메뉴 건너뛰기




Volumn 141, Issue , 2017, Pages 1269-1284

Breeder hybrid algorithm approach for natural gas demand forecasting model

Author keywords

Breeder genetic algorithm; Breeder hybrid algorithm; Natural gas demand forecasting; Nonlinear forecasting model; Simulated annealing

Indexed keywords

FORECASTING; GASES; GENETIC ALGORITHMS; NATURAL GAS; POPULATION STATISTICS;

EID: 85032029470     PISSN: 03605442     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.energy.2017.09.130     Document Type: Article
Times cited : (69)

References (79)
  • 1
    • 84962761116 scopus 로고    scopus 로고
    • Efficient operation of energy hubs in time-of-use and dynamic pricing electricity markets
    • Kamyab, F., Bahrami, S., Efficient operation of energy hubs in time-of-use and dynamic pricing electricity markets. Energy 106 (2016), 343–355.
    • (2016) Energy , vol.106 , pp. 343-355
    • Kamyab, F.1    Bahrami, S.2
  • 2
    • 79952183790 scopus 로고    scopus 로고
    • Forecasting the growth of China's natural gas consumption
    • Li, J., Dong, X., Shangguan, J., Hook, M., Forecasting the growth of China's natural gas consumption. Energy 36 (2011), 1380–1385.
    • (2011) Energy , vol.36 , pp. 1380-1385
    • Li, J.1    Dong, X.2    Shangguan, J.3    Hook, M.4
  • 3
    • 84987942280 scopus 로고    scopus 로고
    • Long-term electric energy consumption forecasting via artificial cooperative search algorithm
    • Kaboli, S., Hr, A., Selvaraj, J., Rahim, N.A., Long-term electric energy consumption forecasting via artificial cooperative search algorithm. Energy 115 (2016), 857–871.
    • (2016) Energy , vol.115 , pp. 857-871
    • Kaboli, S.1    Hr, A.2    Selvaraj, J.3    Rahim, N.A.4
  • 4
    • 85006795629 scopus 로고    scopus 로고
    • Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model
    • Panapakidis, L.P., Dagoumas, A.S., Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model. Energy 118 (2017), 231–245.
    • (2017) Energy , vol.118 , pp. 231-245
    • Panapakidis, L.P.1    Dagoumas, A.S.2
  • 5
    • 84929507840 scopus 로고    scopus 로고
    • Forecasting of natural gas consumption with artificial neural networks
    • Szoplik, J., Forecasting of natural gas consumption with artificial neural networks. Energy 85 (2015), 208–220.
    • (2015) Energy , vol.85 , pp. 208-220
    • Szoplik, J.1
  • 6
    • 85032009094 scopus 로고    scopus 로고
    • A hybrid algorithm approach to curve fitting problems
    • Graduate School of Applied and Natural Sciences Isparta, Turkey Department of Industrial Engineering, M.Sc. Thesis, 96 pages, Suleyman Demirel University
    • Karadede, Y., A hybrid algorithm approach to curve fitting problems., 2014, Graduate School of Applied and Natural Sciences, Isparta, Turkey Department of Industrial Engineering, M.Sc. Thesis, 96 pages, Suleyman Demirel University.
    • (2014)
    • Karadede, Y.1
  • 7
    • 0037410815 scopus 로고    scopus 로고
    • The degree-day method to estimate the residential heating natural gas consumption in Turkey: a case study
    • Sarak, H., Satman, A., The degree-day method to estimate the residential heating natural gas consumption in Turkey: a case study. Energy 28 (2003), 929–939.
    • (2003) Energy , vol.28 , pp. 929-939
    • Sarak, H.1    Satman, A.2
  • 8
    • 73449141828 scopus 로고    scopus 로고
    • Forecasting residential consumption of natural gas using genetic algorithms
    • Aras, N., Forecasting residential consumption of natural gas using genetic algorithms. Energy Explor Exploitation 26:4 (2008), 241–266.
    • (2008) Energy Explor Exploitation , vol.26 , Issue.4 , pp. 241-266
    • Aras, N.1
  • 9
    • 2442640511 scopus 로고    scopus 로고
    • Estimating energy demand of Turkey based on economic indicators using genetic algorithm approach
    • Ceylan, H., Ozturk, H.K., Estimating energy demand of Turkey based on economic indicators using genetic algorithm approach. Energy Convers Manag 45 (2004), 2525–2537.
