메뉴 건너뛰기




Volumn , Issue , 2007, Pages 1-308

Semisupervised learning for computational linguistics

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85055469327     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Book
Times cited : (98)

References (247)
  • 2
    • 18744410770 scopus 로고    scopus 로고
    • Understanding the Yarowsky Algorithm
    • Abney, Steven. Understanding the Yarowsky Algorithm. Computational Linguistics 30(3):365–395. 2004.
    • (2004) Computational Linguistics , vol.30 , Issue.3 , pp. 365-395
    • Abney, S.1
  • 4
    • 0033652943 scopus 로고    scopus 로고
    • Snowball: Extracting Relations from Large Plain-Text Collections
    • Association for Computing Machinery. New York
    • Agichtein, E. and L. Gravano. Snowball: Extracting Relations from Large Plain-Text Collections. The 5th International Conference on Digital Libraries. Association for Computing Machinery. New York. 2000.
    • (2000) The 5Th International Conference on Digital Libraries
    • Agichtein, E.1    Gravano, L.2
  • 6
    • 85117771197 scopus 로고    scopus 로고
    • Semantic lexicon construction: Learning from unlabeled data via spectral analysis
    • Association for Computational Linguistics. East Stroudsburg, PA
    • Ando, Rie Kubota. Semantic lexicon construction: Learning from unlabeled data via spectral analysis. Proceedings of the Conference on Natural Language Learning (CoNLL-2004). Association for Computational Linguistics. East Stroudsburg, PA. 2004.
    • (2004) Proceedings of the Conference on Natural Language Learning (Conll-2004)
    • Ando, R.K.1
  • 7
    • 84898963451 scopus 로고    scopus 로고
    • Probabilistic modeling for face orientation discrimination: Learning from labeled and unlabeled data
    • MIT Press. Cambridge, MA
    • Baluja, S. Probabilistic modeling for face orientation discrimination: Learning from labeled and unlabeled data. Advances in Neural Information Processing Systems 11 (NIPS-1998). MIT Press. Cambridge, MA. 1999.
    • (1999) Advances in Neural Information Processing Systems 11 (NIPS-1998)
    • Baluja, S.1
  • 10
    • 0026586030 scopus 로고
    • A self-organizing neural network that discovers surfaces in random-dot stereograms
    • Becker, S. and G.E. Hinton. A self-organizing neural network that discovers surfaces in random-dot stereograms. Nature 355:161–163. 1992.
    • (1992) Nature , vol.355 , pp. 161-163
    • Becker, S.1    Hinton, G.E.2
  • 12
    • 85156252604 scopus 로고    scopus 로고
    • Recurrent Neural Networks for Missing or Asynchronous Data
    • M. Mozer, D.S. Touretzky, and M. Perrone (eds.), MIT Press. Cambridge, MA
    • Bengio, Y. and F. Gingras. Recurrent Neural Networks for Missing or Asynchronous Data. In M. Mozer, D.S. Touretzky, and M. Perrone (eds.), Advances in Neural Information Processing Systems 8 (NIPS-1995). MIT Press. Cambridge, MA. 1996.
    • (1996) Advances in Neural Information Processing Systems 8 (NIPS-1995)
    • Bengio, Y.1    Gingras, F.2
  • 13
    • 34547969350 scopus 로고    scopus 로고
    • Label propagation and quadratic criterion
    • Chapelle et al. (eds.), (Chapter 11). MIT Press. Cambridge, MA
    • Bengio, Yoshua, Olivier Delalleau, and Nicolas Le Roux. Label propagation and quadratic criterion. In Chapelle et al. (eds.), Semi-Supervised Learning (Chapter 11). MIT Press. Cambridge, MA. 2006.
    • (2006) Semi-Supervised Learning
    • Bengio, Y.1    Delalleau, O.2    Roux, N.L.3
  • 20
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts
    • Morgan Kaufmann Publishers. San Francisco, CA
    • Blum, Avrim and Shuchi Chawla. Learning from labeled and unlabeled data using graph mincuts. Proceedings of the 18th International Confer ence on Machine Learning, pp. 19–26. Morgan Kaufmann Publishers. San Francisco, CA. 2001.
    • (2001) Proceedings of the 18Th International Confer Ence on Machine Learning , pp. 19-26
    • Blum, A.1    Chawla, S.2
  • 25
    • 0006807318 scopus 로고
    • Unsupervised Learning of Disambiguation Rules for Part of Speech Tagging
    • Association for Computational Linguistics. East Stroudsburg, PA
    • Brill, Eric. Unsupervised Learning of Disambiguation Rules for Part of Speech Tagging. Third Workshop on Very Large Corpora (VLC-1995), pp. 1–13. Association for Computational Linguistics. East Stroudsburg, PA. 1995.
