메뉴 건너뛰기




Volumn , Issue , 2013, Pages 1-208

Statistical methods for handling incomplete data

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; COMPUTATION THEORY; DATA HANDLING; STATISTICS; STUDENTS;

EID: 85054250021     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/b13981     Document Type: Book
Times cited : (122)

References (145)
  • 1
    • 0033858416 scopus 로고    scopus 로고
    • Modeling repeated count data subject to informative dropout
    • Albert, P. S. and Follmann, D. A. (2000). Modeling repeated count data subject to informative dropout. Biometrics, 56:667–677.
    • (2000) Biometrics , vol.56 , pp. 667-677
    • Albert, P.S.1    Follmann, D.A.2
  • 2
    • 0004568187 scopus 로고
    • Adjusting for nonresponse bias using logistic regression
    • Alho, J. M. (1990). Adjusting for nonresponse bias using logistic regression. Biometrika, 77:617– 624.
    • (1990) Biometrika , vol.77 , pp. 617-624
    • Alho, J.M.1
  • 4
    • 0003698154 scopus 로고
    • Harvard University Press, Cambridge, MA
    • Amemiya, T. (1985). Advanced Econometrics. Harvard University Press, Cambridge, MA.
    • (1985) Advanced Econometrics
    • Amemiya, T.1
  • 6
    • 0000254441 scopus 로고
    • Maximum likelihood estimates for the multivariate normal distribution when some observations are missing
    • Anderson, R. L. (1957). Maximum likelihood estimates for the multivariate normal distribution when some observations are missing. Journal of the American Statistical Association, 52:200– 203.
    • (1957) Journal of the American Statistical Association , vol.52 , pp. 200-203
    • Anderson, R.L.1
  • 7
    • 0001885521 scopus 로고
    • Regression analysis for categorical variables with outcome subject to nonignorable nonresponse
    • Baker, S. G. and Laird, N. M. (1988). Regression analysis for categorical variables with outcome subject to nonignorable nonresponse. Journal of the American Statistical Association, 83:62– 69.
    • (1988) Journal of the American Statistical Association , vol.83 , pp. 62-69
    • Baker, S.G.1    Laird, N.M.2
  • 8
    • 33644851650 scopus 로고    scopus 로고
    • Doubly robust estimation in missing data and causal inference models
    • Bang, H. and Robins, J. M. (2005). Doubly robust estimation in missing data and causal inference models. Biometrics, 61:962–973.
    • (2005) Biometrics , vol.61 , pp. 962-973
    • Bang, H.1    Robins, J.M.2
  • 9
    • 74049116631 scopus 로고    scopus 로고
    • Variance estimation when donor imputation is used to fill in missing values
    • Beaumont, J. F. and Bocci, C. (2009). Variance estimation when donor imputation is used to fill in missing values. Canadian Journal of Statistics, 37:400–416.
    • (2009) Canadian Journal of Statistics , vol.37 , pp. 400-416
    • Beaumont, J.F.1    Bocci, C.2
  • 12
    • 85045781342 scopus 로고    scopus 로고
    • Maximizing generalized linear models with an automated Monte Carlo EM algorithm
    • Booth, J. G. and Hobert, J. P. (1999). Maximizing generalized linear models with an automated Monte Carlo EM algorithm. Journal of the Royal Statistical Society: Series B, 61:625–685.
    • (1999) Journal of the Royal Statistical Society: Series B , vol.61 , pp. 625-685
    • Booth, J.G.1    Hobert, J.P.2
  • 14
    • 69249196484 scopus 로고    scopus 로고
    • Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data
    • Cao, W., Tsiatis, A. A., and Davidian, M. (2009). Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data. Biometrika, 96:723– 734.
    • (2009) Biometrika , vol.96 , pp. 723-734
    • Cao, W.1    Tsiatis, A.A.2    Davidian, M.3
  • 16
    • 77649272530 scopus 로고    scopus 로고
    • Efficient semiparametric estimation of multi-valued treatment effects under ignorability
    • Cattaneo, M. D. (2010). Efficient semiparametric estimation of multi-valued treatment effects under ignorability. Journal of Econometrics, 155:138–154.