    • (2004) Energy Convers Manag , vol.45 , pp. 2525-2537
    • Ceylan, H.1    Ozturk, H.K.2
  • 10
    • 34248530761 scopus 로고    scopus 로고
    • Ant colony optimization approach to estimate energy demand of Turkey
    • Toksari, M.D., Ant colony optimization approach to estimate energy demand of Turkey. Energy Policy 35 (2007), 3984–3990.
    • (2007) Energy Policy , vol.35 , pp. 3984-3990
    • Toksari, M.D.1
  • 11
    • 43149117467 scopus 로고    scopus 로고
    • Improvement of energy demand forecasts using swarm intelligence: the case of Turkey with projections to 2025
    • Unler, A., Improvement of energy demand forecasts using swarm intelligence: the case of Turkey with projections to 2025. Energy Policy 36 (2008), 1937–1944.
    • (2008) Energy Policy , vol.36 , pp. 1937-1944
    • Unler, A.1
  • 12
    • 74549162111 scopus 로고    scopus 로고
    • Predicting the natural gas demand based on economic indicators: case of Turkey
    • Toksari, M., Predicting the natural gas demand based on economic indicators: case of Turkey. Energy Sources, Part A Recovery, Util Environ Eff 32 (2010), 559–566.
    • (2010) Energy Sources, Part A Recovery, Util Environ Eff , vol.32 , pp. 559-566
    • Toksari, M.1
  • 13
    • 0004311217 scopus 로고
    • Time series analysis: forecasting and control
    • Holden Day, Inc San Francisco
    • Box, G.E.P., Jenkins, G.M., Time series analysis: forecasting and control. 1976, Holden Day, Inc, San Francisco.
    • (1976)
    • Box, G.E.P.1    Jenkins, G.M.2
  • 14
    • 70349472944 scopus 로고    scopus 로고
    • Natural gas demand in Turkey
    • Erdogdu, E., Natural gas demand in Turkey. Appl Energy 87 (2010), 211–219.
    • (2010) Appl Energy , vol.87 , pp. 211-219
    • Erdogdu, E.1
  • 15
    • 84875170092 scopus 로고    scopus 로고
    • Vision 2023: forecasting Turkey's natural gas demand between 2013 and 2030
    • Melikoglu, M., Vision 2023: forecasting Turkey's natural gas demand between 2013 and 2030. Renew Sustain Energy Rev 22 (2013), 393–400.
    • (2013) Renew Sustain Energy Rev , vol.22 , pp. 393-400
    • Melikoglu, M.1
  • 17
    • 70349595000 scopus 로고    scopus 로고
    • Modeling and estimation of the natural gas consumption for residential and commercial sectors
    • Forouzanfar, M., Doustmohammadi, A., Menhaj, B.M., Hasanzadeh, S., Modeling and estimation of the natural gas consumption for residential and commercial sectors. Appl Energy 87 (2010), 268–274.
    • (2010) Appl Energy , vol.87 , pp. 268-274
    • Forouzanfar, M.1    Doustmohammadi, A.2    Menhaj, B.M.3    Hasanzadeh, S.4
  • 18
    • 84882616578 scopus 로고    scopus 로고
    • Forecasting natural gas spot prices with nonlinear modeling using Gamma test analysis
    • Salehnia, N., Falahi, M.A., Seifi, A., Adeli, M.H.M., Forecasting natural gas spot prices with nonlinear modeling using Gamma test analysis. J Nat Gas Sci Eng 14 (2013), 238–249.
    • (2013) J Nat Gas Sci Eng , vol.14 , pp. 238-249
    • Salehnia, N.1    Falahi, M.A.2    Seifi, A.3    Adeli, M.H.M.4
  • 19
    • 84870677450 scopus 로고    scopus 로고
    • Forecasting of daily natural gas consumption on regional basis in Turkey using various computational methods
    • Taspinar, F., Çelebi, N., Tutkun, N., Forecasting of daily natural gas consumption on regional basis in Turkey using various computational methods. Energy Build 56 (2013), 23–31.
    • (2013) Energy Build , vol.56 , pp. 23-31
    • Taspinar, F.1    Çelebi, N.2    Tutkun, N.3
  • 20
    • 84906483194 scopus 로고    scopus 로고
    • A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network
    • Yu, F., Xu, X., A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network. Appl Energy 134 (2014), 102–113.
