-
3
-
-
84959892771
-
A large annotated corpus for learning natural language inference
-
Lisbon, Portugal, September. Association for Computational Linguistics
-
Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 632-642, Lisbon, Portugal, September. Association for Computational Linguistics.
-
(2015)
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing
, pp. 632-642
-
-
Bowman, S.R.1
Angeli, G.2
Potts, C.3
Manning, C.D.4
-
5
-
-
85031007149
-
-
Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vymolova, Kaisheng Yao, Chris Dyer, and Gholamreza Haffari. 2016. Incorporating structural alignment biases into an attentional neural translation model. arXiv preprint arXiv: 1601.01085.
-
(2016)
Incorporating Structural Alignment Biases into an Attentional Neural Translation Model
-
-
Cohn, T.1
Vu Hoang, C.D.2
Vymolova, E.3
Yao, K.4
Dyer, C.5
Haffari, G.6
-
6
-
-
77958501043
-
Using the framework
-
Robin Cooper, Dick Crouch, Jan Van Eijck, Chris Fox, Johan Van Genabith, Jan Jaspars, Hans Kamp, David Milward, Manfred Pinkal, Massimo Poesio, et al. 1996. Using the framework. Technical report, Technical Report LRE 62-051 D-16, The FraCaS Consortium.
-
(1996)
Technical Report, Technical Report LRE 62-051 D-16, the FraCaS Consortium
-
-
Cooper, R.1
Crouch, D.2
Van Eijck, J.3
Fox, C.4
Van Genabith, J.5
Jaspars, J.6
Kamp, H.7
Milward, D.8
Pinkal, M.9
Poesio, M.10
-
7
-
-
33745838229
-
The pascal recognising textual entailment challenge
-
Springer
-
Ido Dagan, Oren Glickman, and Bernardo Magnini. 2006. The pascal recognising textual entailment challenge. In Machine learning challenges, evaluating predictive uncertainty, visual object classification, and recognising tectual entailment, pages 177-190. Springer.
-
(2006)
Machine Learning Challenges, Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment
, pp. 177-190
-
-
Dagan, I.1
Glickman, O.2
Magnini, B.3
-
8
-
-
84943805083
-
Structural representations for learning relations between pairs of texts
-
Beijing, China, July. Association for Computational Linguistics
-
Simone Filice, Giovanni Da San Martino, and Alessandro Moschitti. 2015. Structural representations for learning relations between pairs of texts. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics, Beijing, China, July. Association for Computational Linguistics.
-
(2015)
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
-
-
Filice, S.1
Da San Martino, G.2
Moschitti, A.3
-
15
-
-
84926358845
-
Recursive deep models for semantic compositionality over a sentiment treebank
-
Citeseer
-
Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the conference on empirical methods in natural language processing (EMNLP), Volume 1631, page 1642. Citeseer.
-
(2013)
Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP)
, vol.1631
, pp. 1642
-
-
Socher, R.1
Perelygin, A.2
Wu, J.Y.3
Chuang, J.4
Manning, C.D.5
Ng, A.Y.6
Potts, C.7
-
16
-
-
84943797465
-
Improved semantic representations from tree-structured long short-term memory networks
-
Beijing, China, July. Association for Computational Linguistics
-
Kai Sheng Tai, Richard Socher, and Christopher D. Manning. 2015. Improved semantic representations from tree-structured long short-term memory networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1556-1566, Beijing, China, July. Association for Computational Linguistics.
-
(2015)
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
, pp. 1556-1566
-
-
Tai, K.S.1
Socher, R.2
Manning, C.D.3
-
17
-
-
84906924892
-
Logical inference on dependency-based compositional semantics
-
Ran Tian, Yusuke Miyao, and Takuya Matsuzaki. 2014. Logical inference on dependency-based compositional semantics. In Proceedings of ACL, pages 79-89.
-
(2014)
Proceedings of ACL
, pp. 79-89
-
-
Tian, R.1
Miyao, Y.2
Matsuzaki, T.3
-
19
-
-
80053434997
-
Probabilistic tree-edit models with structured latent variables for textual entailment and question answering
-
Association for Computational Linguistics
-
Mengqiu Wang and Christopher D Manning. 2010. Probabilistic tree-edit models with structured latent variables for textual entailment and question answering. In Proceedings of the 23rd International Conference on Computational Linguistics, pages 1164-1172. Association for Computational Linguistics.
-
(2010)
Proceedings of the 23rd International Conference on Computational Linguistics
, pp. 1164-1172
-
-
Wang, M.1
Manning, C.D.2
-
20
-
-
84876790884
-
A latent discriminative model for compositional entailment relation recognition using natural logic
-
Yotaro Watanabe, Junta Mizuno, Eric Nichols, Naoaki Okazaki, and Kentaro Inui. 2012. A latent discriminative model for compositional entailment relation recognition using natural logic. In COLING, pages 2805-2820.
-
(2012)
COLING
, pp. 2805-2820
-
-
Watanabe, Y.1
Mizuno, J.2
Nichols, E.3
Okazaki, N.4
Inui, K.5
-
21
-
-
84939821074
-
-
Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, and Yoshua Bengio. 2015. Show, attend and tell: Neural image caption generation with visual attention. arXiv preprint arXiv: 1502.03044.
-
(2015)
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
-
-
Xu, K.1
Ba, J.2
Kiros, R.3
Courville, A.4
Salakhutdinov, R.5
Zemel, R.6
Bengio, Y.7
-
22
-
-
76449118321
-
A machine learning approach to textual entailment recognition
-
Fabio Massimo Zanzotto, Marco Pennacchiotti, and Alessandro Moschitti. 2009. A machine learning approach to textual entailment recognition. Natural Language Engineering, 15(04): 551-582.
-
(2009)
Natural Language Engineering
, vol.15
, Issue.4
, pp. 551-582
-
-
Zanzotto, F.M.1
Pennacchiotti, M.2
Moschitti, A.3
|