메뉴 건너뛰기




Volumn 15, Issue 8, 2018, Pages

Predicting infectious disease using deep learning and big data

Author keywords

Deep learning; Deep neural network; Infectious disease prediction; Long short term memory; Social media big data

Indexed keywords

ARTIFICIAL NEURAL NETWORK; DATA SET; DISEASE CONTROL; INFECTIOUS DISEASE; MODEL; PREDICTION; SOCIAL MEDIA;

EID: 85050977874     PISSN: 16617827     EISSN: 16604601     Source Type: Journal    
DOI: 10.3390/ijerph15081596     Document Type: Article
Times cited : (249)

References (48)
  • 1
    • 85050979916 scopus 로고    scopus 로고
    • Infectious disease, safety, state: History of infectious disease prevention and MERS situation
    • ISSN 1226-4199
    • Jae, C.M. Infectious disease, safety, state: History of infectious disease prevention and MERS situation. Crit. Stud. Mod. Korean Hist. 2015, 34, 517-542, ISSN 1226-4199.
    • (2015) Crit. Stud. Mod. Korean Hist , vol.34 , pp. 517-542
    • Jae, C.M.1
  • 2
    • 70350765150 scopus 로고    scopus 로고
    • A profile of the online dissemination of national influenza surveillance data
    • Cheng, C.K.; Lau, E.H.; Ip, D.K.; Yeung, A.S.; Ho, L.M.; Cowling, B.J. A profile of the online dissemination of national influenza surveillance data. BMC Public Health 2009, 9, 339, doi:10.1186/1471-2458-9-339.
    • (2009) BMC Public Health , vol.9 , pp. 339
    • Cheng, C.K.1    Lau, E.H.2    Ip, D.K.3    Yeung, A.S.4    Ho, L.M.5    Cowling, B.J.6
  • 4
    • 33846670320 scopus 로고    scopus 로고
    • Modeling the Worldwide Spread of Pandemic Influenza: Baseline Case and Containment Interventions
    • Colizza, V.; Barrat, A.; Barthelemy, M.; Valleron, A.; Vespignani, A. Modeling the Worldwide Spread of Pandemic Influenza: Baseline Case and Containment Interventions. PLOS Med. 2007, 4, e13, doi:10.1371/journal.pmed.0040013.
    • (2007) PLOS Med , vol.4
    • Colizza, V.1    Barrat, A.2    Barthelemy, M.3    Valleron, A.4    Vespignani, A.5
  • 5
    • 70350687996 scopus 로고    scopus 로고
    • Seasonal transmission potential and activity peaks of the new influenza A(H1N1): A Monte Carlo likelihood analysis based on human mobility
    • Balcan, D.; Hu, H.; Goncalves, B.; Bajardi, P.; Poletto, C.; Ramasco, J.J.; Paolotti, D.; Perra, N.; Tizzoni, M.; van den Broeck, W. et al. Seasonal transmission potential and activity peaks of the new influenza A(H1N1): A Monte Carlo likelihood analysis based on human mobility. BMC Med. 2009, 1, 45, doi:10.1186/1741-7015-7-45.
    • (2009) BMC Med , vol.1 , pp. 45
    • Balcan, D.1    Hu, H.2    Goncalves, B.3    Bajardi, P.4    Poletto, C.5    Ramasco, J.J.6    Paolotti, D.7    Perra, N.8    Tizzoni, M.9    van den Broeck, W.10
  • 8
    • 55849087943 scopus 로고    scopus 로고
    • Controlling Pandemic Flu: The Value of International Air Travel Restrictions
    • Epstein, J.M.; Goedecke, D.M.; Yu, F.; Morris, R.J.; Wagener, D.K.; Bobashev, G.V. Controlling Pandemic Flu: The Value of International Air Travel Restrictions. PLoS ONE 2007, 2, e401, doi:10.1371/journal.pone.0000401.
