-
3
-
-
84900456806
-
Mathematical models of fads explain the temporal dynamics of internet memes
-
C. Bauckhage, K. Kersting, and F. Hadiji. Mathematical models of fads explain the temporal dynamics of internet memes. In Proc. of ICWSM, 2013.
-
(2013)
Proc. of ICWSM
-
-
Bauckhage, C.1
Kersting, K.2
Hadiji, F.3
-
5
-
-
27744568768
-
A theory of fads, fashion, custom, and cultural change as informational cascades
-
S. Bikhchandani, D. Hirshleifer, and I. Welch. A theory of fads, fashion, custom, and cultural change as informational cascades. Journal of political Economy, 1992.
-
(1992)
Journal of Political Economy
-
-
Bikhchandani, S.1
Hirshleifer, D.2
Welch, I.3
-
8
-
-
84964355216
-
Representation learning for information diffusion through social networks: An embedded cascade model
-
S. Bourigault, S. Lamprier, and P. Gallinari. Representation learning for information diffusion through social networks: an embedded cascade model. In Proc. of WSDM, 2016.
-
(2016)
Proc. of WSDM
-
-
Bourigault, S.1
Lamprier, S.2
Gallinari, P.3
-
10
-
-
84904766990
-
Can cascades be predicted?
-
J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and J. Leskovec. Can cascades be predicted? In Proc. of WWW, 2014.
-
(2014)
Proc. of WWW
-
-
Cheng, J.1
Adamic, L.2
Dow, P.A.3
Kleinberg, J.M.4
Leskovec, J.5
-
11
-
-
84961329426
-
Cascading outbreak prediction in networks: A data-driven approach
-
P. Cui, S. Jin, L. Yu, F. Wang, W. Zhu, and S. Yang. Cascading outbreak prediction in networks: a data-driven approach. In Proc. of SIGKDD, 2013.
-
(2013)
Proc. of SIGKDD
-
-
Cui, P.1
Jin, S.2
Yu, L.3
Wang, F.4
Zhu, W.5
Yang, S.6
-
14
-
-
74049087026
-
Community detection in graphs
-
S. Fortunato. Community detection in graphs. Physics reports, 2010.
-
(2010)
Physics Reports
-
-
Fortunato, S.1
-
16
-
-
84984991274
-
Node2vec: Scalable feature learning for networks
-
A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In Proc. of SIGKDD, 2016.
-
(2016)
Proc. of SIGKDD
-
-
Grover, A.1
Leskovec, J.2
-
17
-
-
84861068492
-
A predictive model for the temporal dynamics of information diffusion in online social networks
-
A. Guille and H. Hacid. A predictive model for the temporal dynamics of information diffusion in online social networks. In Proc. of WWW, 2012.
-
(2012)
Proc. of WWW
-
-
Guille, A.1
Hacid, H.2
-
21
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Proc. of NIPS, 2012.
-
(2012)
Proc. of NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
22
-
-
84900421860
-
Prediction of retweet cascade size over time
-
A. Kupavskii, L. Ostroumova, A. Umnov, S. Usachev, P. Serdyukov, G. Gusev, and A. Kustarev. Prediction of retweet cascade size over time. In Proc. of CIKM, 2012.
-
(2012)
Proc. of CIKM
-
-
Kupavskii, A.1
Ostroumova, L.2
Umnov, A.3
Usachev, S.4
Serdyukov, P.5
Gusev, G.6
Kustarev, A.7
-
23
-
-
84890653327
-
Information contagion: An empirical study of the spread of news on digg and twitter social networks
-
K. Lerman and R. Ghosh. Information contagion: An empirical study of the spread of news on digg and twitter social networks. ICWSM, 10:90–97, 2010.
-
(2010)
ICWSM
, vol.10
, pp. 90-97
-
-
Lerman, K.1
Ghosh, R.2
-
26
-
-
85031030287
-
-
arXiv preprint
-
A. Narayanan, M. Chandramohan, L. Chen, Y. Liu, and S. Saminathan. subgraph2vec: Learning distributed representations of rooted sub-graphs from large graphs. arXiv preprint arXiv:1606.08928, 2016.
-
(2016)
Subgraph2vec: Learning Distributed Representations of Rooted Sub-Graphs from Large Graphs
-
-
Narayanan, A.1
Chandramohan, M.2
Chen, L.3
Liu, Y.4
Saminathan, S.5
-
27
-
-
85031030287
-
Subgraph2vec: Learning distributed representations of rooted sub-graphs from large graphs
-
A. Narayanan, M. Chandramohan, L. Chen, Y. Liu, and S. Saminathan. subgraph2vec: Learning distributed representations of rooted sub-graphs from large graphs. In Workshop on Mining and Learning with Graphs, 2016.