    • (2010) Journal of Econometrics , vol.155 , pp. 138-154
    • Cattaneo, M.D.1
  • 18
    • 1842665177 scopus 로고    scopus 로고
    • Jackknife variance estimation for nearest neighbor imputation
    • Chen, J. and Shao, J. (2001). Jackknife variance estimation for nearest neighbor imputation. Journal of the American Statistical Association, 96:260–269.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 260-269
    • Chen, J.1    Shao, J.2
  • 19
    • 33645056671 scopus 로고    scopus 로고
    • Semiparametric models for missing covariate and response data in regression models
    • Chen, Q. and Ibrahim, J. G. (2006). Semiparametric models for missing covariate and response data in regression models. Biometrics, 62:177–184.
    • (2006) Biometrics , vol.62 , pp. 177-184
    • Chen, Q.1    Ibrahim, J.G.2
  • 21
    • 84950937870 scopus 로고
    • Nonparametric estimation of mean functionals with data missing at random
    • Cheng, P. E. (1994). Nonparametric estimation of mean functionals with data missing at random. Journal of the American Statistical Association, 89:81–87.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 81-87
    • Cheng, P.E.1
  • 30
    • 4243108611 scopus 로고
    • Modeling nonresponse in surveys with callbacks
    • Washington, DC. American Statistical Association
    • Drew, J. H. and Fuller, W. A. (1980). Modeling nonresponse in surveys with callbacks. In Proc. Survey Res. Meth. Sect., pages 639–642, Washington, DC. American Statistical Association.
    • (1980) Proc. Survey Res. Meth. Sect. , pp. 639-642
    • Drew, J.H.1    Fuller, W.A.2
  • 31
    • 0018115641 scopus 로고
    • Assessing the accuracy of the maximum likelihood estimator: Observed versus expected fisher information
    • Efron, B. and Hinkley, D. V. (1978). Assessing the accuracy of the maximum likelihood estimator: Observed versus expected fisher information. Biometrika, 65:457–487.
    • (1978) Biometrika , vol.65 , pp. 457-487
    • Efron, B.1    Hinkley, D.V.2
  • 32
    • 0037278794 scopus 로고    scopus 로고
    • Micro-level estimation of poverty and inequality
    • Elbers, C., Lanjouw, J. O., and Lanjouw, P. (2003). Micro-level estimation of poverty and inequality. Econometrika, 71:355–364.
    • (2003) Econometrika , vol.71 , pp. 355-364
    • Elbers, C.1    Lanjouw, J.O.2    Lanjouw, P.3
  • 33
    • 0000991880 scopus 로고
    • When are inferences from multiple imputation valid?
    • Washington, DC. American Statistical Association
    • Fay, R. E. (1992). When are inferences from multiple imputation valid? In Proceedings of the Survey Research Methods Section, pages 227–232, Washington, DC. American Statistical Association.
    • (1992) Proceedings of the Survey Research Methods Section , pp. 227-232
    • Fay, R.E.1
  • 35
    • 0029028456 scopus 로고
    • An approximate generalized linear model with random effects for informative missing data
    • Follmann, D. A. and Wu, M. (1995). An approximate generalized linear model with random effects for informative missing data. Biometrics, 51:151–168.
    • (1995) Biometrics , vol.51 , pp. 151-168
    • Follmann, D.A.1    Wu, M.2
  • 36
    • 84983584978 scopus 로고    scopus 로고
    • Chambers, R. L. and Skinner, C. J., editors, Analysis of Survey Data, Wiley: Chichester, England
    • Fuller, W. A. (2003). Estimation for multiple phase samples. In Chambers, R. L. and Skinner, C. J., editors, Analysis of Survey Data, pages 307–322. Wiley: Chichester, England.
    • (2003) Estimation for Multiple Phase Samples. , pp. 307-322
    • Fuller, W.A.1
  • 37
    • 77957672191 scopus 로고    scopus 로고
    • John Wiley & Sons, Inc., Hoboken, NJ
    • Fuller, W. A. (2009). Sampling Statistics. John Wiley & Sons, Inc., Hoboken, NJ.
    • (2009) Sampling Statistics
    • Fuller, W.A.1
  • 38
    • 0000630970 scopus 로고
    • Transformations for estimation of linear models with nested-error structure
    • Fuller, W. A. and Battese, G. E. (1973). Transformations for estimation of linear models with nested-error structure. Journal of the American Statistical Association, 68:626–632.
