메뉴 건너뛰기




Volumn 138, Issue , 2017, Pages 977-990

A new chaotic time series hybrid prediction method of wind power based on EEMD-SE and full-parameters continued fraction

Author keywords

EEMD SE; Full parameters continued fraction; Primal dual state transition algorithm; Wind power prediction

Indexed keywords

ELECTRIC POWER GENERATION; FORECASTING; PARAMETER ESTIMATION; TIME SERIES; WIND POWER;

EID: 85026436770     PISSN: 03605442     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.energy.2017.07.112     Document Type: Article
Times cited : (96)

References (43)
  • 1
    • 85026440056 scopus 로고    scopus 로고
    • http://www.wwindea.org/the-world-sets-new-wind-installations-record-637-gw-new-capacity-in-2015.
  • 2
    • 84973457857 scopus 로고    scopus 로고
    • A novel bidirectional mechanism based on time series model for wind power forecasting
    • Zhao, Y., Ye, L., Li, Z., Song, X., Lang, Y., Su, J., A novel bidirectional mechanism based on time series model for wind power forecasting. Appl Energy 177 (2016), 793–803.
    • (2016) Appl Energy , vol.177 , pp. 793-803
    • Zhao, Y.1    Ye, L.2    Li, Z.3    Song, X.4    Lang, Y.5    Su, J.6
  • 3
    • 84994037319 scopus 로고    scopus 로고
    • A new wind power prediction method based on chaotic theory and Bernstein Neural Network
    • Wang, C., Zhang, H.-L., Fan, W.-H., Fan, X.-C., A new wind power prediction method based on chaotic theory and Bernstein Neural Network. Energy 117 (2016), 259–271.
    • (2016) Energy , vol.117 , pp. 259-271
    • Wang, C.1    Zhang, H.-L.2    Fan, W.-H.3    Fan, X.-C.4
  • 4
    • 79955623964 scopus 로고    scopus 로고
    • Wind farm power prediction based on wavelet decomposition and chaotic time series
    • An, X., Jiang, D., Liu, C., Zhao, M., Wind farm power prediction based on wavelet decomposition and chaotic time series. Expert Syst Appl 38:9 (2011), 11280–11285.
    • (2011) Expert Syst Appl , vol.38 , Issue.9 , pp. 11280-11285
    • An, X.1    Jiang, D.2    Liu, C.3    Zhao, M.4
  • 5
    • 80052379563 scopus 로고    scopus 로고
    • Short-term prediction of wind power using EMD and chaotic theory
    • An, X., Jiang, D., Zhao, M.-L., Short-term prediction of wind power using EMD and chaotic theory. Commun Nonlinear Sci 17:2 (2012), 1036–1042.
    • (2012) Commun Nonlinear Sci , vol.17 , Issue.2 , pp. 1036-1042
    • An, X.1    Jiang, D.2    Zhao, M.-L.3
  • 6
    • 84941270020 scopus 로고    scopus 로고
    • Analysis of multi-scale chaotic characteristics of wind power based on Hilbert–Huang transform and Hurst analysis
    • Liang, Z., Liang, J., Zhang, L., Wang, C., Yun, Z., Zhang, X., Analysis of multi-scale chaotic characteristics of wind power based on Hilbert–Huang transform and Hurst analysis. Appl Energy 159 (2015), 51–61.
    • (2015) Appl Energy , vol.159 , pp. 51-61
    • Liang, Z.1    Liang, J.2    Zhang, L.3    Wang, C.4    Yun, Z.5    Zhang, X.6
  • 7
    • 84892960976 scopus 로고    scopus 로고
    • Current status and future advances for wind speed and power forecasting
    • Jung, J., Broadwater, R.-P., Current status and future advances for wind speed and power forecasting. Renew Sustain Energy Rev 31 (2014), 762–777.