    • (2007) Plos ONE , vol.2
    • Epstein, J.M.1    Goedecke, D.M.2    Yu, F.3    Morris, R.J.4    Wagener, D.K.5    Bobashev, G.V.6
  • 10
    • 85028841413 scopus 로고    scopus 로고
    • Monitoring Pertussis Infections Using Internet Search Queries
    • Zhang, Y.; Milinovich, G.; Xu, Z.; Bambrick, H.; Mengersen, K.; Tong, S.; Hu, W. Monitoring Pertussis Infections Using Internet Search Queries. Sci. Rep. 2017, 7, 10437, doi:10.1038/s41598-017-11195-z.
    • (2017) Sci. Rep , vol.7 , pp. 10437
    • Zhang, Y.1    Milinovich, G.2    Xu, Z.3    Bambrick, H.4    Mengersen, K.5    Tong, S.6    Hu, W.7
  • 11
    • 85006802603 scopus 로고    scopus 로고
    • Disease surveillance based on Internet-based linear models: An Australian case study of previously unmodeled infection diseases
    • Rohart, F.; Milinovich, G.J.; Avril, S.M.R.; Lê Cao, K.; Tong, S.; Hu, W. Disease surveillance based on Internet-based linear models: An Australian case study of previously unmodeled infection diseases. Sci. Rep. 2016, 6, 38522, doi:10.1038/srep38522.
    • (2016) Sci. Rep , vol.6 , pp. 38522
    • Rohart, F.1    Milinovich, G.J.2    Avril, S.M.R.3    Lê Cao, K.4    Tong, S.5    Hu, W.6
  • 12
    • 84938513272 scopus 로고    scopus 로고
    • Advances in nowcasting influenza-like illness rates using search query logs
    • Lampos, V.; Miller, A.C.; Crossan, S.; Stefansen, C. Advances in nowcasting influenza-like illness rates using search query logs. Sci. Rep. 2015, 5, 12760, doi:10.1038/srep12760.
    • Sci. Rep , vol.5 , Issue.1
    • Lampos, V.1    Miller, A.C.2    Crossan, S.3    Stefansen, C.4
  • 13
    • 84891910497 scopus 로고    scopus 로고
    • Correlation between national influenza surveillance data and google trends in South Korea
    • Cho, S.; Sohn, C.H.; Jo, M.W.; Shin, S.Y.; Lee, J.H.; Ryoo, S.M.; Kim, W.Y.; Seo, D.W. Correlation between national influenza surveillance data and google trends in South Korea. PLoS ONE 2013, 8, e81422, doi:10.1371/journal.pone.0081422.
    • (2013) Plos ONE , vol.8
    • Cho, S.1    Sohn, C.H.2    Jo, M.W.3    Shin, S.Y.4    Lee, J.H.5    Ryoo, S.M.6    Kim, W.Y.7    Seo, D.W.8
  • 14
    • 85009227815 scopus 로고    scopus 로고
    • Dynamic Forecasting of Zika Epidemics Using Google Trends
    • Teng, Y.; Bi, D.; Xie, G.; Jin, Y.; Huang, Y.; Lin, B.; An, X.; Feng, D.; Tong, Y. Dynamic Forecasting of Zika Epidemics Using Google Trends. PLoS ONE 2017, 12, e0165085, doi:10.1371/journal.pone.0165085.
    • (2017) Plos ONE , vol.12
    • Teng, Y.1    Bi, D.2    Xie, G.3    Jin, Y.4    Huang, Y.5    Lin, B.6    An, X.7    Feng, D.8    Tong, Y.9
  • 17
    • 85028935985 scopus 로고    scopus 로고
    • Monitoring hand, foot and mouth disease by combining search engine query data and meteorological factors. Sci
    • Huang, D.C.; Wang, J.F. Monitoring hand, foot and mouth disease by combining search engine query data and meteorological factors. Sci. Total Environ. 2018, 612, 1293-1299, doi:10.1016/j.scitotenv.2017.09.017.
    • (2018) Total Environ , vol.612 , pp. 1293-1299
    • Huang, D.C.1    Wang, J.F.2
  • 18
    • 85038249972 scopus 로고    scopus 로고
    • Instagram, Flickr, or Twitter: Assessing the usability of social media data for visitor monitoring in protected areas
    • Tenkanen, H.; di Minin, E.; Heikinheimo, V.; Hausmann, A.; Herbst, M.; Kajala, L.; Toivonen, T. Instagram, Flickr, or Twitter: Assessing the usability of social media data for visitor monitoring in protected areas. Sci. Rep. 2017, 7, 17615, doi:10.1038/s41598-017-18007-4.