    • (2014) Appl Energy , vol.134 , pp. 102-113
    • Yu, F.1    Xu, X.2
  • 21
    • 84904732121 scopus 로고    scopus 로고
    • Artificial neural network-based genetic algorithm to predict natural gas consumption
    • Karimi, H., Dastranj, J., Artificial neural network-based genetic algorithm to predict natural gas consumption. Energy Syst 5:3 (2014), 571–581.
    • (2014) Energy Syst , vol.5 , Issue.3 , pp. 571-581
    • Karimi, H.1    Dastranj, J.2
  • 22
    • 84929589705 scopus 로고    scopus 로고
    • Modelling and forecasting the demand for natural gas in Pakistan
    • Khan, M.A., Modelling and forecasting the demand for natural gas in Pakistan. Renew Sustain Energy Rev 49 (2015), 1145–1159.
    • (2015) Renew Sustain Energy Rev , vol.49 , pp. 1145-1159
    • Khan, M.A.1
  • 23
    • 84947650309 scopus 로고    scopus 로고
    • Using novel grey system model to forecast natural gas consumption in China
    • Wu, L., Liu, S., Chen, H., Zhang, N., Using novel grey system model to forecast natural gas consumption in China. Math Problems Eng, 2015, 686501, 10.1155/2015/686501.
    • (2015) Math Problems Eng
    • Wu, L.1    Liu, S.2    Chen, H.3    Zhang, N.4
  • 24
    • 84908682194 scopus 로고    scopus 로고
    • A multi-region optimization planning model for China's power sector
    • Cheng, R., Xu, Z., Liu, P., Wang, Z., Li, Z., Jones, I., A multi-region optimization planning model for China's power sector. Appl Energy 137 (2015), 413–426.
    • (2015) Appl Energy , vol.137 , pp. 413-426
    • Cheng, R.1    Xu, Z.2    Liu, P.3    Wang, Z.4    Li, Z.5    Jones, I.6
  • 25
    • 84958998908 scopus 로고    scopus 로고
    • Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1, 1) model
    • Yuan, C., Liu, S., Fang, Z., Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1, 1) model. Energy 100 (2016), 384–390.
    • (2016) Energy , vol.100 , pp. 384-390
    • Yuan, C.1    Liu, S.2    Fang, Z.3
  • 26
    • 84855223226 scopus 로고    scopus 로고
    • Forecasting monthly electric energy consumption using feature extraction
    • Meng, M., Niu, D., Sun, W., Forecasting monthly electric energy consumption using feature extraction. Energies 4:10 (2011), 1495–1507.
    • (2011) Energies , vol.4 , Issue.10 , pp. 1495-1507
    • Meng, M.1    Niu, D.2    Sun, W.3
  • 27
    • 77955175977 scopus 로고    scopus 로고
    • Analysis and forecasting of nonresidential electricity consumption in Romania
    • Bianco, V., Manca, O., Nardini, S., Minea, A.A., Analysis and forecasting of nonresidential electricity consumption in Romania. Appl Energy 87:11 (2010), 3584–3590.
    • (2010) Appl Energy , vol.87 , Issue.11 , pp. 3584-3590
    • Bianco, V.1    Manca, O.2    Nardini, S.3    Minea, A.A.4
  • 28
    • 84868667548 scopus 로고    scopus 로고
    • The prediction model for electrical power system using an improved hybrid optimization model
    • Li, G.-D., Masuda, S., Nagai, M., The prediction model for electrical power system using an improved hybrid optimization model. Int J Electr Power & Energy Syst 44:1 (2013), 981–987.
    • (2013) Int J Electr Power & Energy Syst , vol.44 , Issue.1 , pp. 981-987
    • Li, G.-D.1    Masuda, S.2    Nagai, M.3
  • 29
    • 84884531386 scopus 로고    scopus 로고
    • Applications of extension grey prediction model for power system forecasting
    • Niu, W., Cheng, J., Wang, G., Applications of extension grey prediction model for power system forecasting. J Comb Optim 26:3 (2013), 555–567.
    • (2013) J Comb Optim , vol.26 , Issue.3 , pp. 555-567
    • Niu, W.1    Cheng, J.2    Wang, G.3
  • 30
    • 79955667670 scopus 로고    scopus 로고
    • 2 emissions, energy consumption, and economic growth in Brazil
    • Pao, H., Tsai, C., Modeling and forecasting the CO2 emissions, energy consumption, and economic growth in Brazil. Energy 36:5 (2011), 2450–2458.