    • (1973) Journal of the American Statistical Association , vol.68 , pp. 626-632
    • Fuller, W.A.1    Battese, G.E.2
  • 39
    • 33646712883 scopus 로고    scopus 로고
    • Hot deck imputation for the response model
    • Fuller, W. A. and Kim, J. K. (2005). Hot deck imputation for the response model. Survey Methodology, 31:139–149.
    • (2005) Survey Methodology , vol.31 , pp. 139-149
    • Fuller, W.A.1    Kim, J.K.2
  • 40
    • 0542364574 scopus 로고
    • Regression weighting in the presence of nonresponse with application to the 1987-1988 Nationwide Food Consumption Survey
    • Fuller, W. A., Loughin, M. M., and Baker, H. D. (1994). Regression weighting in the presence of nonresponse with application to the 1987-1988 Nationwide Food Consumption Survey. Survey Methodology, 20:75–85.
    • (1994) Survey Methodology , vol.20 , pp. 75-85
    • Fuller, W.A.1    Loughin, M.M.2    Baker, H.D.3
  • 42
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs sampling
    • Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41:337–348.
    • (1992) Applied Statistics , vol.41 , pp. 337-348
    • Gilks, W.R.1    Wild, P.2
  • 44
    • 0001031250 scopus 로고
    • Admissibility and Bayes estimation in sampling finite populations. i
    • Godambe, V. P. and Joshi, V. M. (1965). Admissibility and Bayes estimation in sampling finite populations. i. Annals of Mathematical Statistics, 36:1707–1722.
    • (1965) Annals of Mathematical Statistics , vol.36 , pp. 1707-1722
    • Godambe, V.P.1    Joshi, V.M.2
  • 45
    • 0002698467 scopus 로고
    • Parameters of superpopulation and survey population: Their relationships and estimation
    • Godambe, V. P. and Thompson, M. E. (1986). Parameters of superpopulation and survey population: their relationships and estimation. International Statistical Review, 54:127–138.
    • (1986) International Statistical Review , vol.54 , pp. 127-138
    • Godambe, V.P.1    Thompson, M.E.2
  • 46
    • 79960222164 scopus 로고    scopus 로고
    • Regression analysis with covariates that have heteroscedastic measurement error
    • Guo, Y. and Little, R. J. (2011). Regression analysis with covariates that have heteroscedastic measurement error. Statistics in Medicine, 30:2278–2294.
    • (2011) Statistics in Medicine , vol.30 , pp. 2278-2294
    • Guo, Y.1    Little, R.J.2
  • 48
    • 0000414660 scopus 로고
    • Large sample properties of generalized method of moments estimators
    • Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50:1029–1054.
    • (1982) Econometrica , vol.50 , pp. 1029-1054
    • Hansen, L.P.1
  • 49
    • 77956642476 scopus 로고    scopus 로고
    • Small area estimation using surveys and censuses: Some practical and statistical issues
    • Haslett, S. J. and Jones, G. (2005). Small area estimation using surveys and censuses: Some practical and statistical issues. Statistics in Transition, 7:541–556.
    • (2005) Statistics in Transition , vol.7 , pp. 541-556
    • Haslett, S.J.1    Jones, G.2
  • 50
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57:97–109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 51
    • 0000125534 scopus 로고
    • Sample selection as a specification error
    • Heckman, J. J. (1979). Sample selection as a specification error. Econometrica, 47:153–161.
    • (1979) Econometrica , vol.47 , pp. 153-161
    • Heckman, J.J.1
  • 52
    • 25844518492 scopus 로고    scopus 로고
    • A paradox concerning nuisance parameters and projected estimating functions
    • Henmi, M. and Eguchi, S. (2004). A paradox concerning nuisance parameters and projected estimating functions. Biometrika, 91:929–941.
    • (2004) Biometrika , vol.91 , pp. 929-941
    • Henmi, M.1    Eguchi, S.2
  • 53
    • 0141495120 scopus 로고    scopus 로고
    • Efficient estimation of average treatment effects using the estimated propensity score
    • Hirano, K., Imbens, G., and Ridder, G. (2003). Efficient estimation of average treatment effects using the estimated propensity score. Econometrica, 71:1161–1189.
