-
1
-
-
85018934590
-
Decomposeme: Simplifying convnets for end-to-end learning
-
J.M. Alvarez and L. Petersson. Decomposeme: Simplifying convnets for end-to-end learning. CoRR, abs/1606.05426, 2016.
-
(2016)
CoRR
-
-
Alvarez, J.M.1
Petersson, L.2
-
2
-
-
84945797434
-
Dynamic node creation in backpropagation networks
-
T. Ash. Dynamic node creation in backpropagation networks. Connection Science, 1(4):365-375, 1989.
-
(1989)
Connection Science
, vol.1
, Issue.4
, pp. 365-375
-
-
Ash, T.1
-
3
-
-
0000593070
-
For valid generalization the size of the weights is more important than the size of the network
-
P. L. Bartlett. For valid generalization the size of the weights is more important than the size of the network. In NIPS, 1996.
-
(1996)
NIPS
-
-
Bartlett, P.L.1
-
4
-
-
0026953321
-
Enhanced training algorithms, and integrated training/architecture selection for multilayer perceptron networks
-
Nov
-
M. G. Bello. Enhanced training algorithms, and integrated training/architecture selection for multilayer perceptron networks. IEEE Transactions on Neural Networks, 3(6):864-875, Nov 1992.
-
(1992)
IEEE Transactions on Neural Networks
, vol.3
, Issue.6
, pp. 864-875
-
-
Bello, M.G.1
-
5
-
-
84973890879
-
An exploration of parameter redundancy in deep networks with circulant projections
-
Yu Cheng, Felix X. Yu, Rogério Schmidt Feris, Sanjiv Kumar, Alok N. Choudhary, and Shih-Fu Chang. An exploration of parameter redundancy in deep networks with circulant projections. In ICCV, 2015.
-
(2015)
ICCV
-
-
Cheng, Y.1
Yu, F.X.2
Feris, R.S.3
Kumar, S.4
Choudhary, A.N.5
Chang, S.-F.6
-
6
-
-
84986246906
-
Memory bounded deep convolutional networks
-
M. D. Collins and P. Kohli. Memory Bounded Deep Convolutional Networks. CoRR, abs/1412.1442, 2014.
-
(2014)
CoRR
-
-
Collins, M.D.1
Kohli, P.2
-
8
-
-
84898971588
-
Predicting parameters in deep learning
-
M. Denil, B. Shakibi, L. Dinh, M.A. Ranzato, and N. de Freitas. Predicting parameters in deep learning. CoRR, abs/1306.0543, 2013.
-
(2013)
CoRR
-
-
Denil, M.1
Shakibi, B.2
Dinh, L.3
Ranzato, M.A.4
De Freitas, N.5
-
9
-
-
84937896655
-
Exploiting linear structure within convolutional networks for efficient evaluation
-
E. L Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting linear structure within convolutional networks for efficient evaluation. In NIPS. 2014.
-
(2014)
NIPS
-
-
Denton, E.L.1
Zaremba, W.2
Bruna, J.3
LeCun, Y.4
Fergus, R.5
-
10
-
-
84940682866
-
Compressing deep convolutional networks using vector quantization
-
Y. Gong, L. Liu, M. Yang, and L. D. Bourdev. Compressing deep convolutional networks using vector quantization. In CoRR, volume abs/1412.6115, 2014.
-
(2014)
CoRR, Volume Abs/1412.6115
-
-
Gong, Y.1
Liu, L.2
Yang, M.3
Bourdev, L.D.4
-
11
-
-
84897543523
-
Maxout networks
-
I. J. Goodfellow, D. Warde-farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks. In ICML, 2013.
-
(2013)
ICML
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
12
-
-
84943270068
-
Optimal brain surgeon and general network pruning
-
B. Hassibi, D. G. Stork, and G. J. Wolff. Optimal brain surgeon and general network pruning. In ICNN, 1993.
-
(1993)
ICNN
-
-
Hassibi, B.1
Stork, D.G.2
Wolff, G.J.3
-
13
-
-
85013813121
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In CoRR, volume abs/1512.03385, 2015.
-
(2015)
CoRR, Volume Abs/1512.03385
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
16
-
-
85062833929
-
Speeding up convolutional neural networks with low rank expansions
-
M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convolutional neural networks with low rank expansions. In BMVC, 2014b.