    • (2011) Energy , vol.36 , Issue.5 , pp. 2450-2458
    • Pao, H.1    Tsai, C.2
  • 31
    • 84890310781 scopus 로고    scopus 로고
    • Vulnerability of hydropower generation to climate change in China: results based on grey forecasting model
    • Wang, B., Liang, X.J., Zhang, H., Wang, L., Wei, Y.M., Vulnerability of hydropower generation to climate change in China: results based on grey forecasting model. Energy Policy 65 (2014), 701–707.
    • (2014) Energy Policy , vol.65 , pp. 701-707
    • Wang, B.1    Liang, X.J.2    Zhang, H.3    Wang, L.4    Wei, Y.M.5
  • 32
    • 84908577507 scopus 로고    scopus 로고
    • Forecasting natural gas consumption of Turkey using grey prediction
    • Boran, F.E., Forecasting natural gas consumption of Turkey using grey prediction. Energy Sources Part B Econ Plan Policy 10:2 (2015), 208–213.
    • (2015) Energy Sources Part B Econ Plan Policy , vol.10 , Issue.2 , pp. 208-213
    • Boran, F.E.1
  • 33
    • 84922189168 scopus 로고    scopus 로고
    • Revisiting the relationship between natural gas consumption and economic growth in Turkey
    • Dogan, E., Revisiting the relationship between natural gas consumption and economic growth in Turkey. Energy Sources, Part B Econ Plan Policy 10:4 (2015), 361–370.
    • (2015) Energy Sources, Part B Econ Plan Policy , vol.10 , Issue.4 , pp. 361-370
    • Dogan, E.1
  • 34
    • 84948420864 scopus 로고    scopus 로고
    • Forecasting natural gas demand in China: logistic modelling analysis
    • Shaikh, F., Ji, Q., Forecasting natural gas demand in China: logistic modelling analysis. Electr Power Energy Syst 77 (2016), 25–32.
    • (2016) Electr Power Energy Syst , vol.77 , pp. 25-32
    • Shaikh, F.1    Ji, Q.2
  • 35
    • 84943773534 scopus 로고    scopus 로고
    • China's natural gas production and consumption analysis based on the multicycle Hubbert model and rolling grey model
    • Wang, J., Jiang, H., Zhou, Q., Wu, J., Qin, S., China's natural gas production and consumption analysis based on the multicycle Hubbert model and rolling grey model. Renew Sustaınable Energy Rev 53 (2016), 1149–1167.
    • (2016) Renew Sustaınable Energy Rev , vol.53 , pp. 1149-1167
    • Wang, J.1    Jiang, H.2    Zhou, Q.3    Wu, J.4    Qin, S.5
  • 36
    • 85010006537 scopus 로고    scopus 로고
    • Forecasting the relation of supply and demand of natural gas in China during 2015-2020 using a novel grey model
    • Bo, Z., Forecasting the relation of supply and demand of natural gas in China during 2015-2020 using a novel grey model. J Intelligent Fuzzy Syst 32:1 (2017), 141–155.
    • (2017) J Intelligent Fuzzy Syst , vol.32 , Issue.1 , pp. 141-155
    • Bo, Z.1
  • 37
    • 85006489531 scopus 로고    scopus 로고
    • 2 emissions
    • Pino-Mejías, R., Perez-Fargallo, A., Rubio-Bellido, C., Pulido-Arcas, J.A., Comparison of linear regression and artificial neural networks models to predict heating and cooling energy demand, energy consumption and CO2 emissions. Energy 118 (2017), 24–36.
    • (2017) Energy , vol.118 , pp. 24-36
    • Pino-Mejías, R.1    Perez-Fargallo, A.2    Rubio-Bellido, C.3    Pulido-Arcas, J.A.4
  • 38
    • 84941911591 scopus 로고    scopus 로고
    • Modelling and optimization of CHP based district heating system with renewable energy production and energy storage
    • Wang, H., Yin, W., Abdollahi, E., Lahdelma, R., Jiao, W., Modelling and optimization of CHP based district heating system with renewable energy production and energy storage. Appl Energy 159 (2015), 401–421.
    • (2015) Appl Energy , vol.159 , pp. 401-421
    • Wang, H.1    Yin, W.2    Abdollahi, E.3    Lahdelma, R.4    Jiao, W.5
  • 39
    • 84907476694 scopus 로고    scopus 로고
    • A financial approach to evaluate an optimized combined cooling, heat and power system
    • Bahrami, S., Safe, F., A financial approach to evaluate an optimized combined cooling, heat and power system. Energy Power Eng 5 (2013), 352–362.