    • (2014) Renew Sustain Energy Rev , vol.31 , pp. 762-777
    • Jung, J.1    Broadwater, R.-P.2
  • 8
    • 84973457857 scopus 로고    scopus 로고
    • A novel bidirectional mechanism based on time series model for wind power forecasting
    • Zhao, Y., Ye, L., Li, Z., Song, X., Lang, Y., Su, J., A novel bidirectional mechanism based on time series model for wind power forecasting. Appl Energy 177 (2016), 793–803.
    • (2016) Appl Energy , vol.177 , pp. 793-803
    • Zhao, Y.1    Ye, L.2    Li, Z.3    Song, X.4    Lang, Y.5    Su, J.6
  • 9
    • 84989355131 scopus 로고    scopus 로고
    • Short-term wind power prediction based on spatial model
    • Ye, L., Zhao, Y., Zeng, C., Zhang, C., Short-term wind power prediction based on spatial model. Renew Energy 101 (2017), 1067–1074.
    • (2017) Renew Energy , vol.101 , pp. 1067-1074
    • Ye, L.1    Zhao, Y.2    Zeng, C.3    Zhang, C.4
  • 10
    • 84962050754 scopus 로고    scopus 로고
    • Using data-driven approach for wind power prediction: a comparative study
    • Renani, E.-T., Elias, M.F.M., Rahim, N.-A., Using data-driven approach for wind power prediction: a comparative study. Energy Convers Manage 118 (2016), 193–203.
    • (2016) Energy Convers Manage , vol.118 , pp. 193-203
    • Renani, E.-T.1    Elias, M.F.M.2    Rahim, N.-A.3
  • 11
    • 79959375425 scopus 로고    scopus 로고
    • Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods
    • De Giorgi, M.-G., Ficarella, A., Tarantino, M., Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods. Energy 36:7 (2011), 3968–3978.
    • (2011) Energy , vol.36 , Issue.7 , pp. 3968-3978
    • De Giorgi, M.-G.1    Ficarella, A.2    Tarantino, M.3
  • 13
    • 84867988966 scopus 로고    scopus 로고
    • Probabilistic wind power forecasting using radial basis function neural networks. Power Syst
    • Sideratos, G., Hatziargyriou, N.-D., Probabilistic wind power forecasting using radial basis function neural networks. Power Syst. IEEE Trans 27:4 (2012), 1788–1796.
    • (2012) IEEE Trans , vol.27 , Issue.4 , pp. 1788-1796
    • Sideratos, G.1    Hatziargyriou, N.-D.2
  • 14
    • 84919658679 scopus 로고    scopus 로고
    • A novel application of an analog ensemble for short-term wind power forecasting
    • Alessandrini, S., Delle Monache, L., Sperati, S., Nissen, J.-N., A novel application of an analog ensemble for short-term wind power forecasting. Renew Energy 76 (2015), 768–781.
    • (2015) Renew Energy , vol.76 , pp. 768-781
    • Alessandrini, S.1    Delle Monache, L.2    Sperati, S.3    Nissen, J.-N.4
  • 15
    • 84922697904 scopus 로고    scopus 로고
    • Markov chain modeling for very-short-term wind power forecasting
    • Carpinone, A., Giorgio, M., Langella, R., Testa, A., Markov chain modeling for very-short-term wind power forecasting. Electr Power Syst Res 122 (2015), 152–158.
    • (2015) Electr Power Syst Res , vol.122 , pp. 152-158
    • Carpinone, A.1    Giorgio, M.2    Langella, R.3    Testa, A.4
  • 16
    • 84949681323 scopus 로고    scopus 로고
    • A robust combination approach for short-term wind speed forecasting and analysis-combination of the ARIMA (autoregressive integrated moving average), ELM (extreme learning machine), SVM (support vector machine) and LSSVM (least square SVM) forecasts using a GPR (gaussian process regression) model
    • Wang, J., Hu, J., A robust combination approach for short-term wind speed forecasting and analysis-combination of the ARIMA (autoregressive integrated moving average), ELM (extreme learning machine), SVM (support vector machine) and LSSVM (least square SVM) forecasts using a GPR (gaussian process regression) model. Energy 93 (2015), 41–56.
