A.2    Tabesh, M.3
  • 31
    • 84860795609 scopus 로고    scopus 로고
    • Hybrid water demand forecasting model associating artificial neural network with Fourier series
    • Odan F.K., Reis L.F.R. Hybrid water demand forecasting model associating artificial neural network with Fourier series. J. Water Resour. Plan. Manage. 2012, 138:245-256.
    • (2012) J. Water Resour. Plan. Manage. , vol.138 , pp. 245-256
    • Odan, F.K.1    Reis, L.F.R.2
  • 32
    • 0031757695 scopus 로고    scopus 로고
    • Distribution reservoir control with demand prediction using deterministic-chaos method
    • Oshima N., Kosuda T. Distribution reservoir control with demand prediction using deterministic-chaos method. Water Sci. Technol. 1998, 37(12):389-395.
    • (1998) Water Sci. Technol. , vol.37 , Issue.12 , pp. 389-395
    • Oshima, N.1    Kosuda, T.2
  • 34
    • 0036825521 scopus 로고    scopus 로고
    • On the use of the wavelet decomposition for time series prediction
    • Soltani S. On the use of the wavelet decomposition for time series prediction. Neurocomputing 2002, 48:267-277.
    • (2002) Neurocomputing , vol.48 , pp. 267-277
    • Soltani, S.1
  • 35
    • 84995446632 scopus 로고    scopus 로고
    • The Nonlinear Workbook, fifth ed.
    • Steeb, W.H., 2011. The Nonlinear Workbook, fifth ed. World Scientific.
    • (2011) World Scientific.
    • Steeb, W.H.1
  • 36
    • 84891381002 scopus 로고    scopus 로고
    • Computational Multiscale Modeling of Fluids and Solids: Theory and Applications
    • fitst ed. Springer Publishing Company.
    • Steinhauser, M.O., 2008. Computational Multiscale Modeling of Fluids and Solids: Theory and Applications, fitst ed. Springer Publishing Company.
    • (2008)
    • Steinhauser, M.O.1
  • 37
    • 64749115329 scopus 로고    scopus 로고
    • Fuzzy and neuro-fuzzy models for short-term water demand forecasting in Tehran
    • Tabesh M., Dini M. Fuzzy and neuro-fuzzy models for short-term water demand forecasting in Tehran. Iran. J. Sci. Technol., Trans. B 2009, 33:61-77.
    • (2009) Iran. J. Sci. Technol., Trans. B , vol.33 , pp. 61-77
    • Tabesh, M.1    Dini, M.2
  • 38
    • 84873745690 scopus 로고    scopus 로고
    • Real-time forecasting of short-term irrigation canal demands using a robust multivariate Bayesian learning model
    • Ticlavilca A.M., Mckee M., Walker W.R. Real-time forecasting of short-term irrigation canal demands using a robust multivariate Bayesian learning model. Irrig. Sci. 2013, 31(2):151-167.
    • (2013) Irrig. Sci. , vol.31 , Issue.2 , pp. 151-167
    • Ticlavilca, A.M.1    Mckee, M.2    Walker, W.R.3
  • 40
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1:211-244.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 41
    • 76649083898 scopus 로고    scopus 로고
    • Modeling and simulation of industrial water demand of Beijing municipality in China
    • Wei S., Lei A., Islam S. Modeling and simulation of industrial water demand of Beijing municipality in China. Front. Environ. Sci. Eng. China 2010, 4(1):91-101.
    • (2010) Front. Environ. Sci. Eng. China , vol.4 , Issue.1 , pp. 91-101
    • Wei, S.1    Lei, A.2    Islam, S.3
  • 42
    • 7244239706 scopus 로고    scopus 로고
    • Multiscale modeling and computation
    • Weinan E., Engquist B. Multiscale modeling and computation. Notices Am. Math. Soc. 2003, 50(9):1062-1070.
    • (2003) Notices Am. Math. Soc. , vol.50 , Issue.9 , pp. 1062-1070
    • Weinan, E.1    Engquist, B.2
  • 43
    • 77949596261 scopus 로고    scopus 로고
    • Statistical modeling of daily urban consumption in Hong Kong: trend, changing patterns, and forecast
    • Wong J.S., Zhang Q., Chen Y.D. Statistical modeling of daily urban consumption in Hong Kong: trend, changing patterns, and forecast. Water Resour. Res. 2010, 46(3).
    • (2010) Water Resour. Res. , vol.46 , Issue.3
    • Wong, J.S.1    Zhang, Q.2    Chen, Y.D.3
  • 44
    • 78649491646 scopus 로고    scopus 로고
    • Chaotic characters and forecasting of urban water consumption
    • Zhao P., Zhang H. Chaotic characters and forecasting of urban water consumption. China Water Wastewater 2008, 24(5). pp. 90-93, 97.
    • (2008) China Water Wastewater , vol.24 , Issue.5 , pp. 90-97
    • Zhao, P.1    Zhang, H.2
  • 45
    • 78149496035 scopus 로고    scopus 로고
    • Using climate information for supporting climate change adaptation in water resource management in South Africa
    • Ziervogel G., Johnston P., Matthew M., Mukheibir P. Using climate information for supporting climate change adaptation in water resource management in South Africa. Climat. Change 2010, 103:537-554.
    • (2010) Climat. Change , vol.103 , pp. 537-554
    • Ziervogel, G.1    Johnston, P.2    Matthew, M.3    Mukheibir, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.