    • (2017) Sci. Rep , vol.7 , pp. 17615
    • Tenkanen, H.1    Di Minin, E.2    Heikinheimo, V.3    Hausmann, A.4    Herbst, M.5    Kajala, L.6    Toivonen, T.7
  • 19
    • 85031096795 scopus 로고    scopus 로고
    • Forecasting the onset and course of mental illness with Twitter data
    • Reece, A.G.; Reagan, A.J.; Lix, K.L.M.; Dodds, P.S.; Danforth, C.M.; Langer, E.J. Forecasting the onset and course of mental illness with Twitter data. Sci. Rep. 2017, 7, 13006, doi:10.1038/s41598-017-12961-9.
    • (2017) Sci. Rep. , vol.7 , pp. 13006
    • Reece, A.G.1    Reagan, A.J.2    Lix, K.L.M.3    Dodds, P.S.4    Danforth, C.M.5    Langer, E.J.6
  • 20
    • 84986328032 scopus 로고    scopus 로고
    • High correlation of Middle East respiratory syndrome spread with Google search and Twitter trends in Korea
    • Shin, S.; Seo, D.; An, J.; Kwak, H.; Kim, S.; Gwack, J.; Jo, M. High correlation of Middle East respiratory syndrome spread with Google search and Twitter trends in Korea. Sci. Rep. 2016, 6, 32920, doi:10.1038/srep32920.
    • (2016) Sci. Rep. , vol.6 , pp. 32920
    • Shin, S.1    Seo, D.2    An, J.3    Kwak, H.4    Kim, S.5    Gwack, J.6    Jo, M.7
  • 21
    • 84971378819 scopus 로고    scopus 로고
    • DEFENDER: Detecting and Forecasting Epidemics Using Novel Data-Analytics for Enhanced Response
    • Thapen, N.; Simmie, D.; Hankin, C.; Gillard, J. DEFENDER: Detecting and Forecasting Epidemics Using Novel Data-Analytics for Enhanced Response. PLoS ONE 2016, 11, e0155417, doi:10.1371/journal.pone.0155417.
    • (2016) Plos ONE , vol.11
    • Thapen, N.1    Simmie, D.2    Hankin, C.3    Gillard, J.4
  • 22
    • 84980028545 scopus 로고    scopus 로고
    • Applying GIS and Machine Learning Methods to Twitter Data for Multiscale Surveillance of Influenza
    • Allen, C.; Tsou, M.; Aslam, A.; Nagel, A.; Gawron, J. Applying GIS and Machine Learning Methods to Twitter Data for Multiscale Surveillance of Influenza. PLoS ONE 2016, 11, e0157734, doi:10.1371/journal.pone.0157734.
    • (2016) Plos ONE , vol.11
    • Allen, C.1    Tsou, M.2    Aslam, A.3    Nagel, A.4    Gawron, J.5
  • 23
    • 85038445064 scopus 로고    scopus 로고
    • Forecasting influenza-like illness dynamics for military populations using neural networks and social media
    • Volkova, S.; Ayton, E.; Porterfield, K.; Corley, C.D. Forecasting influenza-like illness dynamics for military populations using neural networks and social media. PLoS ONE 2017, 12, e0188941, doi:10.1371/journal.pone.0188941.
    • (2017) Plos ONE , vol.12
    • Volkova, S.1    Ayton, E.2    Porterfield, K.3    Corley, C.D.4
  • 24
    • 84929510222 scopus 로고    scopus 로고
    • Twitter in the Cross Fire—The Use of Social Media in the Westgate Mall Terror Attack in Kenya
    • Simon, T.; Goldberg, A.; Aharonson-Daniel, L.; Leykin, D.; Adini, B. Twitter in the Cross Fire—The Use of Social Media in the Westgate Mall Terror Attack in Kenya. PLoS ONE 2014, 9, e104136, doi:10.1371/journal.pone.0104136.
