-
1
-
-
85026440056
-
-
http://www.wwindea.org/the-world-sets-new-wind-installations-record-637-gw-new-capacity-in-2015.
-
-
-
-
2
-
-
84973457857
-
A novel bidirectional mechanism based on time series model for wind power forecasting
-
Zhao, Y., Ye, L., Li, Z., Song, X., Lang, Y., Su, J., A novel bidirectional mechanism based on time series model for wind power forecasting. Appl Energy 177 (2016), 793–803.
-
(2016)
Appl Energy
, vol.177
, pp. 793-803
-
-
Zhao, Y.1
Ye, L.2
Li, Z.3
Song, X.4
Lang, Y.5
Su, J.6
-
3
-
-
84994037319
-
A new wind power prediction method based on chaotic theory and Bernstein Neural Network
-
Wang, C., Zhang, H.-L., Fan, W.-H., Fan, X.-C., A new wind power prediction method based on chaotic theory and Bernstein Neural Network. Energy 117 (2016), 259–271.
-
(2016)
Energy
, vol.117
, pp. 259-271
-
-
Wang, C.1
Zhang, H.-L.2
Fan, W.-H.3
Fan, X.-C.4
-
4
-
-
79955623964
-
Wind farm power prediction based on wavelet decomposition and chaotic time series
-
An, X., Jiang, D., Liu, C., Zhao, M., Wind farm power prediction based on wavelet decomposition and chaotic time series. Expert Syst Appl 38:9 (2011), 11280–11285.
-
(2011)
Expert Syst Appl
, vol.38
, Issue.9
, pp. 11280-11285
-
-
An, X.1
Jiang, D.2
Liu, C.3
Zhao, M.4
-
5
-
-
80052379563
-
Short-term prediction of wind power using EMD and chaotic theory
-
An, X., Jiang, D., Zhao, M.-L., Short-term prediction of wind power using EMD and chaotic theory. Commun Nonlinear Sci 17:2 (2012), 1036–1042.
-
(2012)
Commun Nonlinear Sci
, vol.17
, Issue.2
, pp. 1036-1042
-
-
An, X.1
Jiang, D.2
Zhao, M.-L.3
-
6
-
-
84941270020
-
Analysis of multi-scale chaotic characteristics of wind power based on Hilbert–Huang transform and Hurst analysis
-
Liang, Z., Liang, J., Zhang, L., Wang, C., Yun, Z., Zhang, X., Analysis of multi-scale chaotic characteristics of wind power based on Hilbert–Huang transform and Hurst analysis. Appl Energy 159 (2015), 51–61.
-
(2015)
Appl Energy
, vol.159
, pp. 51-61
-
-
Liang, Z.1
Liang, J.2
Zhang, L.3
Wang, C.4
Yun, Z.5
Zhang, X.6
-
7
-
-
84892960976
-
Current status and future advances for wind speed and power forecasting
-
Jung, J., Broadwater, R.-P., Current status and future advances for wind speed and power forecasting. Renew Sustain Energy Rev 31 (2014), 762–777.
-
(2014)
Renew Sustain Energy Rev
, vol.31
, pp. 762-777
-
-
Jung, J.1
Broadwater, R.-P.2
-
8
-
-
84973457857
-
A novel bidirectional mechanism based on time series model for wind power forecasting
-
Zhao, Y., Ye, L., Li, Z., Song, X., Lang, Y., Su, J., A novel bidirectional mechanism based on time series model for wind power forecasting. Appl Energy 177 (2016), 793–803.
-
(2016)
Appl Energy
, vol.177
, pp. 793-803
-
-
Zhao, Y.1
Ye, L.2
Li, Z.3
Song, X.4
Lang, Y.5
Su, J.6
-
9
-
-
84989355131
-
Short-term wind power prediction based on spatial model
-
Ye, L., Zhao, Y., Zeng, C., Zhang, C., Short-term wind power prediction based on spatial model. Renew Energy 101 (2017), 1067–1074.
