메뉴 건너뛰기




Volumn , Issue , 2016, Pages 1568-1575

Transfer learning for low-resource neural machine translation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; COMPUTER AIDED LANGUAGE TRANSLATION; NATURAL LANGUAGE PROCESSING SYSTEMS;

EID: 85072838695     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.18653/v1/d16-1163     Document Type: Conference Paper
Times cited : (694)

References (27)
  • 1
    • 84922389693 scopus 로고    scopus 로고
    • Neural machine translation by jointly learning to align and translate
    • D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural machine translation by jointly learning to align and translate. In Proc. ICLR.
    • (2014) Proc. ICLR.
    • Bahdanau, D.1    Cho, K.2    Bengio, Y.3
  • 2
    • 84944029121 scopus 로고    scopus 로고
    • Pragmatic neural language modelling in machine translation
    • P. Baltescu and P. Blunsom. 2015. Pragmatic neural language modelling in machine translation. In Proc. HLT-NAACL.
    • (2015) Proc. HLT-NAACL.
    • Baltescu, P.1    Blunsom, P.2
  • 3
    • 84904548965 scopus 로고    scopus 로고
    • Deep learning of representations for unsupervised and transfer learning
    • Y. Bengio. 2012. Deep learning of representations for unsupervised and transfer learning. JMLR, 27.
    • (2012) JMLR , vol.27
    • Bengio, Y.1
  • 6
    • 84863365416 scopus 로고    scopus 로고
    • 11,001 new features for statistical machine translation
    • D. Chiang, K. Knight, and W. Wang. 2009. 11,001 new features for statistical machine translation. In Proc. HLT-NAACL.
    • (2009) Proc. HLT-NAACL.
    • Chiang, D.1    Knight, K.2    Wang, W.3
  • 7
    • 84865094974 scopus 로고    scopus 로고
    • Transfer learning for Latin and Chinese characters with deep neural networks
    • D. C. Ciresan, U. Meier, and J. Schmidhuber. 2012. Transfer learning for Latin and Chinese characters with deep neural networks. In Proc. IJCNN.
    • (2012) Proc. IJCNN.
    • Ciresan, D.C.1    Meier, U.2    Schmidhuber, J.3
  • 9
    • 84994083490 scopus 로고    scopus 로고
    • Multi-way, multilingual neural machine translation with a shared attention mechanism
    • O. Firat, K. Cho, and Y. Bengio. 2016. Multi-way, multilingual neural machine translation with a shared attention mechanism. In Proc. NAACL-HLT.
    • (2016) Proc. NAACL-HLT.
    • Firat, O.1    Cho, K.2    Bengio, Y.3
  • 12
    • 0034293152 scopus 로고    scopus 로고
    • Learning to forget: Continual prediction with LSTM
    • F. A. Gers, J. Schmidhuber, and F. Cummins. 2000. Learning to forget: Continual prediction with LSTM. Neural computation, 12(10).
    • (2000) Neural Computation , vol.12 , Issue.10
    • Gers, F.A.1    Schmidhuber, J.2    Cummins, F.3
  • 14
    • 84969972527 scopus 로고    scopus 로고
    • An empirical exploration of recurrent network architectures
    • R. Józefowicz, W. Zaremba, and I. Sutskever. 2015. An empirical exploration of recurrent network architectures. In Proc. ICML.
    • (2015) Proc. ICML.
    • Józefowicz, R.1    Zaremba, W.2    Sutskever, I.3
  • 16
    • 84959874994 scopus 로고    scopus 로고
    • Effective approaches to attention-based neural machine translation
    • M. Luong, H. Pham, and C. Manning. 2015a. Effective approaches to attention-based neural machine translation. In Proc. EMNLP.
    • (2015) Proc. EMNLP.
    • Luong, M.1    Pham, H.2    Manning, C.3
  • 18
    • 84867118996 scopus 로고    scopus 로고
    • A fast and simple algorithm for training neural probabilistic language models
    • A. Mnih and Y. W. Teh. 2012. A fast and simple algorithm for training neural probabilistic language models. In Proc. ICML.
    • (2012) Proc. ICML.
    • Mnih, A.1    Teh, Y.W.2
  • 21
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • I. Sutskever, O. Vinyals, and Q. V. Le. 2014. Sequence to sequence learning with neural networks. In Proc. NIPS.
    • (2014) Proc. NIPS.
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 23
    • 84926298172 scopus 로고    scopus 로고
    • Decoding with large-scale neural language models improves translation
    • A. Vaswani, Y. Zhao, V. Fossum, and D. Chiang. 2013. Decoding with large-scale neural language models improves translation. In Proc. EMNLP.
    • (2013) Proc. EMNLP.
    • Vaswani, A.1    Zhao, Y.2    Fossum, V.3    Chiang, D.4
  • 24
    • 85010803220 scopus 로고    scopus 로고
    • Transfer learning for speech and language processing
    • abs/1511.06066
    • D. Wang and T. Fang Zheng. 2015. Transfer learning for speech and language processing. CoRR, abs/1511.06066.
    • (2015) CoRR
    • Wang, D.1    Fang Zheng, T.2
  • 25
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • P. J. Werbos. 1990. Backpropagation through time: what it does and how to do it. Proc. IEEE, 78(10).
    • (1990) Proc. IEEE , vol.78 , Issue.10
    • Werbos, P.J.1
  • 27
    • 84944053926 scopus 로고    scopus 로고
    • Recurrent neural network regularization
    • abs/1409.2329
    • W. Zaremba, I. Sutskever, and O. Vinyals. 2014. Recurrent neural network regularization. CoRR, abs/1409.2329.
    • (2014) CoRR
    • Zaremba, W.1    Sutskever, I.2    Vinyals, O.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.