    • (2014) Plos ONE , vol.9
    • Simon, T.1    Goldberg, A.2    Aharonson-Daniel, L.3    Leykin, D.4    Adini, B.5
  • 25
    • 84983782444 scopus 로고    scopus 로고
    • Real-Time Diffusion of Information on Twitter and the Financial Markets
    • Tafti, A.; Zotti, R.; Jank, W. Real-Time Diffusion of Information on Twitter and the Financial Markets. PLoS ONE 2016, 11, e0159226, doi:10.1371/journal.pone.0159226.
    • (2016) Plos ONE , vol.11
    • Tafti, A.1    Zotti, R.2    Jank, W.3
  • 26
    • 84999635171 scopus 로고    scopus 로고
    • Bibliographic Analysis of Nature Based on Twitter and Facebook Altmetrics Data
    • Xia, F.; Su, X.; Wang, W.; Zhang, C.; Ning, Z.; Lee, I. Bibliographic Analysis of Nature Based on Twitter and Facebook Altmetrics Data. PLoS ONE 2016, 11, e0165997. doi:10.1371/journal.pone.0165997.
    • (2016) Plos ONE , vol.11
    • Xia, F.1    Su, X.2    Wang, W.3    Zhang, C.4    Ning, Z.5    Lee, I.6
  • 27
    • 85089606197 scopus 로고    scopus 로고
    • Dixon, W.G. Frequent discussion of insomnia and weight gain with glucocorticoid therapy: An analysis of Twitter posts
    • Patel, R.; Belousov, M.; Jani, M.; Dasgupta, N.; Winakor, C.; Nenadic, G.; Dixon, W.G. Frequent discussion of insomnia and weight gain with glucocorticoid therapy: An analysis of Twitter posts. Npj Digit. Med. 2018, 1, 7, doi:10.1038/s41746-017-0007-z.
    • (2018) Npj Digit. Med , vol.1 , pp. 7
    • Patel, R.1    Belousov, M.2    Jani, M.3    Dasgupta, N.4    Winakor, C.5    Nenadic, G.6
  • 28
    • 85018976848 scopus 로고    scopus 로고
    • Forecasting influenza in Hong Kong with Google search Queries and statistical model fusion
    • Xu, Q.; Gel, YR.; Ramirez Ramirez, LL.; Nezafati, K.; Zhang, Q.; Tsui, KL. Forecasting influenza in Hong Kong with Google search Queries and statistical model fusion. PLOS ONE 2017, 12, e0176690, doi:10.1371/journal.pone.0176690.
    • (2017) PLOS ONE , vol.12
    • Xu, Q.1    Gel, Y.R.2    Ramirez Ramirez, L.L.3    Nezafati, K.4    Zhang, Q.5    Tsui, K.L.6
  • 29
    • 85026879561 scopus 로고    scopus 로고
    • Construction and evaluation of two computational models for predicting the incidence of influenza in Nagasaki Prefecture, Japan
    • He, F.; Hu, Z.; Zhang, W.; Cai, L.; Cai, G.; Aoyagi, K. Construction and evaluation of two computational models for predicting the incidence of influenza in Nagasaki Prefecture, Japan. Sci. Rep. 2017, 7, 7192, doi:10.1038/s41598-017-07475-3.
    • (2017) Sci. Rep , vol.7 , pp. 7192
    • He, F.1    Hu, Z.2    Zhang, W.3    Cai, L.4    Cai, G.5    Aoyagi, K.6
  • 31
    • 85009238256 scopus 로고    scopus 로고
    • Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases
    • Janowczyk, A.; Madabhushi, A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. J. Pathol. Inform. 2016, 7, 29-29, doi:10.4103/2153-3539.186902.
    • (2016) J. Pathol. Inform , vol.7 , pp. 29
    • Janowczyk, A.1    Madabhushi, A.2
  • 32
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115, doi:10.1038/nature21056.
    • (2017) Nature , vol.542 , pp. 115
    • Esteva, A.1    Kuprel, B.2    Novoa, R.A.3    Ko, J.4    Swetter, S.M.5    Blau, H.M.6    Thrun, S.7
  • 34
    • 84923917544 scopus 로고    scopus 로고
    • Time Series Analyses of Hand, Foot and Mouth Disease Integrating Weather Variables
    • Song, Y.; Wang, F.; Wang, B.; Tao, S.; Zhang, H.; Liu, S.; Ramirez, O.; Zeng, Q. Time Series Analyses of Hand, Foot and Mouth Disease Integrating Weather Variables. PLoS ONE 2015, 10, e0117296, doi:10.1371/journal.pone.0117296.
