-
1
-
-
85018888114
-
Learning the number of neurons in deep networks
-
Jose M. Alvarez and Mathieu Salzmann. Learning the number of neurons in deep networks. In NIPS, 2016.
-
(2016)
NIPS
-
-
Alvarez, J.M.1
Salzmann, M.2
-
3
-
-
84937961091
-
Do deep nets really need to be deep?
-
Lei Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In NIPS, 2014.
-
(2014)
NIPS
-
-
Ba, L.J.1
Caruana, R.2
-
4
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
Amir Back and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sciences, 2:183-202, 2006.
-
(2006)
SIAM J Imaging Sciences
, vol.2
, pp. 183-202
-
-
Back, A.1
Teboulle, M.2
-
5
-
-
84857855190
-
Random search for hyper-parameter optimization
-
James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. JMLR, 13: 281-305, 2012.
-
(2012)
JMLR
, vol.13
, pp. 281-305
-
-
Bergstra, J.1
Bengio, Y.2
-
6
-
-
85083953532
-
Net2Net: Accelerating learning via knowledge transfer
-
Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: accelerating learning via knowledge transfer. In ICLR, 2016.
-
(2016)
ICLR
-
-
Chen, T.1
Goodfellow, I.2
Shlens, J.3
-
7
-
-
84986246906
-
Memory bounded deep convolutional networks
-
abs/1412.1442
-
Maxwell D. Collins and Pushmeet Kohli. Memory bounded deep convolutional networks. CoRR, pp. abs/1412.1442, 2014.
-
(2014)
CoRR
-
-
Collins, M.D.1
Kohli, P.2
-
8
-
-
84890527827
-
Improving deep neural networks for lvcsr using rectified linear units and dropout
-
George E. Dahl, Tara N. Sainath, and Geoffrey E. Hinton. Improving deep neural networks for lvcsr using rectified linear units and dropout. In ICASSP, 2013.
-
(2013)
ICASSP
-
-
Dahl, G.E.1
Sainath, T.N.2
Hinton, G.E.3
-
10
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. JMLR, 12:2121-2159, 2011.
-
(2011)
JMLR
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
11
-
-
0000155950
-
The cascade-correlation learning architecture
-
Scott Fahlman and Christian Lebiere. The cascade-correlation learning architecture. In NIPS, 1990.
-
(1990)
NIPS
-
-
Fahlman, S.1
Lebiere, C.2
-
12
-
-
84973901098
-
Learning the structure of deep convolutional networks
-
Jiashi Feng and Trevor Darrell. Learning the structure of deep convolutional networks. In ICCV, 2015.
-
(2015)
ICCV
-
-
Feng, J.1
Darrell, T.2
-
13
-
-
85019215359
-
PerforatedCNNs: Acceleration through elimination of redundant convolutions
-
Michael Figurnov, Aijan Ibraimova, Dmitry Vetrov, and Pushmeet Kohli. Perforatedcnns: Acceleration through elimination of redundant convolutions. In NIPS, 2016.
-
(2016)
NIPS
-
-
Figurnov, M.1
Ibraimova, A.2
Vetrov, D.3
Kohli, P.4
-
15
-
-
85018895765
-
Dynamic network durgery for efficient dnns
-
Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network durgery for efficient dnns. In NIPS, 2016.
-
(2016)
NIPS
-
-
Guo, Y.1
Yao, A.2
Chen, Y.3
-
18
-
-
80051969610
-
Sequential model-based optimization for general algorithm configuration (extended version)
-
University of British Columbia, Department of Computer Science
-
Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for general algorithm configuration (extended version). Tech. Rep. TR-2009-01, University of British Columbia, Department of Computer Science, 2009.
-
(2009)
Tech. Rep. TR-2009-01
-
-
Hutter, F.1
Hoos, H.H.2
Leyton-Brown, K.3
-
19
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
-
(2015)
ICML
-
-
Ioffe, S.1
Szegedy, C.2
-
20
-
-
85083951076
-
ADaM: A method for stochastic optimization
-
Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
-
(2015)
ICLR
-
-
Kingma, D.P.1
Ba, J.L.2
-
21
-
-
85070975222
-
DSD: Dense-sparse-dense training for deep neural networks
-
Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Dsd: Dense-sparse-dense training for deep neural networks. In ICLR, 2017.
-
(2017)
ICLR
-
-
Klein, A.1
Falkner, S.2
Springenberg, J.T.3
Hutter, F.4
-
22
-
-
84872585647
-
Adaptive regularization in neural network modeling
-
2nd Ed
-
Jan Larsen, Claus Svarer, Lars Nonboe Andersen, and Lars Kai Hansen. Adaptive regularization in neural network modeling. Neural Networks: Tricks of the Trade, 2nd Ed., 7700:111-130, 1998.
