메뉴 건너뛰기




Volumn 61, Issue 1, 1999, Pages 173-190

Missing covariates in generalized linear models when the missing data mechanism is non-ignorable

Author keywords

EM algorithm; Gibbs sampling; Logistic regression; Maximum likelihood estimation; Missing data mechanism; Monte Carlo EM algorithm

Indexed keywords


EID: 0033474233     PISSN: 13697412     EISSN: None     Source Type: Journal    
DOI: 10.1111/1467-9868.00170     Document Type: Article
Times cited : (227)

References (23)
  • 2
    • 0001885521 scopus 로고
    • Regression analysis for categorical variables with outcome subject to nonignorable nonresponse
    • Baker, S. G. and Laird, N. M. (1988) Regression analysis for categorical variables with outcome subject to nonignorable nonresponse. J. Am. Statist. Ass., 83, 62-69.
    • (1988) J. Am. Statist. Ass. , vol.83 , pp. 62-69
    • Baker, S.G.1    Laird, N.M.2
  • 3
    • 0001018284 scopus 로고
    • Log-linear models for survey data with non-ignorable non-response
    • Chambers, R. L. and Welsh, A. H. (1993) Log-linear models for survey data with non-ignorable non-response. J. R. Statist. Soc. B, 55, 157-170.
    • (1993) J. R. Statist. Soc. B , vol.55 , pp. 157-170
    • Chambers, R.L.1    Welsh, A.H.2
  • 4
    • 0030539336 scopus 로고    scopus 로고
    • Markov chain Monte Carlo convergence diagnostics: A comparative review
    • Cowles, M. K. and Carlin, B. P. (1996) Markov chain Monte Carlo convergence diagnostics: a comparative review. J. Am. Statist. Ass., 91, 883-904.
    • (1996) J. Am. Statist. Ass. , vol.91 , pp. 883-904
    • Cowles, M.K.1    Carlin, B.P.2
  • 5
    • 4243828610 scopus 로고
    • Informative drop-out in longitudinal data analysis
    • Diggle, P. and Kenward, M. G. (1994) Informative drop-out in longitudinal data analysis (with discussion). Appl. Statist., 43, 49-93.
    • (1994) Appl. Statist. , vol.43 , pp. 49-93
    • Diggle, P.1    Kenward, M.G.2
  • 6
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs sampling
    • Gilks, W. R. and Wild, P. (1992) Adaptive rejection sampling for Gibbs sampling. Appl. Statist., 41, 337-348.
    • (1992) Appl. Statist. , vol.41 , pp. 337-348
    • Gilks, W.R.1    Wild, P.2
  • 7
    • 21144481276 scopus 로고
    • Multiple imputation in mixture models for nonignorable nonresponse with follow-ups
    • Glynn, R. J., Laird, N. M. and Rubin, D. B. (1993) Multiple imputation in mixture models for nonignorable nonresponse with follow-ups. J. Am. Statist. Ass., 88, 984-993.
    • (1993) J. Am. Statist. Ass. , vol.88 , pp. 984-993
    • Glynn, R.J.1    Laird, N.M.2    Rubin, D.B.3
  • 8
    • 0039300203 scopus 로고
    • Imputation of missing values when the probability of response depends on the variable being imputed
    • Greenlees, W. S., Reece, J. S. and Zieschang, K. D. (1982) Imputation of missing values when the probability of response depends on the variable being imputed. J. Am. Statist. Ass., 77, 251-261.
    • (1982) J. Am. Statist. Ass. , vol.77 , pp. 251-261
    • Greenlees, W.S.1    Reece, J.S.2    Zieschang, K.D.3
  • 9
    • 84950431939 scopus 로고
    • Incomplete data in generalized linear models
    • Ibrahim, J. G. (1990) Incomplete data in generalized linear models. J. Am. Statist. Ass., 85, 765-769.
    • (1990) J. Am. Statist. Ass. , vol.85 , pp. 765-769
    • Ibrahim, J.G.1
  • 10
    • 0029795665 scopus 로고    scopus 로고
    • Parameter estimation from incomplete data in binomial regression when the missing data mechanism is nonignorable
    • Ibrahim, J. G. and Lipsitz, S. R. (1996) Parameter estimation from incomplete data in binomial regression when the missing data mechanism is nonignorable. Biometrics, 52, 1071-1078.