    • (1995) Third Workshop on Very Large Corpora (VLC-1995) , pp. 1-13
    • Brill, E.1
  • 27
  • 29
    • 0033873495 scopus 로고    scopus 로고
    • Improved classification via connectivity information
    • Association for Computing Machinery/Society for Industrial and Applied Mathematics. New York
    • Broder, Andrei Z., Robert Krauthgamer, and Michael Mitzenmacher. Improved classification via connectivity information. Proceedings of the Eleventh Annual Symposium on Discrete Algorithms, pp. 576–585. Association for Computing Machinery/Society for Industrial and Applied Mathematics. New York. 2000.
    • (2000) Proceedings of the Eleventh Annual Symposium on Discrete Algorithms , pp. 576-585
    • Broder, A.Z.1    Krauthgamer, R.2    Mitzenmacher, M.3
  • 33
    • 0002705495 scopus 로고
    • Automatic retrieval with locality information using SMART
    • National Institute of Standards and Technology. Gaithersburg, MD
    • Buckley, C., G. Salton, and J. Allan. Automatic retrieval with locality information using SMART. Proceedings of the First Text Retrieval Conference (TREC), pp. 59–72. National Institute of Standards and Technology. Gaithersburg, MD. 1992.
    • (1992) Proceedings of the First Text Retrieval Conference (TREC) , pp. 59-72
    • Buckley, C.1    Salton, G.2    Allan, J.3
  • 36
    • 0029195475 scopus 로고
    • On the exponential value of labeled samples
    • Castelli, Vittorio and Thomas Cover. On the exponential value of labeled samples. Pattern Recognition Letters 16:105–111. 1995.
    • (1995) Pattern Recognition Letters , vol.16 , pp. 105-111
    • Vittorio, C.1    Cover, T.2
  • 37
    • 0001662441 scopus 로고    scopus 로고
    • The Relative Value of Labeled and Unlabeled Samples in Pattern Recognition with an Unknown Mixing Parameter
    • Institute of Electrical and Electronics Engineers. New York
    • Castelli, V. and T. Cover. The Relative Value of Labeled and Unlabeled Samples in Pattern Recognition with an Unknown Mixing Parameter. IEEE Transactions on Information Theory 42(6):2102–2117. Institute of Electrical and Electronics Engineers. New York. 1996.
    • (1996) IEEE Transactions on Information Theory , vol.42 , Issue.6 , pp. 2102-2117
    • Castelli, V.1    Cover, T.2
  • 42
    • 27344454215 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data: An empirical study across techniques and domains
    • Chawla, Nitesh and Grigoris Karakoulas. Learning from labeled and unlabeled data: an empirical study across techniques and domains. Journal of Artificial Intelligence Research 23:331–366. 2005.
    • (2005) Journal of Artificial Intelligence Research , vol.23 , pp. 331-366
    • Nitesh, C.1    Karakoulas, G.2
  • 44
    • 0002172868 scopus 로고
    • A Stochastic Parts Program and Noun Phrase Parser for Unrestricted Texts
    • Association for Computational Linguistics. East Stroudsburg, PA
    • Church, Kenneth. A Stochastic Parts Program and Noun Phrase Parser for Unrestricted Texts. Proceedings of the 2nd Conference on Applied Natural Language Processing (ANLP-1988). Association for Computational Linguistics. East Stroudsburg, PA. 1988.
    • (1988) Proceedings of the 2Nd Conference on Applied Natural Language Processing (ANLP-1988)
    • Church, K.1
  • 46
    • 0742293389 scopus 로고
    • The Analysis and Acquisition of Proper Names for the Understanding of Free Text
    • Coates-Stephens, Sam. The Analysis and Acquisition of Proper Names for the Understanding of Free Text. Computers and the Humanities 26:441–456. 1993.
    • (1993) Computers and the Humanities , vol.26 , pp. 441-456
    • Coates-Stephens, S.1
  • 48
    • 85055482838 scopus 로고    scopus 로고
    • Semi-supervised Learning of Classifiers: Theory and Algorithms for Bayesian Network Classifiers and Applications to Human-Computer Interaction
    • Institute of Electrical and Electronics Engineers. New York
    • Cohen, I., N. Sebe, F.G. Cozman, M.C. Cirelo, and T.S. Huang. Semi-supervised Learning of Classifiers: Theory and Algorithms for Bayesian Network Classifiers and Applications to Human-Computer Interaction. IEEE Transactions on Pattern Analysis and Machine Intelligence. Institute of Electrical and Electronics Engineers. New York. 2004.
    • (2004) IEEE Transactions on Pattern Analysis and Machine Intelligence
    • Cohen, I.1    Sebe, N.2    Cozman, F.G.3    Cirelo, M.C.4    Huang, T.S.5
  • 55
    • 0035312953 scopus 로고    scopus 로고
    • Relational Learning with Statistical Predicate Invention: Better Models for Hypertext
    • Craven, M. and S. Slattery. Relational Learning with Statistical Predicate Invention: Better Models for Hypertext. Machine Learning 43:97– 119. 2001.