    • (2003) Econometrica , vol.71 , pp. 1161-1189
    • Hirano, K.1    Imbens, G.2    Ridder, G.3
  • 54
    • 82055200221 scopus 로고    scopus 로고
    • A review of the use of conditional likelihood in capture-recapture experiments
    • Huggins, R. and Hwang, W. H. (2011). A review of the use of conditional likelihood in capture-recapture experiments. International Statistical Review, 79:385–400.
    • (2011) International Statistical Review , vol.79 , pp. 385-400
    • Huggins, R.1    Hwang, W.H.2
  • 56
    • 0033474233 scopus 로고    scopus 로고
    • Missing covariates in generalized linear models when the missing data mechanism is non-ignorable
    • Ibrahim, J. G., Lipsitz, S. R., and Chen, M. H. (1999). Missing covariates in generalized linear models when the missing data mechanism is non-ignorable. Journal of the Royal Statistical Society, Series B, 61:173–190.
    • (1999) Journal of the Royal Statistical Society, Series B , vol.61 , pp. 173-190
    • Ibrahim, J.G.1    Lipsitz, S.R.2    Chen, M.H.3
  • 60
    • 46249131752 scopus 로고    scopus 로고
    • Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data
    • Kang, J. D. Y. and Schafer, J. L. (2007). Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data. Statistical Science, 22:523–529.
    • (2007) Statistical Science , vol.22 , pp. 523-529
    • Kang, J.D.Y.1    Schafer, J.L.2
  • 61
    • 0032534724 scopus 로고    scopus 로고
    • Selection models for repeated measurements with non-random dropout: An illustration of sensitivity
    • Kenward, M. G. (1998). Selection models for repeated measurements with non-random dropout: An illustration of sensitivity. Statistics in Medicine, 17:2723–2732.
    • (1998) Statistics in Medicine , vol.17 , pp. 2723-2732
    • Kenward, M.G.1
  • 62
    • 24344487552 scopus 로고    scopus 로고
    • A note on approximate Bayesian bootstrap imputation
    • Kim, J. K. (2002). A note on approximate Bayesian bootstrap imputation. Biometrika, 89:470–477.
    • (2002) Biometrika , vol.89 , pp. 470-477
    • Kim, J.K.1
  • 63
    • 23244448334 scopus 로고    scopus 로고
    • Finite sample properties of multiple imputation estimators
    • Kim, J. K. (2004). Finite sample properties of multiple imputation estimators. The Annals of Statistics, 32:766–783.
    • (2004) The Annals of Statistics , vol.32 , pp. 766-783
    • Kim, J.K.1
  • 64
    • 78651403023 scopus 로고    scopus 로고
    • Calibration estimation using exponential tilting in sample surveys
    • Kim, J. K. (2010). Calibration estimation using exponential tilting in sample surveys. Survey Methodology, 36:145–155.
    • (2010) Survey Methodology , vol.36 , pp. 145-155
    • Kim, J.K.1
  • 65
    • 79952165896 scopus 로고    scopus 로고
    • Parametric fractional imputation for missing data analysis
    • Kim, J. K. (2011). Parametric fractional imputation for missing data analysis. Biometrika, 98:119– 132.
    • (2011) Biometrika , vol.98 , pp. 119-132
    • Kim, J.K.1
  • 67
    • 24944511252 scopus 로고    scopus 로고
    • Fractional hot deck imputation
    • Kim, J. K. and Fuller, W. A. (2004). Fractional hot deck imputation. Biometrika, 91:559–578.
    • (2004) Biometrika , vol.91 , pp. 559-578
    • Kim, J.K.1    Fuller, W.A.2
  • 69
    • 85060426499 scopus 로고    scopus 로고
    • Doubly robust inference with missing data in survey sampling
    • In press
    • Kim, J. K. and Haziza, D. (2013). Doubly robust inference with missing data in survey sampling. Statistica Sinica. In press.
    • (2013) Statistica Sinica
    • Kim, J.K.1    Haziza, D.2
  • 71
    • 40549127811 scopus 로고    scopus 로고
    • Nonresponse weighting adjustment using estimated response probability
    • Kim, J. K. and Kim, J. J. (2007). Nonresponse weighting adjustment using estimated response probability. Canadian Journal of Statistics, 35:501–514.