    • (2013) Energy Power Eng , vol.5 , pp. 352-362
    • Bahrami, S.1    Safe, F.2
  • 40
    • 84939605971 scopus 로고    scopus 로고
    • From demand response in smart grid toward integrated demand response in smart energy hub
    • Bahrami, S., Sheikhi, A., From demand response in smart grid toward integrated demand response in smart energy hub. IEEE Trans Smart Grid 7:2 (2016), 650–658.
    • (2016) IEEE Trans Smart Grid , vol.7 , Issue.2 , pp. 650-658
    • Bahrami, S.1    Sheikhi, A.2
  • 41
    • 84988524929 scopus 로고    scopus 로고
    • A novel multi-time-scale modeling for electric power demand forecasting: from short-term to medium-term horizon
    • Boroojeni, G.K., Amini, H.M., Bahrami, S., Iyengar, S.S., Sarwat, I.A., Karabasoglu, O., A novel multi-time-scale modeling for electric power demand forecasting: from short-term to medium-term horizon. Electr Power Syst Res 142 (2017), 58–73.
    • (2017) Electr Power Syst Res , vol.142 , pp. 58-73
    • Boroojeni, G.K.1    Amini, H.M.2    Bahrami, S.3    Iyengar, S.S.4    Sarwat, I.A.5    Karabasoglu, O.6
  • 42
    • 85019951715 scopus 로고    scopus 로고
    • Improvement of transient stability in a hybrid power multi-system using a designed NIDC (novel intelligent damping controller)
    • Ou, T.-C., Lu, K.-H., Huang, C.-J., Improvement of transient stability in a hybrid power multi-system using a designed NIDC (novel intelligent damping controller). Energies, 10, 2017, 488, 10.3390/en10040488.
    • (2017) Energies , vol.10 , pp. 488
    • Ou, T.-C.1    Lu, K.-H.2    Huang, C.-J.3
  • 43
    • 85029104997 scopus 로고    scopus 로고
    • Electrical machine characterisation and analysis for renewable energy applications
    • Ph.D. Thesis University College Cork Cork, Ireland
    • Cashman, D.P., Electrical machine characterisation and analysis for renewable energy applications. Ph.D. Thesis, 2010, University College Cork, Cork, Ireland.
    • (2010)
    • Cashman, D.P.1
  • 45
    • 66149096709 scopus 로고    scopus 로고
    • Recurrent functional link based fuzzy neural network controlled induction-generator system using improved particle swarm optimization
    • Lin, F.J., Teng, L.T., Lin, J.W., Chen, S.Y., Recurrent functional link based fuzzy neural network controlled induction-generator system using improved particle swarm optimization. IEEE Trans Ind Electron 56:5 (2009), 1557–1577.
    • (2009) IEEE Trans Ind Electron , vol.56 , Issue.5 , pp. 1557-1577
    • Lin, F.J.1    Teng, L.T.2    Lin, J.W.3    Chen, S.Y.4
  • 46
    • 84875051256 scopus 로고    scopus 로고
    • Optimized control of DFIG-based wind generation using sensitivity analysis and particle swarm optimization
    • Tang, Y., Ju, P., He, H., Chuan, Q., Feng, W., Optimized control of DFIG-based wind generation using sensitivity analysis and particle swarm optimization. IEEE Trans Smart Grid 4 (2013), 509–520.
    • (2013) IEEE Trans Smart Grid , vol.4 , pp. 509-520
    • Tang, Y.1    Ju, P.2    He, H.3    Chuan, Q.4    Feng, W.5
  • 47
    • 67650681163 scopus 로고    scopus 로고
    • Optimal VAR control considering wind farms using probabilistic load flow and gray-based genetic algorithms
    • Hong, Y.Y., Luo, Y.F., Optimal VAR control considering wind farms using probabilistic load flow and gray-based genetic algorithms. IEEE Trans Power Deliv 24 (2009), 1441–1449.
    • (2009) IEEE Trans Power Deliv , vol.24 , pp. 1441-1449
    • Hong, Y.Y.1    Luo, Y.F.2
  • 48
    • 84896393135 scopus 로고    scopus 로고
    • Dynamic operation and control of microgrid hybrid power systems
    • Ou, T.-C., Hong, C.-M., Dynamic operation and control of microgrid hybrid power systems. Energy 66 (2014), 314–323.