-
(2014)
BMVC
-
-
Jaderberg, M.1
Vedaldi, A.2
Zisserman, A.3
-
17
-
-
0000974760
-
Generalizing smoothness constraints from discrete samples
-
June
-
C. Ji, R. R. Snapp, and D. Psaltis. Generalizing smoothness constraints from discrete samples. Neural Computation, 2(2):188-197, June 1990. ISSN 0899-7667.
-
(1990)
Neural Computation
, vol.2
, Issue.2
, pp. 188-197
-
-
Ji, C.1
Snapp, R.R.2
Psaltis, D.3
-
18
-
-
0000029122
-
A simple weight decay can improve generalization
-
A. Krogh and J. A. Hertz. A simple weight decay can improve generalization. In NIPS, 1992.
-
(1992)
NIPS
-
-
Krogh, A.1
Hertz, J.A.2
-
20
-
-
84959241183
-
Sparse convolutional neural networks
-
B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Penksy. Sparse convolutional neural networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Liu, B.1
Wang, M.2
Foroosh, H.3
Tappen, M.4
Penksy, M.5
-
21
-
-
84930634427
-
On the number of linear regions of deep neural networks
-
G. F Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the number of linear regions of deep neural networks. In NIPS. 2014.
-
(2014)
NIPS
-
-
Montufar, G.F.1
Pascanu, R.2
Cho, K.3
Bengio, Y.4
-
22
-
-
0000900876
-
Skeletonization: A technique for trimming the fat from a network via relevance assessment
-
M. Mozer and P. Smolensky. Skeletonization: A technique for trimming the fat from a network via relevance assessment. In NIPS, 1988.
-
(1988)
NIPS
-
-
Mozer, M.1
Smolensky, P.2
-
23
-
-
85018936270
-
Auto-sizing neural networks: With applications to n-gram language models
-
K. Murray and D. Chiang. Auto-sizing neural networks: With applications to n-gram language models. CoRR, abs/1508.05051, 2015.
-
(2015)
CoRR
-
-
Murray, K.1
Chiang, D.2
-
24
-
-
84884129062
-
Proximal algorithms
-
January
-
N. Parikh and S. Boyd. Proximal algorithms. Found. Trends Optim., 1(3):127-239, January 2014.
-
(2014)
Found. Trends Optim.
, vol.1
, Issue.3
, pp. 127-239
-
-
Parikh, N.1
Boyd, S.2
-
25
-
-
0027662338
-
Pruning algorithms - A survey
-
Sep
-
R. Reed. Pruning algorithms - a survey. IEEE Transactions on Neural Networks, 4(5):740-747, Sep 1993.
-
(1993)
IEEE Transactions on Neural Networks
, vol.4
, Issue.5
, pp. 740-747
-
-
Reed, R.1
-
26
-
-
85083953559
-
Fitnets: Hints for thin deep nets
-
A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio. Fitnets: Hints for thin deep nets. In ICLR, 2015.
-
(2015)
ICLR
-
-
Romero, A.1
Ballas, N.2
Kahou, S.E.3
Chassang, A.4
Gatta, C.5
Bengio, Y.6
-
27
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015.
-
(2015)
IJCV
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
28
-
-
84920691110
-
Learning block group sparse representation combined with convolutional neural networks for rgb-d object recognition
-
J. Wang X. Huang, X. Zhang S. Tu, Y. Xue. Learning block group sparse representation combined with convolutional neural networks for rgb-d object recognition. Journal of Fiber Bioengineering and Informatics, 7(4):603, 2014.
-
(2014)
Journal of Fiber Bioengineering and Informatics
, vol.7
, Issue.4
, pp. 603
-
-
Wang, J.1
Huang, X.2
Zhang, X.3
Tu, S.4
Xue, Y.5
-
30
-
-
84933585162
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.
-
(2014)
CoRR
-
-
Simonyan, K.1
Zisserman, A.2
-
33
-
-
0000539096
-
Generalization by weight-elimination with application to forecasting
-
A. S. Weigend, D. Rumelhart, and B. A. Huberman. Generalization by weight-elimination with application to forecasting. In NIPS, 1991.
-
(1991)
NIPS
-
-
Weigend, A.S.1
Rumelhart, D.2
Huberman, B.A.3
-
34
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B, 68(1):49-67, 2007.
-
(2007)
Journal of the Royal Statistical Society, Series B
, vol.68
, Issue.1
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
|