-
(2017)
Renew Energy
, vol.101
, pp. 1067-1074
-
-
Ye, L.1
Zhao, Y.2
Zeng, C.3
Zhang, C.4
-
10
-
-
84962050754
-
Using data-driven approach for wind power prediction: a comparative study
-
Renani, E.-T., Elias, M.F.M., Rahim, N.-A., Using data-driven approach for wind power prediction: a comparative study. Energy Convers Manage 118 (2016), 193–203.
-
(2016)
Energy Convers Manage
, vol.118
, pp. 193-203
-
-
Renani, E.-T.1
Elias, M.F.M.2
Rahim, N.-A.3
-
11
-
-
79959375425
-
Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods
-
De Giorgi, M.-G., Ficarella, A., Tarantino, M., Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods. Energy 36:7 (2011), 3968–3978.
-
(2011)
Energy
, vol.36
, Issue.7
, pp. 3968-3978
-
-
De Giorgi, M.-G.1
Ficarella, A.2
Tarantino, M.3
-
12
-
-
60949099322
-
Comparison of two new short-term wind-power forecasting systems
-
Ramirez-Rosado, I.-J., Fernandez-Jimenez, L.-A., Monteiro, C., Sousa, J., Bessa, R., Comparison of two new short-term wind-power forecasting systems. Renew Energy 34:7 (2009), 1848–1854.
-
(2009)
Renew Energy
, vol.34
, Issue.7
, pp. 1848-1854
-
-
Ramirez-Rosado, I.-J.1
Fernandez-Jimenez, L.-A.2
Monteiro, C.3
Sousa, J.4
Bessa, R.5
-
13
-
-
84867988966
-
Probabilistic wind power forecasting using radial basis function neural networks. Power Syst
-
Sideratos, G., Hatziargyriou, N.-D., Probabilistic wind power forecasting using radial basis function neural networks. Power Syst. IEEE Trans 27:4 (2012), 1788–1796.
-
(2012)
IEEE Trans
, vol.27
, Issue.4
, pp. 1788-1796
-
-
Sideratos, G.1
Hatziargyriou, N.-D.2
-
14
-
-
84919658679
-
A novel application of an analog ensemble for short-term wind power forecasting
-
Alessandrini, S., Delle Monache, L., Sperati, S., Nissen, J.-N., A novel application of an analog ensemble for short-term wind power forecasting. Renew Energy 76 (2015), 768–781.
-
(2015)
Renew Energy
, vol.76
, pp. 768-781
-
-
Alessandrini, S.1
Delle Monache, L.2
Sperati, S.3
Nissen, J.-N.4
-
15
-
-
84922697904
-
Markov chain modeling for very-short-term wind power forecasting
-
Carpinone, A., Giorgio, M., Langella, R., Testa, A., Markov chain modeling for very-short-term wind power forecasting. Electr Power Syst Res 122 (2015), 152–158.
-
(2015)
Electr Power Syst Res
, vol.122
, pp. 152-158
-
-
Carpinone, A.1
Giorgio, M.2
Langella, R.3
Testa, A.4
-
16
-
-
84949681323
-
A robust combination approach for short-term wind speed forecasting and analysis-combination of the ARIMA (autoregressive integrated moving average), ELM (extreme learning machine), SVM (support vector machine) and LSSVM (least square SVM) forecasts using a GPR (gaussian process regression) model
-
Wang, J., Hu, J., A robust combination approach for short-term wind speed forecasting and analysis-combination of the ARIMA (autoregressive integrated moving average), ELM (extreme learning machine), SVM (support vector machine) and LSSVM (least square SVM) forecasts using a GPR (gaussian process regression) model. Energy 93 (2015), 41–56.
-
(2015)
Energy
, vol.93
, pp. 41-56
-
-
Wang, J.1
Hu, J.2
-
17
-
-
84906911087
-
Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN)
-
De Giorgi, M.-G., Campilongo, S., Ficarella, A., Congedo, P.-M., Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN). Energies 7:8 (2014), 5251–5272.