    • (2014) Energy , vol.66 , pp. 314-323
    • Ou, T.-C.1    Hong, C.-M.2
  • 49
    • 78649325967 scopus 로고    scopus 로고
    • Hybrid intelligent control of PMSG wind generation system
    • Lin, W.-M., Hong, C.-M., Ou, T.-C., Chiu, T.-M., Hybrid intelligent control of PMSG wind generation system. Energy Convers Manag 52 (2011), 1244–1251.
    • (2011) Energy Convers Manag , vol.52 , pp. 1244-1251
    • Lin, W.-M.1    Hong, C.-M.2    Ou, T.-C.3    Chiu, T.-M.4
  • 50
    • 84990917544 scopus 로고    scopus 로고
    • A modified bird-mating optimization with hill-climbing for connection decisions
    • Ou, T.-C., Su, W.-F., Liu, X.-Z., Huang, S.-J., Tai, T.-Y., A modified bird-mating optimization with hill-climbing for connection decisions. Energies, 9, 2016, 6, 10.3390/en9090671.
    • (2016) Energies , vol.9 , pp. 6
    • Ou, T.-C.1    Su, W.-F.2    Liu, X.-Z.3    Huang, S.-J.4    Tai, T.-Y.5
  • 51
    • 84873142981 scopus 로고    scopus 로고
    • Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system
    • Hong, C.-M., Ou, T.-C., Lu, K.-H., Development of intelligent MPPT (maximum power point tracking) control for a grid-connected hybrid power generation system. Energy 50 (2013), 270–279.
    • (2013) Energy , vol.50 , pp. 270-279
    • Hong, C.-M.1    Ou, T.-C.2    Lu, K.-H.3
  • 52
    • 0003463297 scopus 로고
    • Adaptation in natural and artificial systems
    • The University of Michigan Press Ann Arbor, MI
    • Holland, J.H., Adaptation in natural and artificial systems. 1975, The University of Michigan Press, Ann Arbor, MI.
    • (1975)
    • Holland, J.H.1
  • 53
    • 84927555642 scopus 로고    scopus 로고
    • Innovative computational intelligence: a rough guide to 134 clever algorithms, intelligent systems reference library 62
    • Springer International Publishing Switzerland
    • Xing, B., Gao, W.-J., Innovative computational intelligence: a rough guide to 134 clever algorithms, intelligent systems reference library 62. 2014, Springer International Publishing Switzerland, 10.1007/978-3-319-03404-1.
    • (2014)
    • Xing, B.1    Gao, W.-J.2
  • 54
    • 0002568507 scopus 로고
    • Genetic programming as a means for programming computers by natural selection
    • Koza, J.R., Genetic programming as a means for programming computers by natural selection. Statistics Comput 4:2 (1994), 87–112.
    • (1994) Statistics Comput , vol.4 , Issue.2 , pp. 87-112
    • Koza, J.R.1
  • 55
    • 0032136585 scopus 로고    scopus 로고
    • Tackling real-coded genetic algorithms: operators and tools for behavioural analysis
    • Herrera, F., Lozano, M., Verdegay, J.L., Tackling real-coded genetic algorithms: operators and tools for behavioural analysis. Artif Intell Rev 12 (1998), 265–319.
    • (1998) Artif Intell Rev , vol.12 , pp. 265-319
    • Herrera, F.1    Lozano, M.2    Verdegay, J.L.3
  • 56
    • 79955430893 scopus 로고    scopus 로고
    • Sensorless control of brushless direct current engines with genetic based fuzzy controller
    • PhD Thesis Selcuk University, Graduate School of Natural and Applied Sciences, Department of Electrical and Electronics Engineering Konya, Turkey
    • Aydogdu, O., Sensorless control of brushless direct current engines with genetic based fuzzy controller. PhD Thesis, 2006, Selcuk University, Graduate School of Natural and Applied Sciences, Department of Electrical and Electronics Engineering, Konya, Turkey, 187.
    • (2006) , pp. 187
    • Aydogdu, O.1
  • 57
    • 85032034156 scopus 로고    scopus 로고
    • Parameter estimation of nonlinear econometric models with genetic algorithm approach
    • Master's Thesis Gazi University Institute of Social Sciences, Department of Econometrics Ankara, Turkey
    • Akyol, A.P., Parameter estimation of nonlinear econometric models with genetic algorithm approach. Master's Thesis, 2006, Gazi University Institute of Social Sciences, Department of Econometrics, Ankara, Turkey, 111.