    • (2015) Plos ONE , vol.10
    • Song, Y.1    Wang, F.2    Wang, B.3    Tao, S.4    Zhang, H.5    Liu, S.6    Ramirez, O.7    Zeng, Q.8
  • 35
    • 79951829309 scopus 로고    scopus 로고
    • Short Term Effects of Weather on Hand, Foot and Mouth Disease
    • Hii, Y.L.; Rocklöv, J.; Ng, N. Short Term Effects of Weather on Hand, Foot and Mouth Disease. PLoS ONE 2011, 6, e16796, doi:10.1371/journal.pone.0016796.
    • (2011) Plos ONE , vol.6
    • Hii, Y.L.1    Rocklöv, J.2    Ng, N.3
  • 36
    • 69449098463 scopus 로고    scopus 로고
    • Host, Weather and Virological Factors Drive Norovirus Epidemiology: Time-Series Analysis of Laboratory Surveillance Data in England and Wales
    • Lopman, Ben.; Armstrong, Ben.; Atchison, Christina.; Gray, Jim J. Host, Weather and Virological Factors Drive Norovirus Epidemiology: Time-Series Analysis of Laboratory Surveillance Data in England and Wales. PLoS ONE 2009, 4, e6671, doi:10.1371/journal.pone.0006671.
    • (2009) Plos ONE , vol.4
    • Lopman, B.E.1    Armstrong, B.E.2    Atchison, C.3    Gray, J.J.4
  • 37
    • 84892646717 scopus 로고    scopus 로고
    • Imported Dengue Cases, Weather Variation and Autochthonous Dengue Incidence in Cairns, Australia
    • Huang, X.; Williams, G.; Clements, A.C.A.; Hu, W. Imported Dengue Cases, Weather Variation and Autochthonous Dengue Incidence in Cairns, Australia. PLoS ONE 2013, 8, e81887, doi:10.1371/journal.pone.0081887.
    • (2013) Plos ONE , vol.8
    • Huang, X.1    Williams, G.2    Clements, A.C.A.3    Hu, W.4
  • 38
    • 84925841939 scopus 로고    scopus 로고
    • A large temperature fluctuation may trigger an epidemic erythromelalgia outbreak in China
    • Liu, T.; Zhang, Y.; Lin, H.; Lv, X.; Xiao, J.; Zeng, W.; Gu, Y.; Rutherford, S.; Tong, S.; Ma, W. A large temperature fluctuation may trigger an epidemic erythromelalgia outbreak in China. Sci. Rep. 2015, 5, 9525, doi:10.1038/srep09525.
    • (2015) Sci. Rep , vol.5 , pp. 9525
    • Liu, T.1    Zhang, Y.2    Lin, H.3    Lv, X.4    Xiao, J.5    Zeng, W.6    Gu, Y.7    Rutherford, S.8    Tong, S.9    Ma, W.10
  • 40
    • 0029621841 scopus 로고
    • The impact of variations in temperature on early Plasmodium falciparum development in Anopheles stephensi
    • Noden, B.H.; Kent, M.D.; Beier, J.C. The impact of variations in temperature on early Plasmodium falciparum development in Anopheles stephensi. Parasitology 1995, 111, 539-545, doi:10.1017/S0031182000077003.
    • (1995) Parasitology , vol.111 , pp. 539-545
    • Noden, B.H.1    Kent, M.D.2    Beier, J.C.3
  • 41
    • 85040782784 scopus 로고    scopus 로고
    • Mapping the epidemic changes and risks of hemorrhagic fever with renal syndrome in Shaanxi Province, China, 2005-2016
    • Liang, W.; Gu, X.; Li, X.; Zhang, K.; Wu, K.; Pang, M.; Dong, J.; Merrill, H.R.; Hu, T.; Liu, K. et al. Mapping the epidemic changes and risks of hemorrhagic fever with renal syndrome in Shaanxi Province, China, 2005-2016. Sci. Rep. 2018, 8, 749, doi:10.1038/s41598-017-18819-4.