    • (2001) Machine Learning , vol.43 , pp. 97-119
    • Craven, M.1    Slattery, S.2
  • 58
    • 80053346006 scopus 로고    scopus 로고
    • Language independent minimally supervised induction of lexical probabilities
    • Association for Computational Linguistics. East Stroudsburg, PA
    • Cucerzan, Silviu and David Yarowsky. Language independent minimally supervised induction of lexical probabilities. Proceedings of the 38th Meeting of the Association for Computational Linguistics (ACL-2000), pp. 270–277. Association for Computational Linguistics. East Stroudsburg, PA. 2000.
    • (2000) Proceedings of the 38Th Meeting of the Association for Computational Linguistics (ACL-2000) , pp. 270-277
    • Cucerzan, S.1    Yarowsky, D.2
  • 63
    • 84937318639 scopus 로고
    • Word Sense Disambiguation Using a Second Language Monolingual Corpus
    • Dagan, Ido and Alon Itai. Word Sense Disambiguation Using a Second Language Monolingual Corpus. Computational Linguistics 20:563–596. 1994.
    • (1994) Computational Linguistics , vol.20 , pp. 563-596
    • Dagan, I.1    Itai, A.2
  • 65
    • 0032633485 scopus 로고    scopus 로고
    • Similarity-based models of word coocurrence probabilities
    • Dagan, Ido, Lillian Lee, and Fernando Pereira. Similarity-based models of word coocurrence probabilities. Machine Learning 34(1–3):43–69. 1999.
    • (1999) Machine Learning , vol.34 , Issue.1-3 , pp. 43-69
    • Ido, D.1    Lee, L.2    Pereira, F.3
  • 66
    • 24944559872 scopus 로고    scopus 로고
    • Berkeley Tech Report CSD-99-1047. University of California Berkeley
    • Dasgupta, Sanjoy. Learning Mixtures of Gaussians. Berkeley Tech Report CSD-99-1047. University of California Berkeley. 1999.
    • (1999) Learning Mixtures of Gaussians
    • Dasgupta, S.1
  • 69
    • 0008496059 scopus 로고
    • A.I. Memo 1558. MIT AI Lab and Department of Brain and Cognitive Sciences. Massachusetts Institute of Technology
    • De Marcken, Carl. The Unsupervised Acquisition of a Lexicon from Continuous Speech. A.I. Memo 1558. MIT AI Lab and Department of Brain and Cognitive Sciences. Massachusetts Institute of Technology. 1995.
    • (1995) The Unsupervised Acquisition of a Lexicon from Continuous Speech
    • Carl, D.M.1
  • 70
    • 0004241790 scopus 로고    scopus 로고
    • PhD diss. Massachusetts Institute of Technology
    • De Marcken, Carl. “Unsupervised Language Acquisition.” PhD diss. Massachusetts Institute of Technology. 1996.
    • (1996) Unsupervised Language Acquisition
    • Carl, D.M.1
  • 71
    • 0005986550 scopus 로고
    • Learning classification with unlabeled data
    • Cowan, Tesauro, and Alspector (eds), Morgan Kaufmann Publishers. San Francisco, CA
    • De Sa, Virginia. Learning classification with unlabeled data. In Cowan, Tesauro, and Alspector (eds), Advances in Neural Information Processing Systems 6. Morgan Kaufmann Publishers. San Francisco, CA. 1993.
    • (1993) Advances in Neural Information Processing Systems 6
    • Virginia, D.S.1
  • 75
    • 84936823652 scopus 로고
    • Grammatical Category Disambiguation by Statistical Optimization
    • DeRose, S. Grammatical Category Disambiguation by Statistical Optimization. Computational Linguistics 14(1). 1988.
    • (1988) Computational Linguistics , vol.14 , Issue.1
    • Derose, S.1
  • 76
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via Error-Correcting Output Codes
    • Dietterich, Thomas G., and Ghulum Bakiri. Solving multiclass learning problems via Error-Correcting Output Codes. Journal of Artificial Intelligence Research 2:263–286. 1995.
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 77
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple-instance problem with axis-parallel rectangles
    • Dietterich, Thomas G., Richard H. Lathrop, and Tomas Lozano-Perez. Solving the multiple-instance problem with axis-parallel rectangles. Artificial Intelligence 89:1–2, 31–71. 1997.
    • (1997) Artificial Intelligence , vol.89
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Perez, T.3
  • 83
    • 84858394602 scopus 로고
    • Does Baum-Welch Re-estimation Help Taggers?
    • Association for Computational Linguistics. East Stroudsburg, PA
    • Elworthy, David. Does Baum-Welch Re-estimation Help Taggers? 4th Conference on Applied Natural Language Processing (ANLP), pp. 53–58. Association for Computational Linguistics. East Stroudsburg, PA. 1994.
    • (1994) 4Th Conference on Applied Natural Language Processing (ANLP) , pp. 53-58
    • Elworthy, D.1
  • 90
    • 0031209604 scopus 로고    scopus 로고
    • Selective Sampling Using the Query by Committee Algorithm
    • Freund, Yoav, H. Sebastian Seung, Eli Shamir, and Naftali Tishby. Selective Sampling Using the Query by Committee Algorithm. Machine Learning 28:133–168. 1997.