    • (2015) Energy , vol.93 , pp. 41-56
    • Wang, J.1    Hu, J.2
  • 17
    • 84906911087 scopus 로고    scopus 로고
    • Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN)
    • De Giorgi, M.-G., Campilongo, S., Ficarella, A., Congedo, P.-M., Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN). Energies 7:8 (2014), 5251–5272.
    • (2014) Energies , vol.7 , Issue.8 , pp. 5251-5272
    • De Giorgi, M.-G.1    Campilongo, S.2    Ficarella, A.3    Congedo, P.-M.4
  • 18
    • 84903119035 scopus 로고    scopus 로고
    • A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting
    • Haque, A.-U., Nehrir, M.-H., Mandal, P., A hybrid intelligent model for deterministic and quantile regression approach for probabilistic wind power forecasting. IEEE Trans Power Syst 29:4 (2014), 1663–1672.
    • (2014) IEEE Trans Power Syst , vol.29 , Issue.4 , pp. 1663-1672
    • Haque, A.-U.1    Nehrir, M.-H.2    Mandal, P.3
  • 19
    • 84908376968 scopus 로고    scopus 로고
    • Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
    • Osório, G.-J., Matias, J.C.-O., Catalão, J.P.-S., Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew Energy 75 (2015), 301–307.
    • (2015) Renew Energy , vol.75 , pp. 301-307
    • Osório, G.-J.1    Matias, J.C.-O.2    Catalão, J.P.-S.3
  • 20
    • 84865439917 scopus 로고    scopus 로고
    • A hybrid strategy of short term wind power prediction
    • Peng, H., Liu, F., Yang, X., A hybrid strategy of short term wind power prediction. Renew energy 50 (2013), 590–595.
    • (2013) Renew energy , vol.50 , pp. 590-595
    • Peng, H.1    Liu, F.2    Yang, X.3
  • 22
    • 84908425965 scopus 로고    scopus 로고
    • Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm
    • Chitsaz, H., Amjady, N., Zareipour, H., Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm. Energy Convers Manage 89 (2015), 588–598.
    • (2015) Energy Convers Manage , vol.89 , pp. 588-598
    • Chitsaz, H.1    Amjady, N.2    Zareipour, H.3
  • 23
    • 84906911087 scopus 로고    scopus 로고
    • Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN)
    • De Giorgi, M.-G., Campilongo, S., Ficarella, A., Congedo, P.-M., Comparison between wind power prediction models based on wavelet decomposition with least-squares support vector machine (LS-SVM) and artificial neural network (ANN). Energies 7:8 (2014), 5251–5272.
    • (2014) Energies , vol.7 , Issue.8 , pp. 5251-5272
    • De Giorgi, M.-G.1    Campilongo, S.2    Ficarella, A.3    Congedo, P.-M.4
  • 24
    • 79961127156 scopus 로고    scopus 로고
    • Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
    • Guo, Z., Zhao, W., Lu, H., Wang, J., Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renew Energy 37:1 (2012), 241–249.
    • (2012) Renew Energy , vol.37 , Issue.1 , pp. 241-249
    • Guo, Z.1    Zhao, W.2    Lu, H.3    Wang, J.4
  • 25
    • 82055184071 scopus 로고    scopus 로고
    • Combined model based on EMD-SVM for short-term wind power prediction
    • Lin, Y.-E., Liu, P., Combined model based on EMD-SVM for short-term wind power prediction. Proc CSEE 31:31 (2011), 102–108.
    • (2011) Proc CSEE , vol.31 , Issue.31 , pp. 102-108
    • Lin, Y.-E.1    Liu, P.2
  • 26
    • 84875598356 scopus 로고    scopus 로고
    • Chaotic time series prediction model of wind power based on ensemble empirical mode decomposition-approximate entropy and reservoir
    • 50505–050505
    • Zhang, X.-Q., Liang, J., Chaotic time series prediction model of wind power based on ensemble empirical mode decomposition-approximate entropy and reservoir. Acta Phys Sin, 62(5), 2013 50505–050505.