    • (2006) , pp. 111
    • Akyol, A.P.1
  • 58
    • 33646773779 scopus 로고
    • The breeder genetic algorithm - a provable optimal search algorithm and its application. Colloquium on applications of genetic algorithms
    • IEE 94/067 London
    • Mühlenbein, H., The breeder genetic algorithm - a provable optimal search algorithm and its application. Colloquium on applications of genetic algorithms. 1994, IEE 94/067, London.
    • (1994)
    • Mühlenbein, H.1
  • 59
    • 77949563774 scopus 로고    scopus 로고
    • A breeder genetic algorithm for vehicle routing problem with stochastic demands
    • Irhamah, Ismail, Z., A breeder genetic algorithm for vehicle routing problem with stochastic demands. J Appl Res 5:11 (2009), 1998–2005.
    • (2009) J Appl Res , vol.5 , Issue.11 , pp. 1998-2005
    • Irhamah1    Ismail, Z.2
  • 60
    • 84949129580 scopus 로고    scopus 로고
    • Optimal design of power system controller using breeder genetic algorithm
    • Dr Shangce Gao
    • Folly, K.A., Sheetekela, S.P., Optimal design of power system controller using breeder genetic algorithm. Shangce Gao, Dr, (eds.) Bio-Inspired Comput Algorithms Their Appl, 2012, 303–316 ISBN: 978-953-51-0214-4.
    • (2012) Bio-Inspired Comput Algorithms Their Appl , pp. 303-316
    • Folly, K.A.1    Sheetekela, S.P.2
  • 61
    • 85051082805 scopus 로고    scopus 로고
    • An Application Example of the Breeder Genetic Algorithm to Function Optimization. Secció d'Intel·ligencia Artificial, Dept. de Llenguatges i Sistemes Informatics, Universitat Politecnica de Catalunya, Buran, 14
    • Belanche, L.A., An Application Example of the Breeder Genetic Algorithm to Function Optimization. Secció d'Intel·ligencia Artificial, Dept. de Llenguatges i Sistemes Informatics, Universitat Politecnica de Catalunya, Buran, 14. 1999, 56–61.
    • (1999) , pp. 56-61
    • Belanche, L.A.1
  • 62
    • 80053078377 scopus 로고    scopus 로고
    • A review of selection methods in genetic algorithm
    • Sivaraj, R., Ravichandran, T., A review of selection methods in genetic algorithm. Int J Eng Sci Technol 3:5 (2011), 4792–4797.
    • (2011) Int J Eng Sci Technol , vol.3 , Issue.5 , pp. 4792-4797
    • Sivaraj, R.1    Ravichandran, T.2
  • 64
    • 0003140039 scopus 로고
    • Predictive models for the breeder genetic algorithm: I. Continuous parameter optimization
    • Mühlenbeın, H., Schlıerkamp-Voosen, D., Predictive models for the breeder genetic algorithm: I. Continuous parameter optimization. Evol Comput 1 (1993), 25–49.
    • (1993) Evol Comput , vol.1 , pp. 25-49
    • Mühlenbeın, H.1    Schlıerkamp-Voosen, D.2
  • 65
    • 57649242531 scopus 로고    scopus 로고
    • The basic idea behind the breeder genetic algorithm. Department of electrical engineering
    • Technical Report University of Cape Town
    • Greene, J., The basic idea behind the breeder genetic algorithm. Department of electrical engineering. Technical Report, 2005, University of Cape Town.
    • (2005)
    • Greene, J.1
  • 66
    • 85167005485 scopus 로고    scopus 로고
    • A generalized net model of a mutation operator for the breeder genetic algorithm
    • Ninth Int. Workshop on GNs, 4 July 59-63 Sofia
    • Roeva, O., Shannon, A., A generalized net model of a mutation operator for the breeder genetic algorithm. 2008, Ninth Int. Workshop on GNs, 4 July 59-63, Sofia.
    • (2008)
    • Roeva, O.1    Shannon, A.2
  • 67
    • 84952538968 scopus 로고
    • A genetic algorithm approach to curve fitting
    • Gulsen, M., Smith, A.E., Tate, D.M., A genetic algorithm approach to curve fitting. Int J Prod Res 33:7 (1995), 1911–1923.
    • (1995) Int J Prod Res , vol.33 , Issue.7 , pp. 1911-1923
    • Gulsen, M.1    Smith, A.E.2    Tate, D.M.3
  • 68
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., Optimization by simulated annealing. Sci New Ser 220:4598 (1983), 671–680.