-
(1998)
Neural Networks: Tricks of the Trade
, vol.7700
, pp. 111-130
-
-
Larsen, J.1
Svarer, C.2
Andersen, L.N.3
Hansen, L.K.4
-
23
-
-
84998813242
-
Scalable gradient-based tuning of continuous regularization hyperparameters
-
Jelena Luketina, Mathias Berglund, Klaus Greff, and Raiko Tapani. Scalable gradient-based tuning of continuous regularization hyperparameters. In ICML, 2016.
-
(2016)
ICML
-
-
Luketina, J.1
Berglund, M.2
Greff, K.3
Tapani, R.4
-
24
-
-
84989338543
-
Gradient-based hyperparameter optimization through reversible learning
-
Dougal Maclaurin, David Duvenaud, and Ryan P. Adams. Gradient-based hyperparameter optimization through reversible learning. In ICML, 2015.
-
(2015)
ICML
-
-
Maclaurin, D.1
Duvenaud, D.2
Adams, R.P.3
-
25
-
-
0001025418
-
A practical Bayesian framework for backpropagation networks
-
David McKay. A practical bayesian framework for backpropagation networks. Neural Computation, 4:448-472, 1992.
-
(1992)
Neural Computation
, vol.4
, pp. 448-472
-
-
McKay, D.1
-
26
-
-
85088228467
-
Pruning convolutional neural networks for efficient inference
-
Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional neural networks for efficient inference. In ICLR, 2017.
-
(2017)
ICLR
-
-
Molchanov, P.1
Tyree, S.2
Karras, T.3
Aila, T.4
Kautz, J.5
-
27
-
-
84919826006
-
Learning by stretching deep networks
-
Gaurav Pandey and Ambedkar Dukkipati. Learning by stretching deep networks. In ICML, 2014.
-
(2014)
ICML
-
-
Pandey, G.1
Dukkipati, A.2
-
28
-
-
85083953559
-
Fitnets: Hints for thin deep nets
-
Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. In ICLR, 2015.
-
(2015)
ICLR
-
-
Romero, A.1
Ballas, N.2
Kahou, S.E.3
Chassang, A.4
Gatta, C.5
Bengio, Y.6
-
29
-
-
85071006360
-
Computing with infinite networks
-
Andrew Saxe, Pang Wei Koh, Zhenghao Chen, Maneesh Bhand, Bipin Suresh, and Andrew Ng. Computing with infinite networks. In ICML, 2011.
-
(2011)
ICML
-
-
Saxe, A.1
Koh, P.W.2
Chen, Z.3
Bhand, M.4
Suresh, B.5
Ng, A.6
-
30
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
31
-
-
84869201485
-
Practical Bayesian optimization of machine learning algorithms
-
Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine learning algorithms. In NIPS, 2012.
-
(2012)
NIPS
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
32
-
-
84970022032
-
Scalable Bayesian optimization using deep neural networks
-
Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Prabhat, and Ryan P. Adams. Scalable bayesian optimization using deep neural networks. In ICML, 2015.
-
(2015)
ICML
-
-
Snoek, J.1
Rippel, O.2
Swersky, K.3
Kiros, R.4
Satish, N.5
Sundaram, N.6
Mostofa Ali Patwary, Md.7
Prabhat8
Adams, R.P.9
-
33
-
-
85015791874
-
Bayesian optimization with robust Bayesian neural networks
-
Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter. Bayesian optimization with robust bayesian neural networks. In NIPS, 2016.
-
(2016)
NIPS
-
-
Springenberg, J.T.1
Klein, A.2
Falkner, S.3
Hutter, F.4
-
34
-
-
84897510162
-
On the importance of initialization and momentum in deep learning
-
Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization and momentum in deep learning. In ICML, 2013.
-
(2013)
ICML
-
-
Sutskever, I.1
Martens, J.2
Dahl, G.3
Hinton, G.4
-
38
-
-
85015334059
-
Learning structured sparsity in deep neural networks
-
Wei Wen, Chunpeng Wu, Wandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep neural networks. In NIPS, 2016.
-
(2016)
NIPS
-
-
Wen, W.1
Wu, C.2
Wang, W.3
Chen, Y.4
Li, H.5
-
39
-
-
84898974226
-
Computing with infinite networks
-
Christopher K. I. Williams. Computing with infinite networks. In NIPS, 1997.
-
(1997)
NIPS
-
-
Williams, C.K.I.1
-
40
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
Ming Yuan and Yin Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B, 68:49-67, 2006.
-
(2006)
Journal of the Royal Statistical Society, Series B
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
42
-
-
85068717703
-
Neural architecture search with reinforcement learning
-
Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In ICLR, 2017.
-
(2017)
ICLR
-
-
Zoph, B.1
Le, Q.V.2
|