    • (2013) Acta Phys Sin , vol.62 , Issue.5
    • Zhang, X.-Q.1    Liang, J.2
  • 27
    • 84979034793 scopus 로고    scopus 로고
    • Wind power multi-step interval prediction based on ensemble empirical mode decomposition-sample entropy and optimized extreme learning machine
    • Zhang, Y.-C., Liu, K.-P., Qin, L., Fang, R.-C., Wind power multi-step interval prediction based on ensemble empirical mode decomposition-sample entropy and optimized extreme learning machine. Power Syst Tech 40:7 (2016), 2045–2051.
    • (2016) Power Syst Tech , vol.40 , Issue.7 , pp. 2045-2051
    • Zhang, Y.-C.1    Liu, K.-P.2    Qin, L.3    Fang, R.-C.4
  • 28
    • 84903216575 scopus 로고    scopus 로고
    • A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection
    • Kouhi, S., Keynia, F., Ravadanegh, S.-N., A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection. Inter J Elec Power Energy Syst 62 (2014), 862–867.
    • (2014) Inter J Elec Power Energy Syst , vol.62 , pp. 862-867
    • Kouhi, S.1    Keynia, F.2    Ravadanegh, S.-N.3
  • 29
    • 84927737833 scopus 로고    scopus 로고
    • Wind power forecasting based on principle component phase space reconstruction
    • Han, L., Romero, C.-E., Yao, Z., Wind power forecasting based on principle component phase space reconstruction. Renew Energy 81 (2015), 737–744.
    • (2015) Renew Energy , vol.81 , pp. 737-744
    • Han, L.1    Romero, C.-E.2    Yao, Z.3
  • 30
    • 77954315872 scopus 로고    scopus 로고
    • Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model
    • Cadenas, E., Rivera, W., Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model. Renew Energy 35:12 (2010), 2732–2738.
    • (2010) Renew Energy , vol.35 , Issue.12 , pp. 2732-2738
    • Cadenas, E.1    Rivera, W.2
  • 32
    • 84908425965 scopus 로고    scopus 로고
    • Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm
    • Chitsaz, H., Amjady, N., Zareipour, H., Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm. Energy Convers Manage 89 (2015), 588–598.
    • (2015) Energy Convers Manage , vol.89 , pp. 588-598
    • Chitsaz, H.1    Amjady, N.2    Zareipour, H.3
  • 33
    • 84884126948 scopus 로고    scopus 로고
    • Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
    • Liu, D., Niu, D., Wang, H., Fan, L., Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renew Energy 62 (2014), 592–597.
    • (2014) Renew Energy , vol.62 , pp. 592-597
    • Liu, D.1    Niu, D.2    Wang, H.3    Fan, L.4
  • 34
    • 84887788957 scopus 로고    scopus 로고
    • Forecasting wind power in the Mai Liao Wind Farm based on the multi-layer perceptron artificial neural network model with improved simplified swarm optimization
    • Yeh, W.-C., Yeh, Y.-M., Chang, P.-C., Ke, Y.C., Forecasting wind power in the Mai Liao Wind Farm based on the multi-layer perceptron artificial neural network model with improved simplified swarm optimization. Inter J Elec Power Energy Syst 55 (2014), 741–748.
    • (2014) Inter J Elec Power Energy Syst , vol.55 , pp. 741-748
    • Yeh, W.-C.1    Yeh, Y.-M.2    Chang, P.-C.3    Ke, Y.C.4
  • 35
    • 84895929652 scopus 로고    scopus 로고
    • Improved gravitational search algorithm for unit commitment considering uncertainty of wind power
    • Ji, B., Yuan, X., Chen, Z., Tian, H., Improved gravitational search algorithm for unit commitment considering uncertainty of wind power. Energy 67 (2014), 52–62.
