메뉴 건너뛰기




Volumn , Issue , 2003, Pages 17-22

Semi-supervised learning for facial expression recognition

Author keywords

Bayesian networks; Facial expression recognition; Semi supervised learning

Indexed keywords

BAYESIAN NETWORKS; CLASSIFICATION (OF INFORMATION); HUMAN COMPUTER INTERACTION; INFORMATION RETRIEVAL; LEARNING ALGORITHMS; PATTERN RECOGNITION; SUPERVISED LEARNING;

EID: 84973360336     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/973264.973268     Document Type: Conference Paper
Times cited : (25)

References (33)
  • 1
    • 0141622618 scopus 로고    scopus 로고
    • Probabilistic modelling for face orientation discrimination: Learning from labeled and unlabeled data
    • S. Baluja. Probabilistic modelling for face orientation discrimination: Learning from labeled and unlabeled data. In NIPS, 1998.
    • (1998) NIPS
    • Baluja, S.1
  • 2
    • 84898958346 scopus 로고    scopus 로고
    • Semi-supervised support vector machines
    • K. Bennett and A. Demiriz. Semi-supervised support vector machines. In NIPS, pages 368-374, 1998.
    • (1998) NIPS , pp. 368-374
    • Bennett, K.1    Demiriz, A.2
  • 3
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT, pages 92-100, 1998.
    • (1998) COLT , pp. 92-100
    • Blum, A.1    Mitchell, T.2
  • 4
    • 85033432554 scopus 로고    scopus 로고
    • An entropic estimator for structure discovery
    • M. Brand. An entropic estimator for structure discovery. In NIPS, 1998.
    • (1998) NIPS
    • Brand, M.1
  • 5
    • 1942450896 scopus 로고    scopus 로고
    • Semi-supervised learning using prior probabilities and EM
    • R. Bruce. Semi-supervised learning using prior probabilities and EM. In IJCAI Workshop on Text Learning, 2001.
    • (2001) IJCAI Workshop on Text Learning
    • Bruce, R.1
  • 9
    • 84933530882 scopus 로고
    • Approximating discrete probability distribution with dependence trees
    • C. K. Chow and C. N. Liu. Approximating discrete probability distribution with dependence trees. IEEE Transactions on Information Theory, 14:462-467, 1968.
    • (1968) IEEE Transactions on Information Theory , vol.14 , pp. 462-467
    • Chow, C.K.1    Liu, C.N.2
  • 11
    • 5044221368 scopus 로고    scopus 로고
    • Learning Bayesian network classifiers for facial expression recognition using both labeled and unlabeled data
    • I. Cohen, N. Sebe, F. Cozman, M. Cirelo, and T Huang. Learning bayesian network classifiers for facial expression recognition using both labeled and unlabeled data. In CVPR, 2003.
    • (2003) CVPR
    • Cohen, I.1    Sebe, N.2    Cozman, F.3    Cirelo, M.4    Huang, T.5
  • 12
    • 0141860866 scopus 로고    scopus 로고
    • Facial expression recognition from video sequences: Temporal and static modelling
    • I. Cohen, N. Sebe, A. Garg, L. Chen, and T. S. Huang. Facial expression recognition from video sequences: Temporal and static modelling. Computer Vision and Image Understanding, 91(1-2):160-187, 2003.
    • (2003) Computer Vision and Image Understanding , vol.91 , Issue.1-2 , pp. 160-187
    • Cohen, I.1    Sebe, N.2    Garg, A.3    Chen, L.4    Huang, T.S.5
  • 15
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1-loss, and the curse-of-dimensionality
    • J. H. Friedman. On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery, 1(1):55-77, 1997.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.1 , pp. 55-77
    • Friedman, J.H.1
  • 16
    • 0000854197 scopus 로고    scopus 로고
    • The Bayesian structural EM algorithm
    • N. Friedman. The Bayesian structural EM algorithm. In UAI, pages 129-138, 1998.
    • (1998) UAI , pp. 129-138
    • Friedman, N.1
  • 18
    • 14344263553 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data for multiclass text categorization
    • R. Ghani. Combining labeled and unlabeled data for multiclass text categorization. In ICML, 2002.
    • (2002) ICML
    • Ghani, R.1
  • 20
    • 0036927090 scopus 로고    scopus 로고
    • Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers
    • R. Greiner and W. Zhou. Structural extension to logistic regression: discriminative parameter learning of belief net classifiers. In UAI02, 2002.
    • (2002) UAI02
    • Greiner, R.1    Zhou, W.2
  • 23
    • 0000314722 scopus 로고    scopus 로고
    • Employing EM in pool-based active learning for text classification
    • A. K. McCallum and K. Nigam. Employing EM in pool-based active learning for text classification. In ICML, pages 350-358, 1998.
    • (1998) ICML , pp. 350-358
    • McCallum, A.K.1    Nigam, K.2
  • 25
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled and unlabeled documents using EM. Machine Learning, 39:103-134, 2000.
    • (2000) Machine Learning , vol.39 , pp. 103-134
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 26
    • 0000734588 scopus 로고
    • Normal discrimination with unclassified obseravations
    • T. J. O'Neill. Normal discrimination with unclassified obseravations. Journal of the American Statistical Association, 73(364):821-826, 1978.
    • (1978) Journal of the American Statistical Association , vol.73 , Issue.364 , pp. 821-826
    • O'Neill, T.J.1
  • 28
    • 84947134568 scopus 로고
    • Learning from a mixture of labeled and unlabeled examples with parametric side information
    • J. Ratsaby and S. S. Venkatesh. Learning from a mixture of labeled and unlabeled examples with parametric side information. In COLT, pages 412-417, 1995.
    • (1995) COLT , pp. 412-417
    • Ratsaby, J.1    Venkatesh, S.S.2
  • 32
    • 0028499630 scopus 로고
    • Effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
    • B. Shahshahani and D. Landgrebe. Effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Transactions on Geoscience and Remote Sensing, 32(5):1087-1095, 1994.
    • (1994) IEEE Transactions on Geoscience and Remote Sensing , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.1    Landgrebe, D.2
  • 33
    • 0032296753 scopus 로고    scopus 로고
    • Connected vibrations: A modal analysis approach to non-rigid motion tracking
    • H. Tao and T. S. Huang. Connected vibrations: A modal analysis approach to non-rigid motion tracking. In CVPR, pages 735-740, 1998.
    • (1998) CVPR , pp. 735-740
    • Tao, H.1    Huang, T.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.