-
(2014)
Energies
, vol.7
, Issue.8
, pp. 5251-5272
-
-
De Giorgi, M.-G.1
Campilongo, S.2
Ficarella, A.3
Congedo, P.-M.4
-
18
-
-
84903119035
-
A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting
-
Haque, A.-U., Nehrir, M.-H., Mandal, P., A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting. IEEE Trans Power Syst 29:4 (2014), 1663–1672.
-
(2014)
IEEE Trans Power Syst
, vol.29
, Issue.4
, pp. 1663-1672
-
-
Haque, A.-U.1
Nehrir, M.-H.2
Mandal, P.3
-
19
-
-
84908376968
-
Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
-
Osório, G.-J., Matias, J.C.-O., Catalão, J.P.-S., Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew Energy 75 (2015), 301–307.
-
(2015)
Renew Energy
, vol.75
, pp. 301-307
-
-
Osório, G.-J.1
Matias, J.C.-O.2
Catalão, J.P.-S.3
-
20
-
-
84865439917
-
A hybrid strategy of short term wind power prediction
-
Peng, H., Liu, F., Yang, X., A hybrid strategy of short term wind power prediction. Renew energy 50 (2013), 590–595.
-
(2013)
Renew energy
, vol.50
, pp. 590-595
-
-
Peng, H.1
Liu, F.2
Yang, X.3
-
21
-
-
77956444173
-
Wind power forecasting: state-of-the-art
-
Monteiro, C., Bessa, R., Miranda, V., Botterud, A., Wang, J., Conzelmann, G., Wind power forecasting: state-of-the-art. 2009 http://www.dis.anl.gov/pubs/65613.pdf.
-
(2009)
-
-
Monteiro, C.1
Bessa, R.2
Miranda, V.3
Botterud, A.4
Wang, J.5
Conzelmann, G.6
-
22
-
-
84908425965
-
Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm
-
Chitsaz, H., Amjady, N., Zareipour, H., Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm. Energy Convers Manage 89 (2015), 588–598.
-
(2015)
Energy Convers Manage
, vol.89
, pp. 588-598
-
-
Chitsaz, H.1
Amjady, N.2
Zareipour, H.3
-
23
-
-
84906911087
-
Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN)
-
De Giorgi, M.-G., Campilongo, S., Ficarella, A., Congedo, P.-M., Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN). Energies 7:8 (2014), 5251–5272.
-
(2014)
Energies
, vol.7
, Issue.8
, pp. 5251-5272
-
-
De Giorgi, M.-G.1
Campilongo, S.2
Ficarella, A.3
Congedo, P.-M.4
-
24
-
-
79961127156
-
Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
-
Guo, Z., Zhao, W., Lu, H., Wang, J., Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renew Energy 37:1 (2012), 241–249.
-
(2012)
Renew Energy
, vol.37
, Issue.1
, pp. 241-249
-
-
Guo, Z.1
Zhao, W.2
Lu, H.3
Wang, J.4
-
25
-
-
82055184071
-
Combined model based on EMD-SVM for short-term wind power prediction
-
Lin, Y.-E., Liu, P., Combined model based on EMD-SVM for short-term wind power prediction. Proc CSEE 31:31 (2011), 102–108.
-
(2011)
Proc CSEE
, vol.31
, Issue.31
, pp. 102-108
-
-
Lin, Y.-E.1
Liu, P.2
-
26
-
-
84875598356
-
Chaotic time series prediction model of wind power based on ensemble empirical mode decomposition-approximate entropy and reservoir
-
50505–050505
-
Zhang, X.-Q., Liang, J., Chaotic time series prediction model of wind power based on ensemble empirical mode decomposition-approximate entropy and reservoir. Acta Phys Sin, 62(5), 2013 50505–050505.
-
(2013)
Acta Phys Sin
, vol.62
, Issue.5
-
-
Zhang, X.-Q.1
Liang, J.2
-
27
-
-
84979034793
-
Wind power multi-step interval prediction based on ensemble empirical mode decomposition-sample entropy and optimized extreme learning machine
-
Zhang, Y.-C., Liu, K.-P., Qin, L., Fang, R.-C., Wind power multi-step interval prediction based on ensemble empirical mode decomposition-sample entropy and optimized extreme learning machine. Power Syst Tech 40:7 (2016), 2045–2051.