-
(2016)
Workshop on Mining and Learning with Graphs
-
-
Narayanan, A.1
Chandramohan, M.2
Chen, L.3
Liu, Y.4
Saminathan, S.5
-
30
-
-
79955135282
-
Truthy: Mapping the spread of astroturf in microblog streams
-
J. Ratkiewicz, M. Conover, M. Meiss, B. Gon alves, S. Patil, A. Flammini, and F. Menczer. Truthy: mapping the spread of astroturf in microblog streams. In Proc. of WWW, 2011.
-
(2011)
Proc. of WWW
-
-
Ratkiewicz, J.1
Conover, M.2
Meiss, M.3
Gon alves, B.4
Patil, S.5
Flammini, A.6
Menczer, F.7
-
32
-
-
80555129683
-
Weisfeiler-lehman graph kernels
-
N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and K. M. Borgwardt. Weisfeiler-lehman graph kernels. JMLR, 2011.
-
(2011)
JMLR
-
-
Shervashidze, N.1
Schweitzer, P.2
Van Leeuwen, E.J.3
Mehlhorn, K.4
Borgwardt, K.M.5
-
34
-
-
84968754224
-
Line: Large-scale information network embedding
-
J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-scale information network embedding. In Proc. of WWW, 2015.
-
(2015)
Proc. of WWW
-
-
Tang, J.1
Qu, M.2
Wang, M.3
Zhang, M.4
Yan, J.5
Mei, Q.6
-
35
-
-
84858057957
-
What’s in a hashtag?: Content based prediction of the spread of ideas in microblogging communities
-
O. Tsur and A. Rappoport. What’s in a hashtag?: content based prediction of the spread of ideas in microblogging communities. In Proc. of WSDM, 2012.
-
(2012)
Proc. of WSDM
-
-
Tsur, O.1
Rappoport, A.2
-
37
-
-
84893055340
-
Whom to mention: Expand the diffusion of tweets by @ recommendation on micro-blogging systems
-
B. Wang, C. Wang, J. Bu, C. Chen, W. V. Zhang, D. Cai, and X. He. Whom to mention: expand the diffusion of tweets by @ recommendation on micro-blogging systems. In 22nd International World Wide Web Conference, pages 1331–1340, 2013.
-
(2013)
22nd International World Wide Web Conference
, pp. 1331-1340
-
-
Wang, B.1
Wang, C.2
Bu, J.3
Chen, C.4
Zhang, W.V.5
Cai, D.6
He, X.7
-
38
-
-
84977727359
-
Sequential sales, learning, and cascades
-
I. Welch. Sequential sales, learning, and cascades. The Journal of finance, 1992.
-
(1992)
The Journal of Finance
-
-
Welch, I.1
-
41
-
-
84965152252
-
A structural smoothing framework for robust graph comparison
-
P. Yanardag and S. Vishwanathan. A structural smoothing framework for robust graph comparison. In Proc. of NIPS, 2015.
-
(2015)
Proc. of NIPS
-
-
Yanardag, P.1
Vishwanathan, S.2
-
42
-
-
85006166963
-
Rain: Social role-aware information diffusion
-
Y. Yang, J. Tang, C. W.-k. Leung, Y. Sun, Q. Chen, J. Li, and Q. Yang. Rain: Social role-aware information diffusion. In Proc. of AAAI, 2015.
-
(2015)
Proc. of AAAI
-
-
Yang, Y.1
Tang, J.2
Leung, C.W.3
Sun, Y.4
Chen, Q.5
Li, J.6
Yang, Q.7
-
43
-
-
85006696638
-
From micro to macro: Uncovering and predicting information cascading process with behavioral dynamics
-
L. Yu, P. Cui, F. Wang, C. Song, and S. Yang. From micro to macro: Uncovering and predicting information cascading process with behavioral dynamics. In Proc. of ICDM, 2015.
-
(2015)
Proc. of ICDM
-
-
Yu, L.1
Cui, P.2
Wang, F.3
Song, C.4
Yang, S.5
-
44
-
-
84954186917
-
Seismic: A self-exciting point process model for predicting tweet popularity
-
Q. Zhao, M. A. Erdogdu, H. Y. He, A. Rajaraman, and J. Leskovec. Seismic: A self-exciting point process model for predicting tweet popularity. In Proc. of SIGKDD, 2015.
-
(2015)
Proc. of SIGKDD
-
-
Zhao, Q.1
Erdogdu, M.A.2
He, H.Y.3
Rajaraman, A.4
Leskovec, J.5
|