    • (2007) Canadian Journal of Statistics , vol.35 , pp. 501-514
    • Kim, J.K.1    Kim, J.J.2
  • 73
    • 33744779360 scopus 로고    scopus 로고
    • Imputation using response probability
    • Kim, J. K. and Park, H. A. (2006). Imputation using response probability. Canadian Journal of Statistics, 34:171–182.
    • (2006) Canadian Journal of Statistics , vol.34 , pp. 171-182
    • Kim, J.K.1    Park, H.A.2
  • 74
    • 77955785587 scopus 로고    scopus 로고
    • Calibration estimation in survey sampling
    • Kim, J. K. and Park, M. (2010). Calibration estimation in survey sampling. International Statistical Review, 78:21–39.
    • (2010) International Statistical Review , vol.78 , pp. 21-39
    • Kim, J.K.1    Park, M.2
  • 75
    • 71249116159 scopus 로고    scopus 로고
    • Unified approach to linearization variance estimation from survey data after imputation for item nonresponse
    • Kim, J. K. and Rao, J. N. K. (2009). Unified approach to linearization variance estimation from survey data after imputation for item nonresponse. Biometrika, 96:917–932.
    • (2009) Biometrika , vol.96 , pp. 917-932
    • Kim, J.K.1    Rao, J.N.K.2
  • 76
    • 84863249206 scopus 로고    scopus 로고
    • Combining data from two independent surveys: A model-assisted approach
    • Kim, J. K. and Rao, J. N. K. (2012). Combining data from two independent surveys: A model-assisted approach. Biometrika, 99:85–100.
    • (2012) Biometrika , vol.99 , pp. 85-100
    • Kim, J.K.1    Rao, J.N.K.2
  • 77
    • 84877807381 scopus 로고    scopus 로고
    • Some theory for propensity-score-adjustment estimators in survey sampling
    • Kim, J. K. and Riddles, M. K. (2012). Some theory for propensity-score-adjustment estimators in survey sampling. Survey Methodology, 38:157–165.
    • (2012) Survey Methodology , vol.38 , pp. 157-165
    • Kim, J.K.1    Riddles, M.K.2
  • 78
    • 84863090160 scopus 로고    scopus 로고
    • The factoring likelihood method for non-monotone missing data
    • Kim, J. K. and Shin, D. W. (2012). The factoring likelihood method for non-monotone missing data. Journal of the Korean Statistical Society, 41:375–386.
    • (2012) Journal of the Korean Statistical Society , vol.41 , pp. 375-386
    • Kim, J.K.1    Shin, D.W.2
  • 79
    • 79954500171 scopus 로고    scopus 로고
    • A semi-parametric estimation of mean functionals with nonignorable missing data
    • Kim, J. K. and Yu, C. L. (2011). A semi-parametric estimation of mean functionals with nonignorable missing data. Journal of the American Statistical Association, 106:157–165.
    • (2011) Journal of the American Statistical Association , vol.106 , pp. 157-165
    • Kim, J.K.1    Yu, C.L.2
  • 80
    • 84863102090 scopus 로고    scopus 로고
    • Parametric fractional imputation for nonignorable missing data
    • Kim, J. Y. and Kim, J. K. (2012). Parametric fractional imputation for nonignorable missing data. Journal of the Korean Statistical Society, 41:291–303.
    • (2012) Journal of the Korean Statistical Society , vol.41 , pp. 291-303
    • Kim, J.Y.1    Kim, J.K.2
  • 81
    • 78649406743 scopus 로고    scopus 로고
    • Using calibration weighting to adjust for nonignorable unit nonresponse
    • Kott, P. S. and Chang, T. (2010). Using calibration weighting to adjust for nonignorable unit nonresponse. Journal of the American Statistical Association, 105:1265–1275.
    • (2010) Journal of the American Statistical Association , vol.105 , pp. 1265-1275
    • Kott, P.S.1    Chang, T.2
  • 84
  • 86
  • 88
    • 0036556537 scopus 로고    scopus 로고
    • Regression trees with unbiased variable selection and interaction detection
    • Loh, W. Y. (2002). Regression trees with unbiased variable selection and interaction detection. Statistica Sinica, 12:361–386.
    • (2002) Statistica Sinica , vol.12 , pp. 361-386
    • Loh, W.Y.1
  • 89
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the EM algorithm
    • Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society: Series B, 44:226–233.