-
(2016)
Power Syst Tech
, vol.40
, Issue.7
, pp. 2045-2051
-
-
Zhang, Y.-C.1
Liu, K.-P.2
Qin, L.3
Fang, R.-C.4
-
28
-
-
84903216575
-
A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection
-
Kouhi, S., Keynia, F., Ravadanegh, S.-N., A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection. Inter J Elec Power Energy Syst 62 (2014), 862–867.
-
(2014)
Inter J Elec Power Energy Syst
, vol.62
, pp. 862-867
-
-
Kouhi, S.1
Keynia, F.2
Ravadanegh, S.-N.3
-
29
-
-
84927737833
-
Wind power forecasting based on principle component phase space reconstruction
-
Han, L., Romero, C.-E., Yao, Z., Wind power forecasting based on principle component phase space reconstruction. Renew Energy 81 (2015), 737–744.
-
(2015)
Renew Energy
, vol.81
, pp. 737-744
-
-
Han, L.1
Romero, C.-E.2
Yao, Z.3
-
30
-
-
77954315872
-
Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model
-
Cadenas, E., Rivera, W., Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model. Renew Energy 35:12 (2010), 2732–2738.
-
(2010)
Renew Energy
, vol.35
, Issue.12
, pp. 2732-2738
-
-
Cadenas, E.1
Rivera, W.2
-
31
-
-
84860776112
-
Short-term wind power prediction based on combined grey-markov model
-
IEEE
-
Chen, S., Ye, L., Zhang, G.-W., Zeng, C., Dong, S., Dai, C., Short-term wind power prediction based on combined grey-markov model. Advanced power system automation and protection (APAP), 2011 international conference, 2011, IEEE, 1705–1711.
-
(2011)
Advanced power system automation and protection (APAP), 2011 international conference
, pp. 1705-1711
-
-
Chen, S.1
Ye, L.2
Zhang, G.-W.3
Zeng, C.4
Dong, S.5
Dai, C.6
-
32
-
-
84908425965
-
Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm
-
Chitsaz, H., Amjady, N., Zareipour, H., Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm. Energy Convers Manage 89 (2015), 588–598.
-
(2015)
Energy Convers Manage
, vol.89
, pp. 588-598
-
-
Chitsaz, H.1
Amjady, N.2
Zareipour, H.3
-
33
-
-
84884126948
-
Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
-
Liu, D., Niu, D., Wang, H., Fan, L., Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renew Energy 62 (2014), 592–597.
-
(2014)
Renew Energy
, vol.62
, pp. 592-597
-
-
Liu, D.1
Niu, D.2
Wang, H.3
Fan, L.4
-
34
-
-
84887788957
-
Forecasting wind power in the Mai Liao Wind Farm based on the multi-layer perceptron artificial neural network model with improved simplified swarm optimization
-
Yeh, W.-C., Yeh, Y.-M., Chang, P.-C., Ke, Y.C., Forecasting wind power in the Mai Liao Wind Farm based on the multi-layer perceptron artificial neural network model with improved simplified swarm optimization. Inter J Elec Power Energy Syst 55 (2014), 741–748.
-
(2014)
Inter J Elec Power Energy Syst
, vol.55
, pp. 741-748
-
-
Yeh, W.-C.1
Yeh, Y.-M.2
Chang, P.-C.3
Ke, Y.C.4
-
35
-
-
84895929652
-
Improved gravitational search algorithm for unit commitment considering uncertainty of wind power
-
Ji, B., Yuan, X., Chen, Z., Tian, H., Improved gravitational search algorithm for unit commitment considering uncertainty of wind power. Energy 67 (2014), 52–62.