    • (1983) Sci New Ser , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 69
    • 0032098662 scopus 로고    scopus 로고
    • FMS machine loading: a simulated annealing approach
    • Mukhopadhyay, S.K., Singh, M.K., Srivastava, R., FMS machine loading: a simulated annealing approach. Int J Prod Res 36:6 (1998), 1529–1547.
    • (1998) Int J Prod Res , vol.36 , Issue.6 , pp. 1529-1547
    • Mukhopadhyay, S.K.1    Singh, M.K.2    Srivastava, R.3
  • 70
    • 85051092412 scopus 로고    scopus 로고
    • Stochastic assembly line balancing: a simulated annealing algorithm
    • Alp, A., Cercioglu, H., Tokayli, M.A., Dengiz, B., Stochastic assembly line balancing: a simulated annealing algorithm. Turkish J Industrial Eng 12:3–4 (2001), 32–51.
    • (2001) Turkish J Industrial Eng , vol.12 , Issue.3-4 , pp. 32-51
    • Alp, A.1    Cercioglu, H.2    Tokayli, M.A.3    Dengiz, B.4
  • 71
    • 84949550327 scopus 로고    scopus 로고
    • Cognitive behavior optimization algorithm for solving optimization problems
    • Li, M., Zhao, H., Weng, X., Han, T., Cognitive behavior optimization algorithm for solving optimization problems. Appl Soft Comput 39 (2016), 199–222.
    • (2016) Appl Soft Comput , vol.39 , pp. 199-222
    • Li, M.1    Zhao, H.2    Weng, X.3    Han, T.4
  • 72
    • 84893984004 scopus 로고    scopus 로고
    • Mathematical modeling with multidisciplinary applications
    • Hoboken: Wiley
    • Yang, X.-S., Mathematical modeling with multidisciplinary applications. 2013, Hoboken: Wiley ISBN 978-1-118-29441-3.
    • (2013)
    • Yang, X.-S.1
  • 73
    • 84901976311 scopus 로고    scopus 로고
    • A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization(NISCO 2010). Studies in computational intelligence, SCI284
    • Springer Berlin
    • Yang, X.-S., A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization(NISCO 2010). Studies in computational intelligence, SCI284. 2010, Springer, Berlin, 65–74.
    • (2010) , pp. 65-74
    • Yang, X.-S.1
  • 74
    • 0002651837 scopus 로고
    • An overview of evolutionary algorithms for parameter optimization
    • Back, T., Schwefel, H.P., An overview of evolutionary algorithms for parameter optimization. Evol Comput 1:1 (1993), 1–23.
    • (1993) Evol Comput , vol.1 , Issue.1 , pp. 1-23
    • Back, T.1    Schwefel, H.P.2
  • 75
    • 85167037267 scopus 로고    scopus 로고
    • Simulated annealing tutorial
    • (Accessed 23 January 2017)
    • Internet 1, Simulated annealing tutorial. 2015 http://apmonitor.com/me575/index.php/Main/SimulatedAnnealing. (Accessed 23 January 2017)
    • (2015)
    • Internet 11
  • 77
    • 85031995082 scopus 로고    scopus 로고
    • Reverse logistics network design: a simulated annealing approach
    • Gulsun, B., Tuzkaya, G., Bildik, E., Reverse logistics network design: a simulated annealing approach. J Eng Nat Sci 26:1 (2008), 68–80.
    • (2008) J Eng Nat Sci , vol.26 , Issue.1 , pp. 68-80
    • Gulsun, B.1    Tuzkaya, G.2    Bildik, E.3
  • 78
    • 85009857905 scopus 로고    scopus 로고
    • Statistics
    • Turkish Statistical Institute (Accessed 3 March 2016)
    • TurkStat, Statistics. 2016, Turkish Statistical Institute http://www.tuik.gov.tr. (Accessed 3 March 2016)
    • (2016)
    • TurkStat1
  • 79
    • 85167034780 scopus 로고    scopus 로고
    • Energy indicators of Turkey
    • (Accessed 23 January 2017)
    • MENR, Energy indicators of Turkey. Ministry Energy Nat Resour, 2015, 14–19 http://www.enerji.gov.tr. (Accessed 23 January 2017)
    • (2015) Ministry Energy Nat Resour , pp. 14-19
    • MENR1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.