    • (1982) Journal of the Royal Statistical Society: Series B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 93
    • 84972537494 scopus 로고
    • Multiple-imputation inferences with uncongenial sources of input (With discussion)
    • Meng, X. L. (1994). Multiple-imputation inferences with uncongenial sources of input (with discussion). Statistical Science, 9:538–573.
    • (1994) Statistical Science , vol.9 , pp. 538-573
    • Meng, X.L.1
  • 96
    • 0031503459 scopus 로고    scopus 로고
    • A graphical illustration of the EM algorithm
    • Navidi, W. (1997). A graphical illustration of the EM algorithm. American Statistician, 51:29–31.
    • (1997) American Statistician , vol.51 , pp. 29-31
    • Navidi, W.1
  • 97
    • 0000776295 scopus 로고    scopus 로고
    • Estimation of sample-selection bias models
    • Nawata, K. and Nagase, N. (1996). Estimation of sample-selection bias models. Econometric Letters, 42:387–400.
    • (1996) Econometric Letters , vol.42 , pp. 387-400
    • Nawata, K.1    Nagase, N.2
  • 99
    • 0033472692 scopus 로고    scopus 로고
    • Symmetric pattern models: A latent variable approach to item non-response in attitude scales
    • O’Muircheartaigh, C. and Moustaki, I. (1999). Symmetric pattern models: A latent variable approach to item non-response in attitude scales. Journal of the Royal Statistical Society: Series A, 162:177–194.
    • (1999) Journal of the Royal Statistical Society: Series A , vol.162 , pp. 177-194
    • O’Muircheartaigh, C.1    Moustaki, I.2
  • 101
    • 0000060427 scopus 로고
    • Empirical likelihood ratio confidence intervals for a single functional
    • Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika, 75:237–249.
    • (1988) Biometrika , vol.75 , pp. 237-249
    • Owen, A.B.1
  • 102
    • 0041182327 scopus 로고    scopus 로고
    • The generalized estimating equaiton approach when data are not missing completely at random
    • Paik, M. C. (1997). The generalized estimating equaiton approach when data are not missing completely at random. Journal of the American Statistical Association, 92:1320–1329.
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 1320-1329
    • Paik, M.C.1
  • 104
    • 0036489057 scopus 로고    scopus 로고
    • Estimation with survey data under non-ignorable nonresponse or informative sampling
    • Qin, J., Leung, D., and Shao, J. (2002). Estimation with survey data under non-ignorable nonresponse or informative sampling. Journal of the American Statistical Association, 97:193–200.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 193-200
    • Qin, J.1    Leung, D.2    Shao, J.3
  • 106
    • 0000502376 scopus 로고
    • On the asymptotic normality of statistics with estimated parameters
    • Randles, R. H. (1982). On the asymptotic normality of statistics with estimated parameters. The Annals of Statistics, 10:462–474.
    • (1982) The Annals of Statistics , vol.10 , pp. 462-474
    • Randles, R.H.1
  • 107
    • 0000974584 scopus 로고
    • Jackknife variance estimation with survey data under hot deck imputation
    • Rao, J. N. K. and Shao, J. (1992). Jackknife variance estimation with survey data under hot deck imputation. Biometrika, 79:811–822.
    • (1992) Biometrika , vol.79 , pp. 811-822
    • Rao, J.N.K.1    Shao, J.2
  • 108
    • 0000068035 scopus 로고
    • Variance estimation under two-phase sampling with application to imputation for missing data
    • Rao, J. N. K. and Sitter, R. R. (1995). Variance estimation under two-phase sampling with application to imputation for missing data. Biometrika, 82:453–460.
    • (1995) Biometrika , vol.82 , pp. 453-460
    • Rao, J.N.K.1    Sitter, R.R.2
  • 109
    • 34648820940 scopus 로고    scopus 로고
    • Data fusion: Identification problems, validity, and multiple imputation
    • Rässler, S. (2004). Data fusion: Identification problems, validity, and multiple imputation. Austrian Journal of Statistics, 33:153–171.
    • (2004) Austrian Journal of Statistics , vol.33 , pp. 153-171
    • Rässler, S.1
  • 110
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • Redner, R. A. and Walker, H. F. (1984). Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 26:195–239.