    • (1997) Machine Learning , vol.28 , pp. 133-168
    • Freund, Y.1    Sebastian Seung, H.2    Shamir, E.3    Tishby, N.4
  • 91
    • 0001247754 scopus 로고
    • One sense per discourse
    • Defense Advanced Projects Research Agency (DARPA). Morgan Kaufmann Publishers. San Francisco, CA
    • Gale, W., K. Church, and D. Yarowsky. One sense per discourse. Proceedings of the Fourth Speech and Natural Language Workshop, pp. 233– 237. Defense Advanced Projects Research Agency (DARPA). Morgan Kaufmann Publishers. San Francisco, CA. 1992.
    • (1992) Proceedings of the Fourth Speech and Natural Language Workshop , pp. 233-237
    • Gale, W.1    Church, K.2    Yarowsky, D.3
  • 92
    • 0018128173 scopus 로고
    • The efficiency of a linear discriminant function based on unclassified initial samples
    • Ganesalingam, S. and G. McLachlan. The efficiency of a linear discriminant function based on unclassified initial samples. Biometrika 65:658–662. 1978.
    • (1978) Biometrika , vol.65 , pp. 658-662
    • Ganesalingam, S.1    McLachlan, G.2
  • 93
    • 0005908349 scopus 로고
    • Small sample results for a linear discriminant function estimated from a mixture of normal populations
    • Ganesalingam, S. and G. McLachlan. Small sample results for a linear discriminant function estimated from a mixture of normal populations. Journal of Statistical Computation and Simulation 9:151–158. 1979.
    • (1979) Journal of Statistical Computation and Simulation , vol.9 , pp. 151-158
    • Ganesalingam, S.1    McLachlan, G.2
  • 96
    • 0041079008 scopus 로고    scopus 로고
    • Unsupervised Learning of the Morphology of a Natural Language
    • Goldsmith, John. Unsupervised Learning of the Morphology of a Natural Language. Computational Linguistics 27(2):153–198. 2001.
    • (2001) Computational Linguistics , vol.27 , Issue.2 , pp. 153-198
    • Goldsmith, J.1
  • 97
    • 0004236492 scopus 로고    scopus 로고
    • (3rd edition). Johns Hopkins University Press. Baltimore, MD
    • Golub, G.H. and C.F.V. Loan. Matrix Computations (3rd edition). Johns Hopkins University Press. Baltimore, MD. 1996.
    • (1996) Matrix Computations
    • Golub, G.H.1    Loan, C.F.V.2
  • 98
    • 0026372553 scopus 로고
    • Texture analysis via unsupervised and supervised learning
    • Institute of Electrical and Electronics Engineers. New York
    • Greenspan, H., R. Goodman, and R. Chellappa. Texture analysis via unsupervised and supervised learning. International Joint Conference on Neural Networks (IJCNN-1991), vol. 1, pp. 639–644. Institute of Electrical and Electronics Engineers. New York. 1991.
    • (1991) International Joint Conference on Neural Networks (IJCNN-1991) , vol.1 , pp. 639-644
    • Greenspan, H.1    Goodman, R.2    Chellappa, R.3
  • 104
  • 112
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised learning by probabilistic latent semantic analysis
    • Hofmann, Thomas. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning 42(1–2):177–196. 2001.
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 177-196
    • Hofmann, T.1
  • 113
  • 116
    • 0002409860 scopus 로고    scopus 로고
    • A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization
    • Morgan Kaufmann Publishers. San Francisco, CA
    • Joachims, Thorsten. A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization. Proceedings of the 14th International Conference on Machine Learning (ICML-1997). Morgan Kaufmann Publishers. San Francisco, CA. 1997.
    • (1997) Proceedings of the 14Th International Conference on Machine Learning (ICML-1997)
    • Joachims, T.1
  • 120
    • 0028132537 scopus 로고
    • Random sampling in cut, flow, and network design problems
    • Association for Computing Machinery. New York
    • Karger, David. Random sampling in cut, flow, and network design problems. Proceedings of the ACM Symposium on Theory of Computing (STOC-1994), pp. 648–657. Association for Computing Machinery. New York. 1994.
    • (1994) Proceedings of the ACM Symposium on Theory of Computing (STOC-1994) , pp. 648-657
    • Karger, D.1
  • 123
    • 85055501394 scopus 로고    scopus 로고
    • Discriminative clustering. Bulletin of the International Statistical Institute
    • International Statistical Institute. Voorburg, The Netherlands
    • Kaski, Samuel. Discriminative clustering. Bulletin of the International Statistical Institute, Invited Paper Proceedings of the 54th Session, vol. 2, pp. 270–273. International Statistical Institute. Voorburg, The Netherlands. 2003.