    • (2014) Energy , vol.67 , pp. 52-62
    • Ji, B.1    Yuan, X.2    Chen, Z.3    Tian, H.4
  • 36
    • 84941313383 scopus 로고    scopus 로고
    • A time series processing tool to extract climate-driven interannual vegetation dynamics using Ensemble Empirical Mode Decomposition (EEMD)
    • Hawinkel, P., Swinnen, E., Lhermitte, S., Verbist, B., Van Orshoven, J., Muys, B., A time series processing tool to extract climate-driven interannual vegetation dynamics using Ensemble Empirical Mode Decomposition (EEMD). Remote Sens Environ 169 (2015), 375–389.
    • (2015) Remote Sens Environ , vol.169 , pp. 375-389
    • Hawinkel, P.1    Swinnen, E.2    Lhermitte, S.3    Verbist, B.4    Van Orshoven, J.5    Muys, B.6
  • 37
    • 84905816480 scopus 로고    scopus 로고
    • A hybrid fault diagnosis method using morphological filter–translation invariant wavelet and improved ensemble empirical mode decomposition
    • Meng, L., Xiang, J., Wang, Y., Jiang, Y., Gao, H., A hybrid fault diagnosis method using morphological filter–translation invariant wavelet and improved ensemble empirical mode decomposition. Mech Syst Signal Process 50 (2015), 101–115.
    • (2015) Mech Syst Signal Process , vol.50 , pp. 101-115
    • Meng, L.1    Xiang, J.2    Wang, Y.3    Jiang, Y.4    Gao, H.5
  • 38
    • 77955569587 scopus 로고    scopus 로고
    • Performance enhancement of ensemble empirical mode decomposition
    • Zhang, J., Yan, R., Gao, R.X., Feng, Z., Performance enhancement of ensemble empirical mode decomposition. Mech Syst Signal Process 24:7 (2010), 2104–2123.
    • (2010) Mech Syst Signal Process , vol.24 , Issue.7 , pp. 2104-2123
    • Zhang, J.1    Yan, R.2    Gao, R.X.3    Feng, Z.4
  • 39
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: a noise-assisted data analysis method
    • Wu, Z., Huang, N.E., Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:01 (2009), 1–41.
    • (2009) Adv Adapt Data Anal , vol.1 , Issue.1 , pp. 1-41
    • Wu, Z.1    Huang, N.E.2
  • 40
    • 0033949457 scopus 로고    scopus 로고
    • Physiological time-series analysis using approximate entropy and sample entropy
    • Richman, J.S., Moorman, J.R., Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol-Heart C 278:6 (2000), H2039–H2049.
    • (2000) Am J Physiol-Heart C , vol.278 , Issue.6 , pp. H2039-H2049
    • Richman, J.S.1    Moorman, J.R.2
  • 41
    • 84963706098 scopus 로고    scopus 로고
    • Parameter identification for fractional-order multi-scroll chaotic systems based on original dual-state transition algorithm
    • 060503-1-8
    • Wang, C., Zhang, H.-L., Fan, W.-H., Parameter identification for fractional-order multi-scroll chaotic systems based on original dual-state transition algorithm. Acta Phys Sin, 65(6), 2016 060503-1-8.
    • (2016) Acta Phys Sin , vol.65 , Issue.6
    • Wang, C.1    Zhang, H.-L.2    Fan, W.-H.3
  • 42
    • 70349774410 scopus 로고    scopus 로고
    • Effective forecasting of hourly typhoon rainfall using support vector machines
    • Lin, G.-F., Chen, G.-R., Wu, M.-C., Chou, Y.-C., Effective forecasting of hourly typhoon rainfall using support vector machines. Water Resour Res, 45(8), 2009.
    • (2009) Water Resour Res , vol.45 , Issue.8
    • Lin, G.-F.1    Chen, G.-R.2    Wu, M.-C.3    Chou, Y.-C.4
  • 43
    • 84951787309 scopus 로고    scopus 로고
    • Machine learning ensembles for wind power prediction
    • Heinermann, J., Kramer, O., Machine learning ensembles for wind power prediction. Renew Energy 89 (2016), 671–679.
    • (2016) Renew Energy , vol.89 , pp. 671-679
    • Heinermann, J.1    Kramer, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.