    • (1984) SIAM Review , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 113
  • 114
    • 0000555875 scopus 로고    scopus 로고
    • Inference for imputation estimators
    • Robins, J. M. and Wang, N. (2000). Inference for imputation estimators. Biometrika, 87:113–124.
    • (2000) Biometrika , vol.87 , pp. 113-124
    • Robins, J.M.1    Wang, N.2
  • 115
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum, P. R. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70:41–55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1
  • 117
    • 0001350683 scopus 로고
    • Characterizing the estimation of parameters in incomplete data problems
    • Rubin, D. B. (1974). Characterizing the estimation of parameters in incomplete data problems. Journal of the American Statistical Association, 69:467–474.
    • (1974) Journal of the American Statistical Association , vol.69 , pp. 467-474
    • Rubin, D.B.1
  • 118
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. (1976). Inference and missing data. Biometrika, 63:581–590.
    • (1976) Biometrika , vol.63 , pp. 581-590
    • Rubin, D.B.1
  • 119
    • 0002608867 scopus 로고
    • Multiple imputation in sample surveys-a phenomenological Bayesian approach to nonresponse
    • Washington, DC. American Statistical Association
    • Rubin, D. B. (1978). Multiple imputation in sample surveys-a phenomenological Bayesian approach to nonresponse. In Proceedings of the Survey Research Methods Section, pages 20–34, Washington, DC. American Statistical Association.
    • (1978) Proceedings of the Survey Research Methods Section , pp. 20-34
    • Rubin, D.B.1
  • 120
    • 0000135972 scopus 로고
    • The Bayesian bootstrap
    • Rubin, D. B. (1981). The Bayesian bootstrap. The Annals of Statistics, 9:130–134.
    • (1981) The Annals of Statistics , vol.9 , pp. 130-134
    • Rubin, D.B.1
  • 122
    • 14944344423 scopus 로고    scopus 로고
    • Causal inference using potential outcomes: Design, modeling, decisions
    • Rubin, D. B. (2005). Causal inference using potential outcomes: design, modeling, decisions. Journal of the American Statistical Association, 100:322–331.
    • (2005) Journal of the American Statistical Association , vol.100 , pp. 322-331
    • Rubin, D.B.1
  • 123
    • 44849123552 scopus 로고    scopus 로고
    • Empirical efficiency maximization: Improved locally efficient covariate adjustment in randomized experiments and survival analysis
    • Rubin, D. B. and der Laan, M. J. V. (2008). Empirical efficiency maximization: Improved locally efficient covariate adjustment in randomized experiments and survival analysis. International Journal of Biostatistics, 4(1):Article 5.
    • (2008) International Journal of Biostatistics , vol.4 , Issue.1
    • Rubin, D.B.1    der Laan, M.J.V.2
  • 124
    • 84950918760 scopus 로고
    • Multiple imputation for interval estimation from simple random samples with ignorable nonresponse
    • Rubin, D. B. and Schenker, N. (1986). Multiple imputation for interval estimation from simple random samples with ignorable nonresponse. Journal of the American Statistical Association, 81:366–374.
    • (1986) Journal of the American Statistical Association , vol.81 , pp. 366-374
    • Rubin, D.B.1    Schenker, N.2
  • 126
    • 0002650537 scopus 로고    scopus 로고
    • Fitting regression models to case-control data by maximum likelihood
    • Scott, A. J. and Wild, C. J. (1997). Fitting regression models to case-control data by maximum likelihood. Biometrika, 84:57–71.
    • (1997) Biometrika , vol.84 , pp. 57-71
    • Scott, A.J.1    Wild, C.J.2
  • 129
    • 0442277963 scopus 로고    scopus 로고
    • Variance estimation for survey data with composite imputation and nonnegligible sampling fraction
    • Shao, J. and Steel, P. (1999). Variance estimation for survey data with composite imputation and nonnegligible sampling fraction. Journal of the American Statistical Association, 94:254–265.
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 254-265
    • Shao, J.1    Steel, P.2
  • 131
    • 33846066470 scopus 로고    scopus 로고
    • A distributional appproach for causal inference using propensity scores
    • Tan, Z. (2006). A distributional appproach for causal inference using propensity scores. Journal of the American Statistical Association, 101:1619–1637.