    • (2003) Proceedings of the 54Th Session , vol.2 , pp. 270-273
    • Kaski, S.1
  • 126
    • 29344466697 scopus 로고    scopus 로고
    • Corpus-based induction of syntactic structure: Models of dependency and constituency
    • Association for Computational Linguistics. East Stroudsburg, PA
    • Klein, Dan and Christopher D. Manning. Corpus-based induction of syntactic structure: models of dependency and constituency. Proceedings of the 42nd Meeting of the Association for Computational Linguistics (ACL-2004). Association for Computational Linguistics. East Stroudsburg, PA. 2004.
    • (2004) Proceedings of the 42Nd Meeting of the Association for Computational Linguistics (ACL-2004)
    • Klein, D.1    Manning, C.D.2
  • 127
    • 0033335479 scopus 로고    scopus 로고
    • Approximation algorithms for classification problems with pairwise relationships: Metric labeling and Markov random fields
    • Institute of Electrical and Electronics Engineers. New York
    • Kleinberg, Jon M. and Eva Tardos. Approximation algorithms for classification problems with pairwise relationships: Metric labeling and Markov random fields. IEEE Symposium on Foundations of Computer Science, pp. 14–23. Institute of Electrical and Electronics Engineers. New York. 1999.
    • (1999) IEEE Symposium on Foundations of Computer Science , pp. 14-23
    • Kleinberg, J.M.1    Tardos, E.2
  • 128
    • 80053275208 scopus 로고    scopus 로고
    • Learning with unlabeled data for text categorization using bootstrapping and feature projection techniques
    • Association for Computational Linguistics. East Stroudsburg, PA
    • Ko, Youngjoong and Jungyun Seo. Learning with unlabeled data for text categorization using bootstrapping and feature projection techniques. Proceedings of the 42nd Meeting of the Association for Computational Linguistics (ACL-2004). Association for Computational Linguistics. East Stroudsburg, PA. 2004.
    • (2004) Proceedings of the 42Nd Meeting of the Association for Computational Linguistics (ACL-2004)
    • Ko, Y.1    Seo, J.2
  • 129
    • 0025540140 scopus 로고
    • Improved versions of Learning Vector Quantization
    • Institute of Electrical and Electronics Engineers. New York
    • Kohonen, Teuvo. Improved versions of Learning Vector Quantization. Proceedings of the International Joint Conference on Neural Networks (IJCNN-1990), vol. I, pp. 545–550. Institute of Electrical and Electronics Engineers. New York. 1990.
    • (1990) Proceedings of the International Joint Conference on Neural Networks (IJCNN-1990) , vol.1 , pp. 545-550
    • Kohonen, T.1
  • 131
    • 0026890725 scopus 로고
    • Robust part-of-speech tagging using a Hidden Markov Model
    • Kupiec, Julian. Robust part-of-speech tagging using a Hidden Markov Model. Computer Speech and Language 6. 1992.
    • (1992) Computer Speech and Language , vol.6
    • Kupiec, J.1
  • 139
    • 2142838403 scopus 로고    scopus 로고
    • Word translation disambiguation using bilingual bootstrapping
    • Li, Hang and Cong Li. Word translation disambiguation using bilingual bootstrapping. Computational Linguistics 30(1):1–22. 2004.
    • (2004) Computational Linguistics , vol.30 , Issue.1 , pp. 1-22
    • Li, H.1    Li, C.2
  • 142
    • 34249852033 scopus 로고
    • Building a large annotated corpus of English: The Penn Treebank
    • Marcus, Mitchell, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus of English: the Penn Treebank. Computational Linguistics 19.2:313–330. 1993.
    • (1993) Computational Linguistics , vol.19 , Issue.2 , pp. 313-330
    • Marcus, M.1    Santorini, B.2    Marcinkiewicz, M.A.3
  • 148
    • 0000806922 scopus 로고    scopus 로고
    • Automating the Construction of Internet Portals with Machine Learning
    • McCallum, Andrew Kachites, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the Construction of Internet Portals with Machine Learning. Information Retrieval Journal 3:127–163. 2000.
    • (2000) Information Retrieval Journal , vol.3 , pp. 127-163
    • McCallum, A.K.1    Nigam, K.2    Rennie, J.3    Seymore, K.4
  • 149
    • 0040908393 scopus 로고
    • Iterative reclassification procedure for constructing an asymptotically optimal rule of allocation in discriminant analysis
    • McLachlan, G. Iterative reclassification procedure for constructing an asymptotically optimal rule of allocation in discriminant analysis. Journal of the American Statistical Association 70:365–369. 1975.
    • (1975) Journal of the American Statistical Association , vol.70 , pp. 365-369
    • McLachlan, G.1
  • 150
    • 0039722383 scopus 로고
    • Estimating the linear discriminant function from initial samples containing a small number of unclassified observations
    • McLachlan, G.J. Estimating the linear discriminant function from initial samples containing a small number of unclassified observations. Journal of the American Statistical Association 72:403–406. 1977.