-
(2014)
Energy
, vol.67
, pp. 52-62
-
-
Ji, B.1
Yuan, X.2
Chen, Z.3
Tian, H.4
-
36
-
-
84941313383
-
A time series processing tool to extract climate-driven interannual vegetation dynamics using Ensemble Empirical Mode Decomposition (EEMD)
-
Hawinkel, P., Swinnen, E., Lhermitte, S., Verbist, B., Van Orshoven, J., Muys, B., A time series processing tool to extract climate-driven interannual vegetation dynamics using Ensemble Empirical Mode Decomposition (EEMD). Remote Sens Environ 169 (2015), 375–389.
-
(2015)
Remote Sens Environ
, vol.169
, pp. 375-389
-
-
Hawinkel, P.1
Swinnen, E.2
Lhermitte, S.3
Verbist, B.4
Van Orshoven, J.5
Muys, B.6
-
37
-
-
84905816480
-
A hybrid fault diagnosis method using morphological filter–translation invariant wavelet and improved ensemble empirical mode decomposition
-
Meng, L., Xiang, J., Wang, Y., Jiang, Y., Gao, H., A hybrid fault diagnosis method using morphological filter–translation invariant wavelet and improved ensemble empirical mode decomposition. Mech Syst Signal Process 50 (2015), 101–115.
-
(2015)
Mech Syst Signal Process
, vol.50
, pp. 101-115
-
-
Meng, L.1
Xiang, J.2
Wang, Y.3
Jiang, Y.4
Gao, H.5
-
38
-
-
77955569587
-
Performance enhancement of ensemble empirical mode decomposition
-
Zhang, J., Yan, R., Gao, R.X., Feng, Z., Performance enhancement of ensemble empirical mode decomposition. Mech Syst Signal Process 24:7 (2010), 2104–2123.
-
(2010)
Mech Syst Signal Process
, vol.24
, Issue.7
, pp. 2104-2123
-
-
Zhang, J.1
Yan, R.2
Gao, R.X.3
Feng, Z.4
-
39
-
-
80052078099
-
Ensemble empirical mode decomposition: a noise-assisted data analysis method
-
Wu, Z., Huang, N.E., Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:01 (2009), 1–41.
-
(2009)
Adv Adapt Data Anal
, vol.1
, Issue.1
, pp. 1-41
-
-
Wu, Z.1
Huang, N.E.2
-
40
-
-
0033949457
-
Physiological time-series analysis using approximate entropy and sample entropy
-
Richman, J.S., Moorman, J.R., Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol-Heart C 278:6 (2000), H2039–H2049.
-
(2000)
Am J Physiol-Heart C
, vol.278
, Issue.6
, pp. H2039-H2049
-
-
Richman, J.S.1
Moorman, J.R.2
-
41
-
-
84963706098
-
Parameter identification for fractional-order multi-scroll chaotic systems based on original dual-state transition algorithm
-
060503-1-8
-
Wang, C., Zhang, H.-L., Fan, W.-H., Parameter identification for fractional-order multi-scroll chaotic systems based on original dual-state transition algorithm. Acta Phys Sin, 65(6), 2016 060503-1-8.
-
(2016)
Acta Phys Sin
, vol.65
, Issue.6
-
-
Wang, C.1
Zhang, H.-L.2
Fan, W.-H.3
-
42
-
-
70349774410
-
Effective forecasting of hourly typhoon rainfall using support vector machines
-
Lin, G.-F., Chen, G.-R., Wu, M.-C., Chou, Y.-C., Effective forecasting of hourly typhoon rainfall using support vector machines. Water Resour Res, 45(8), 2009.
-
(2009)
Water Resour Res
, vol.45
, Issue.8
-
-
Lin, G.-F.1
Chen, G.-R.2
Wu, M.-C.3
Chou, Y.-C.4
-
43
-
-
84951787309
-
Machine learning ensembles for wind power prediction
-
Heinermann, J., Kramer, O., Machine learning ensembles for wind power prediction. Renew Energy 89 (2016), 671–679.
-
(2016)
Renew Energy
, vol.89
, pp. 671-679
-
-
Heinermann, J.1
Kramer, O.2
|