    • (2006) Journal of the American Statistical Association , vol.101 , pp. 1619-1637
    • Tan, Z.1
  • 132
    • 3843068594 scopus 로고    scopus 로고
    • Analysis of multivariate missing data with nonignorable nonresponse
    • Tang, G., Little, R. J. A., and Raghunathan, T. E. (2003). Analysis of multivariate missing data with nonignorable nonresponse. Biometrika, 90:747–764.
    • (2003) Biometrika , vol.90 , pp. 747-764
    • Tang, G.1    Little, R.J.A.2    Raghunathan, T.E.3
  • 134
    • 0000175291 scopus 로고
    • Estimation of relationships for limited dependent variables
    • Tobin, J. (1958). Estimation of relationships for limited dependent variables. Econometrica, 26:24–36.
    • (1958) Econometrica , vol.26 , pp. 24-36
    • Tobin, J.1
  • 135
    • 65349172950 scopus 로고    scopus 로고
    • Empirical likelihood for estimating equations with missing values
    • Wang, D. and Chen, S. X. (2009). Empirical likelihood for estimating equations with missing values. The Annals of Statistics, 37:490–517.
    • (2009) The Annals of Statistics , vol.37 , pp. 490-517
    • Wang, D.1    Chen, S.X.2
  • 136
    • 0011936489 scopus 로고    scopus 로고
    • Large-sample theory for parametric multiple imputation procedures
    • Wang, N. and Robins, J. M. (1998). Large-sample theory for parametric multiple imputation procedures. Biometrika, 85:935–948.
    • (1998) Biometrika , vol.85 , pp. 935-948
    • Wang, N.1    Robins, J.M.2
  • 138
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms
    • Wei, G. C. and Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms. Journal of the American Statistical Association, 85:699–704.
    • (1990) Journal of the American Statistical Association , vol.85 , pp. 699-704
    • Wei, G.C.1    Tanner, M.A.2
  • 139
    • 0002210265 scopus 로고
    • On the convergence properties of the EM algorithm
    • Wu, C. F. J. (1983). On the convergence properties of the EM algorithm. The Annals of Statistics, 11:95–103.
    • (1983) The Annals of Statistics , vol.11 , pp. 95-103
    • Wu, C.F.J.1
  • 140
    • 0032930511 scopus 로고    scopus 로고
    • Use of summary measures to adjust for informative missing-ness in repeated measures with random effects
    • Wu, M. and Follmann, D. A. (1999). Use of summary measures to adjust for informative missing-ness in repeated measures with random effects. Biometrics, 55:75–84.
    • (1999) Biometrics , vol.55 , pp. 75-84
    • Wu, M.1    Follmann, D.A.2
  • 141
    • 77949509589 scopus 로고    scopus 로고
    • Methods for intermittent missing responses in longitudinal data
    • University of Wisconsin, Madison
    • Xu, J. (2007). Methods for intermittent missing responses in longitudinal data. PhD thesis, University of Wisconsin, Madison.
    • (2007) Phd Thesis
    • Xu, J.1
  • 142
    • 70450278709 scopus 로고    scopus 로고
    • Estimation in longitudinal or panel data models with random-effect-based missing responses
    • Xu, L. and Shao, J. (2009). Estimation in longitudinal or panel data models with random-effect-based missing responses. Biometrics, 65:1175–1183.
    • (2009) Biometrics , vol.65 , pp. 1175-1183
    • Xu, L.1    Shao, J.2
  • 144
    • 85060416080 scopus 로고    scopus 로고
    • Parametric fractional imputation using adjusted profile likelihood for linear mixed models with nonignorable missing data
    • In press
    • Yang, S., Kim, J. K., and Zhu, Z. (2013). Parametric fractional imputation using adjusted profile likelihood for linear mixed models with nonignorable missing data. Statistics and Its Interface, In press.
    • (2013) Statistics and Its Interface
    • Yang, S.1    Kim, J.K.2    Zhu, Z.3
  • 145
    • 84865449312 scopus 로고    scopus 로고
    • An efficient method of estimation for longitudinal surveys with monotone missing data
    • Zhou, M. and Kim, J. K. (2012). An efficient method of estimation for longitudinal surveys with monotone missing data. Biometrika, 99:631–648.
    • (2012) Biometrika , vol.99 , pp. 631-648
    • Zhou, M.1    Kim, J.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.