    • (1977) Journal of the American Statistical Association , vol.72 , pp. 403-406
    • McLachlan, G.J.1
  • 152
    • 0010808571 scopus 로고
    • Updating the discriminant function on the basis of unclassified data
    • McLachlan, G.J. and S. Ganesalingam. Updating the discriminant function on the basis of unclassified data. Communications Statistics – Simulation 11(6):753–767. 1982.
    • (1982) Communications Statistics – Simulation , vol.11 , Issue.6 , pp. 753-767
    • McLachlan, G.J.1    Ganesalingam, S.2
  • 153
    • 84867119745 scopus 로고
    • Tagging English Text with a Probabilistic Model
    • Merialdo, Bernard. Tagging English Text with a Probabilistic Model. Computational Linguistics 20(2):155–172. 1994.
    • (1994) Computational Linguistics , vol.20 , Issue.2 , pp. 155-172
    • Merialdo, B.1
  • 154
    • 85069911126 scopus 로고    scopus 로고
    • Co-training and self-training for word sense disambiguation
    • Association for Computational Linguistics. East Stroudsburg, PA
    • Mihalcea, Rada. Co-training and self-training for word sense disambiguation. Proceedings of the Conference on Natural Language Learning (CoNLL-2004). Association for Computational Linguistics. East Stroudsburg, PA. 2004.
    • (2004) Proceedings of the Conference on Natural Language Learning (Conll-2004)
    • Mihalcea, R.1
  • 156
    • 84898980291 scopus 로고    scopus 로고
    • A mixture of experts classifier with learning based on both labelled and unlabelled data
    • MIT Press. Cambridge, MA
    • Miller, David and Hasan Uyar. A mixture of experts classifier with learning based on both labelled and unlabelled data. Advances in Neural Information Processing Systems 9 (NIPS-1996) pp. 571–577. MIT Press. Cambridge, MA. 1997.
    • (1997) Advances in Neural Information Processing Systems 9 (NIPS-1996) , pp. 571-577
    • Miller, D.1    Uyar, H.2
  • 162
    • 22944440839 scopus 로고    scopus 로고
    • Learning domain ontologies from document warehouses and dedicated web sites
    • Navigli, Roberto and Paola Velardi. Learning domain ontologies from document warehouses and dedicated web sites. Computational Linguistics 30(2). 2004.
    • (2004) Computational Linguistics , vol.30 , Issue.2
    • Navigli, R.1    Velardi, P.2
  • 164
    • 0346083482 scopus 로고    scopus 로고
    • PhD diss. Tech Report CMU-CS-01-126. Computer Science, Carnegie Mellon University
    • Nigam, Kamal. “Using Unlabeled Data to Improve Text Classification.” PhD diss. Tech Report CMU-CS-01-126. Computer Science, Carnegie Mellon University. 2001.
    • (2001) Using Unlabeled Data to Improve Text Classification
    • Nigam, K.1
  • 167
    • 0033886806 scopus 로고    scopus 로고
    • Text Classification from Labeled and Unlabeled Documents using EM
    • Nigam, Kamal, Andrew Kachites McCallum, Sebastian Thrun, and Tom Mitchell. Text Classification from Labeled and Unlabeled Documents using EM. Machine Learning 39:103–134. 2000.
    • (2000) Machine Learning , vol.39 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 170
    • 85053690034 scopus 로고    scopus 로고
    • Weakly supervised learning for cross-document person name disambiguation supported by information extraction
    • Association for Computational Linguistics. East Stroudsburg, PA
    • Niu, Cheng, Wei Li, and Rohini K. Srihari. Weakly supervised learning for cross-document person name disambiguation supported by information extraction. Proceedings of the 42nd Meeting of the Association for Computational Linguistics (ACL-2004). Association for Computational Linguistics. East Stroudsburg, PA. 2004.
    • (2004) Proceedings of the 42Nd Meeting of the Association for Computational Linguistics (ACL-2004)
    • Niu, C.1    Li, W.2    Srihari, R.K.3
  • 171
    • 0039892030 scopus 로고    scopus 로고
    • Bootstrapping morphological analyzers by combining human elicitation and machine learning
    • Oflazer, Kemal, Marjorie McShane, and Sergei Nirenburg. Bootstrapping morphological analyzers by combining human elicitation and machine learning. Computational Linguistics 27(1). 2001.
    • (2001) Computational Linguistics , vol.27 , Issue.1
    • Kemal, O.1    McShane, M.2    Nirenburg, S.3
  • 174
    • 85149144861 scopus 로고    scopus 로고
    • Semi-supervised maximum entropy based approach to acronym and abbreviation normalization in medical texts
    • Association for Computational Linguistics. East Stroudsburg, PA
    • Pakhomov, Serguei. Semi-supervised maximum entropy based approach to acronym and abbreviation normalization in medical texts. Proceedings of the 40th Meeting of the Association for Computational Linguistics (ACL-2002). Association for Computational Linguistics. East Stroudsburg, PA. 2002.