    • (2018) Sci. Rep , vol.8 , pp. 749
    • Liang, W.1    Gu, X.2    Li, X.3    Zhang, K.4    Wu, K.5    Pang, M.6    Dong, J.7    Merrill, H.R.8    Hu, T.9    Liu, K.10
  • 42
    • 84908221435 scopus 로고    scopus 로고
    • A threshold analysis of dengue transmission in terms of weather variables and imported dengue cases in Australia. Emerg
    • Huang, X.; Clements, A.C.A.; Williams, G.; Milinovich, G.; Hu, W. A threshold analysis of dengue transmission in terms of weather variables and imported dengue cases in Australia. Emerg. Microbes Amp Infect. 2013, 2, e87, doi:10.1038/emi.2013.85.
    • (2013) Microbes Amp Infect , vol.2
    • Huang, X.1    Clements, A.C.A.2    Williams, G.3    Milinovich, G.4    Hu, W.5
  • 43
    • 85050990812 scopus 로고    scopus 로고
    • Monitoring Seasonal Influenza Epidemics in Korea through Query Search
    • Kwon, C.; Hwang, S.; Jung, J. Monitoring Seasonal Influenza Epidemics in Korea through Query Search. J. Korea Soc. Simul. 2014, 23, 31-39, doi:10.9709/jkss.2014.23.4.031.
    • (2014) J. Korea Soc. Simul , vol.23 , pp. 31-39
    • Kwon, C.1    Hwang, S.2    Jung, J.3
  • 44
    • 84924353440 scopus 로고    scopus 로고
    • Forecast Model Analysis for the Morbidity of Tuberculosis in Xinjiang, China
    • Zheng, Y.L.; Zhang, L.P.; Zhang, X.L.; Wank, K.; Zheng, Y.J. Forecast Model Analysis for the Morbidity of Tuberculosis in Xinjiang, China. PLoS ONE 2015, 10, e0116832, doi:10.1371/journal.pone.0116832.
    • (2015) Plos ONE , vol.10
    • Zheng, Y.L.1    Zhang, L.P.2    Zhang, X.L.3    Wank, K.4    Zheng, Y.J.5
  • 45
    • 79958049741 scopus 로고    scopus 로고
    • Time series analysis of dengue incidence in Guadeloupe, French West Indies: Forecasting models using climate variables as predictors
    • Myriam, G.; Philippe, Q.; Joel, G.; Sylvie, C.; Guy, L.; Laurent, G.; Laurence, M. Time series analysis of dengue incidence in Guadeloupe, French West Indies: Forecasting models using climate variables as predictors. BMC Infect. Dis. 2011, 11, 166, doi:10.1186/1471-2334-11-166.
    • (2011) BMC Infect. Dis. , vol.11 , pp. 166
    • Myriam, G.1    Philippe, Q.2    Joel, G.3    Sylvie, C.4    Guy, L.5    Laurent, G.6    Laurence, M.7
  • 46
    • 84864871592 scopus 로고    scopus 로고
    • Application of an autoregressive integrated moving average model for predicting the incidence of hemorrhagic fever with renal syndrome
    • Li, Q.; Guo, N.N.; Han, Z.Y.; Zhang, Y.B.; Qi, S.X.; Xu, Y.G.; Wei, Y.M.; Han, X.; Liu, Y.Y. Application of an autoregressive integrated moving average model for predicting the incidence of hemorrhagic fever with renal syndrome. Am. J. Trop. Med. Hyg. 2012, 87, 364-370, doi:10.4269/ajtmh.2012.11-0472.
    • (2012) Am. J. Trop. Med. Hyg , vol.87 , pp. 364-370
    • Li, Q.1    Guo, N.N.2    Han, Z.Y.3    Zhang, Y.B.4    Qi, S.X.5    Xu, Y.G.6    Wei, Y.M.7    Han, X.8    Liu, Y.Y.9
  • 47
    • 85024502828 scopus 로고    scopus 로고
    • A deep learning framework for financial time series using stacked autoencoders and long-short term memory
    • Bao, W.; Yue, J.; Rao, Y. A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PLoS ONE 2017, 12, e0180944, doi:10.1371/journal.pone.0180944.
    • (2017) Plos ONE , vol.12
    • Bao, W.1    Yue, J.2    Rao, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.