    • (1996) Biometrics , vol.52 , pp. 1071-1078
    • Ibrahim, J.G.1    Lipsitz, S.R.2
  • 11
    • 0030030347 scopus 로고    scopus 로고
    • Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: The Eastern Cooperative Oncology Group trial EST 1684
    • Kirkwood, J. M., Strawderman, M. H., Ernstoff, M. S., Smith, T. J., Borden, E. C. and Blum, R. H. (1996) Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group trial EST 1684. J. Clin. Oncol., 14, 7-17.
    • (1996) J. Clin. Oncol. , vol.14 , pp. 7-17
    • Kirkwood, J.M.1    Strawderman, M.H.2    Ernstoff, M.S.3    Smith, T.J.4    Borden, E.C.5    Blum, R.H.6
  • 12
    • 84936016001 scopus 로고
    • Nonparametric maximum likelihood estimation of a mixing distribution
    • Laird, N. M. (1978) Nonparametric maximum likelihood estimation of a mixing distribution. J. Am. Statist. Ass., 73, 805-811.
    • (1978) J. Am. Statist. Ass. , vol.73 , pp. 805-811
    • Laird, N.M.1
  • 13
    • 0000337478 scopus 로고    scopus 로고
    • A conditional model for incomplete covariates in parametric regression models
    • Lipsitz, S. R. and Ibrahim, J. G. (1996) A conditional model for incomplete covariates in parametric regression models. Biometrika, 83, 916-922.
    • (1996) Biometrika , vol.83 , pp. 916-922
    • Lipsitz, S.R.1    Ibrahim, J.G.2
  • 14
    • 84950455641 scopus 로고
    • Regression with missing X's: A review
    • Little, R. J. A. (1992) Regression with missing X's: a review. J. Am. Statist. Ass., 87, 1227-1237.
    • (1992) J. Am. Statist. Ass. , vol.87 , pp. 1227-1237
    • Little, R.J.A.1
  • 16
    • 0000704344 scopus 로고
    • Maximum likelihood estimation for mixed continuous and categorical data with missing values
    • Little, R. J. A. and Schluchter, M. (1985) Maximum likelihood estimation for mixed continuous and categorical data with missing values. Biometrika, 72, 497-512.
    • (1985) Biometrika , vol.72 , pp. 497-512
    • Little, R.J.A.1    Schluchter, M.2
  • 17
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the EM algorithm
    • Louis, T. A. (1982) Finding the observed information matrix when using the EM algorithm. J. R. Statist. Soc. B, 44, 226-233.
    • (1982) J. R. Statist. Soc. B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 19
    • 84888862680 scopus 로고
    • Estimation of regression coefficients when some regressors are not always observed
    • Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1994) Estimation of regression coefficients when some regressors are not always observed. J. Am. Statist. Ass., 89, 846-866.
    • (1994) J. Am. Statist. Ass. , vol.89 , pp. 846-866
    • Robins, J.M.1    Rotnitzky, A.2    Zhao, L.P.3
  • 20
    • 84950421496 scopus 로고
    • Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
    • _(1995) Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J. Am. Statist. Ass., 90, 106-121.
    • (1995) J. Am. Statist. Ass. , vol.90 , pp. 106-121
  • 22
    • 84950918760 scopus 로고
    • Multiple imputation for interval estimation from simple random samples with ignorable nonresponse
    • Rubin, D. B. and Schenker, N. (1986) Multiple imputation for interval estimation from simple random samples with ignorable nonresponse. J. Am. Statist. Ass., 81, 366-374.
    • (1986) J. Am. Statist. Ass. , vol.81 , pp. 366-374
    • Rubin, D.B.1    Schenker, N.2
  • 23
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
    • Wei, G. C. and Tanner, M. A. (1990) A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. J. Am. Statist. Ass., 85, 699-704.
    • (1990) J. Am. Statist. Ass. , vol.85 , pp. 699-704
    • Wei, G.C.1    Tanner, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.