    • (2002) Proceedings of the 40Th Meeting of the Association for Computational Linguistics (ACL-2002)
    • Pakhomov, S.1
  • 176
    • 85149149595 scopus 로고    scopus 로고
    • An unsupervised approach to prepositional phrase attachment using contextually similar words
    • Association for Computational Linguistics. East Stroudsburg, PA
    • Pantel, Patrick and Dekang Lin. An unsupervised approach to prepositional phrase attachment using contextually similar words. Proceedings of the 38th Meeting of the Association for Computational Linguistics (ACL-2000). Association for Computational Linguistics. East Stroudsburg, PA. 2000.
    • (2000) Proceedings of the 38Th Meeting of the Association for Computational Linguistics (ACL-2000)
    • Pantel, P.1    Lin, D.2
  • 177
    • 0026869983 scopus 로고
    • Combined use of supervised and unsupervised learning for dynamic security assessment
    • Institute of Electrical and Electronics Engineers. New York
    • Pao, Y.-H. and D.J. Sobajic. Combined use of supervised and unsupervised learning for dynamic security assessment. IEEE Transactions on Power Systems 7(2):878–884. Institute of Electrical and Electronics Engineers. New York. 1992.
    • (1992) IEEE Transactions on Power Systems , vol.7 , Issue.2 , pp. 878-884
    • Pao, Y.-H.1    Sobajic, D.J.2
  • 183
    • 85117794554 scopus 로고    scopus 로고
    • Word sense discrimination by clustering contexts in vector and similarity spaces
    • Association for Computational Linguistics. East Stroudsburg, PA
    • Purandare, Amruta and Ted Pedersen. Word sense discrimination by clustering contexts in vector and similarity spaces. Proceedings of the Conference on Natural Language Learning (CoNLL-2004). Association for Computational Linguistics. East Stroudsburg, PA. 2004.
    • (2004) Proceedings of the Conference on Natural Language Learning (Conll-2004)
    • Purandare, A.1    Pedersen, T.2
  • 184
    • 0002638429 scopus 로고
    • Semantic memory
    • M. Minsky (ed.), MIT Press. Cambridge, MA
    • Quillian, M. Semantic memory. In M. Minsky (ed.), Semantic Information Processing, 227–270. MIT Press. Cambridge, MA. 1968.
    • (1968) Semantic Information Processing , pp. 227-270
    • Quillian, M.1
  • 186
    • 84947134568 scopus 로고
    • Learning from a mixture of labeled and unlabeled examples with parametric side information
    • Association for Computing Machinery. New York
    • Ratsaby, Joel and Santosh S. Vankatesh. Learning from a mixture of labeled and unlabeled examples with parametric side information. Proceedings of 8th Annual Conference on Computational Learning Theory (COLT-1995), pp. 412–417. Association for Computing Machinery. New York. 1995.
    • (1995) Proceedings of 8Th Annual Conference on Computational Learning Theory (COLT-1995) , pp. 412-417
    • Ratsaby, J.1    Vankatesh, S.S.2
  • 188
    • 0030213896 scopus 로고    scopus 로고
    • An Empirical Study of Automated Dictionary Construction for Information Extraction in Three Domains
    • August
    • Riloff, Ellen. An Empirical Study of Automated Dictionary Construction for Information Extraction in Three Domains. AI Journal 85. August 1996.
    • (1996) AI Journal , vol.85
    • Riloff, E.1
  • 191
  • 193
    • 85016975163 scopus 로고    scopus 로고
    • A Corpus-Based Bootstrapping Algorithm for Semi-Automated Semantic Lexicon Construction
    • Riloff, E. and J. Shepherd. A Corpus-Based Bootstrapping Algorithm for Semi-Automated Semantic Lexicon Construction. Journal of Natural Language Engineering 5(2):147–156. 1999.
    • (1999) Journal of Natural Language Engineering , vol.5 , Issue.2 , pp. 147-156
    • Riloff, E.1    Shepherd, J.2
  • 200
    • 0001201756 scopus 로고
    • Some studies in machine learning using the game of checkers
    • (Reprinted in vol. 44:206–227, 2000.)
    • Samuel, A. Some studies in machine learning using the game of checkers. IBM Journal of Research and Development 3:210–229. 1959. (Reprinted in vol. 44:206–227, 2000.)
    • (1959) IBM Journal of Research and Development , vol.3 , pp. 210-229
    • Samuel, A.1
  • 205
    • 84893217921 scopus 로고
    • Second edition. Addison-Wesley. Reading, MA
    • Sedgewick, Robert. Algorithms. Second edition. Addison-Wesley. Reading, MA. 1988.
    • (1988) Algorithms
    • Robert, S.1
  • 207
    • 0026994629 scopus 로고
    • On the asymptotic improvement of supervised learning by utilizing additional unlabeled samples; normal mixture density case
    • Society of Photographic Instrumentation Engineers (SPIE). Bellingham, WA
    • Shahshahani, B.M. and D.A. Landgrebe. On the asymptotic improvement of supervised learning by utilizing additional unlabeled samples; normal mixture density case. Proceedings of the International Conference on Neural and Stochastic Methods in Image and Signal Processing 1766:143–155. Society of Photographic Instrumentation Engineers (SPIE). Bellingham, WA. 1992.
    • (1992) Proceedings of the International Conference on Neural and Stochastic Methods in Image and Signal Processing , vol.1766 , pp. 143-155
    • Shahshahani, B.M.1    Landgrebe, D.A.2
  • 208
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
    • Institute of Electrical and Electronics Engineers. New York
    • Shahshahani, B.M. and D.A. Landgrebe. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Transactions on Geoscience and Remote Sensing 32(5):1087–1095. Institute of Electrical and Electronics Engineers. New York. 1994.
    • (1994) IEEE Transactions on Geoscience and Remote Sensing , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.M.1    Landgrebe, D.A.2
  • 213
    • 80052543378 scopus 로고    scopus 로고
    • Third edition. Wellesley-Cambridge Press. Wellesley, MA
    • Strang, Gilbert. Introduction to Linear Algebra. Third edition. Wellesley-Cambridge Press. Wellesley, MA. 2003.
    • (2003) Introduction to Linear Algebra
    • Gilbert, S.1
  • 218
    • 0000985504 scopus 로고
    • TD-Gammon, a self-teaching backgammon program, achieves master-level play
    • Tesauro, Gerald. TD-Gammon, a self-teaching backgammon program, achieves master-level play. Neural Computation 6.2:215–219. 1994.
    • (1994) Neural Computation , vol.6 , Issue.2 , pp. 215-219
    • Tesauro, G.1
  • 219
    • 85037064574 scopus 로고    scopus 로고
    • A bootstrapping method for learning semantic lexicons using extracting pattern contexts
    • Association for Computational Linguistics. East Stroudsburg, PA
    • Thelen, Michael, and Ellen Riloff. A bootstrapping method for learning semantic lexicons using extracting pattern contexts. Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP-2002). Association for Computational Linguistics. East Stroudsburg, PA. 2002.
    • (2002) Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP-2002)
    • Thelen, M.1    Riloff, E.2
  • 220
    • 4544260397 scopus 로고
    • Exploration in Active Learning
    • M. Arbib (ed.), MIT Press. Cambridge, MA
    • Thrun, S. Exploration in Active Learning. In M. Arbib (ed.), Handbook of Brain and Cognitive Science. MIT Press. Cambridge, MA. 1995.
    • (1995) Handbook of Brain and Cognitive Science
    • Thrun, S.1
  • 221
    • 0033309591 scopus 로고    scopus 로고
    • Deriving cluster analytic distance functions from Gaussian mixture models
    • Institute of Electrical and Electronics Engineers. New York
    • Tipping, M. Deriving cluster analytic distance functions from Gaussian mixture models. Proceedings of the 9th International Conference on Artificial Neural Networks. Institute of Electrical and Electronics Engineers. New York. 1999.
    • (1999) Proceedings of the 9Th International Conference on Artificial Neural Networks
    • Tipping, M.1
  • 225
    • 0003963664 scopus 로고
    • Prentice-Hall. Englewood Cliffs, NJ
    • Tolstov, Georgi P. Fourier Series. Prentice-Hall. Englewood Cliffs, NJ. 1962.
    • (1962) Fourier Series
    • Tolstov, G.P.1
  • 226
    • 0003007938 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Morgan Kaufmann Publishers. San Francisco, CA
    • Tong, S. and D. Koller. Support vector machine active learning with applications to text classification. Proceedings of the 17th International Conference on Machine Learning (ICML-2000), pp. 999–1006. Morgan Kaufmann Publishers. San Francisco, CA. 2000.
    • (2000) Proceedings of the 17Th International Conference on Machine Learning (ICML-2000) , pp. 999-1006
    • Tong, S.1    Koller, D.2
  • 228
    • 1442275185 scopus 로고    scopus 로고
    • Learning When Training Data are Costly: The Effect of Class Distribution on Tree Induction
    • Weiss, G.M. and F. Provost. Learning When Training Data are Costly: The Effect of Class Distribution on Tree Induction. Journal of Artificial Intelligence Research 19:315–354. 2003.
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.M.1    Provost, F.2
  • 234
    • 85055486236 scopus 로고    scopus 로고
    • Wordnet Reference Manual. http://wordnet.princeton.edu/doc.
  • 243
    • 0005004572 scopus 로고    scopus 로고
    • A probability analysis on the value of unlabeled data for classification problems
    • Morgan Kaufmann Publishers. San Francisco, CA
    • Zhang, Tong and Frank J. Oles. A probability analysis on the value of unlabeled data for classification problems. Proceedings of the 17th International Conference on Machine Learning (ICML-2000), pp. 1191– 1198. Morgan Kaufmann Publishers. San Francisco, CA. 2000.
    • (2000) Proceedings of the 17Th International Conference on Machine Learning (ICML-2000) , pp. 1191-1198
    • Zhang, T.1    Oles, F.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.