메뉴 건너뛰기




Volumn , Issue , 2016, Pages 573-582

Representation learning for information diffusion through social networks: An embedded cascade model

Author keywords

Information diffusion; Machine learning; Representation Learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA MINING; INFORMATION RETRIEVAL; LEARNING SYSTEMS; STREAM FLOW; WEBSITES; WORLD WIDE WEB;

EID: 84964355216     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2835776.2835817     Document Type: Conference Paper
Times cited : (171)

References (40)
  • 1
    • 65449152304 scopus 로고    scopus 로고
    • Inuence and correlation in social networks
    • ACM
    • A. Anagnostopoulos, R. Kumar, and M. Mahdian. Inuence and correlation in social networks. In KDD'08, pages 7-15. ACM, 2008.
    • (2008) KDD'08 , pp. 7-15
    • Anagnostopoulos, A.1    Kumar, R.2    Mahdian, M.3
  • 2
    • 84860866639 scopus 로고    scopus 로고
    • The role of social networks in information diffusion
    • ACM
    • E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic. The role of social networks in information diffusion. In WWW'12, pages 519-528. ACM, 2012.
    • (2012) WWW'12 , pp. 519-528
    • Bakshy, E.1    Rosenn, I.2    Marlow, C.3    Adamic, L.4
  • 3
    • 84874240852 scopus 로고    scopus 로고
    • Cascade-based community detection
    • New York, NY, USA, ACM
    • N. Barbieri, F. Bonchi, and G. Manco. Cascade-based community detection. In WSDM '13, pages 33-42, New York, NY, USA, 2013. ACM.
    • (2013) WSDM ' 13 , pp. 33-42
    • Barbieri, N.1    Bonchi, F.2    Manco, G.3
  • 6
    • 84906860898 scopus 로고    scopus 로고
    • Learning social network embeddings for predicting information diffusion
    • New York, NY, USA, ACM
    • S. Bourigault, C. Lagnier, S. Lamprier, L. Denoyer, and P. Gallinari. Learning social network embeddings for predicting information diffusion. In WSDM '14, pages 393-402, New York, NY, USA, 2014. ACM.
    • (2014) WSDM ' 14 , pp. 393-402
    • Bourigault, S.1    Lagnier, C.2    Lamprier, S.3    Denoyer, L.4    Gallinari, P.5
  • 9
    • 84866017612 scopus 로고    scopus 로고
    • Playlist prediction via metric embedding
    • ACM
    • S. Chen, J. L. Moore, D. Turnbull, and T. Joachims. Playlist prediction via metric embedding. In KDD'12, pages 714-722. ACM, 2012.
    • (2012) KDD'12 , pp. 714-722
    • Chen, S.1    Moore, J.L.2    Turnbull, D.3    Joachims, T.4
  • 12
    • 84877742268 scopus 로고    scopus 로고
    • Learning networks of heterogeneous influence
    • Curran Associates, Inc.
    • N. Du, L. Song, M. Yuan, and A. J. Smola. Learning networks of heterogeneous influence. In NIPS'12, pages 2780-2788. Curran Associates, Inc., 2012.
    • (2012) NIPS'12 , pp. 2780-2788
    • Du, N.1    Song, L.2    Yuan, M.3    Smola, A.J.4
  • 13
    • 0010087219 scopus 로고    scopus 로고
    • Talk of the network: A complex systems look at the underlying process of word -of-mouth
    • J. Goldenberg, B. Libai, and E. Muller. Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing letters, 12(3):211-223, 2001.
    • (2001) Marketing Letters , vol.12 , Issue.3 , pp. 211-223
    • Goldenberg, J.1    Libai, B.2    Muller, E.3
  • 14
    • 80053444447 scopus 로고    scopus 로고
    • Uncovering the temporal dynamics of diffusion networks
    • ACM
    • M. Gomez-Rodriguez, D. Balduzzi, and B. Schölkopf. Uncovering the temporal dynamics of diffusion networks. In ICML-11, pages 561-568. ACM, 2011.
    • (2011) ICML-11 , pp. 561-568
    • Gomez-Rodriguez, M.1    Balduzzi, D.2    Schölkopf, B.3
  • 15
    • 77956221415 scopus 로고    scopus 로고
    • Inferring networks of diffusion and influence
    • New York, NY, USA, ACM
    • M. Gomez Rodriguez, J. Leskovec, and A. Krause. Inferring networks of diffusion and influence. In KDD '10, New York, NY, USA, 2010. ACM.
    • (2010) KDD ' 10
    • Gomez Rodriguez, M.1    Leskovec, J.2    Krause, A.3
  • 16
    • 0000934061 scopus 로고
    • Threshold models of collective behavior
    • M. Granovetter. Threshold Models of Collective Behavior. American Journal of Sociology, 83(6):1420-1143, 1978.
    • (1978) American Journal of Sociology , vol.83 , Issue.6 , pp. 1420-1443
    • Granovetter, M.1
  • 17
    • 84890543083 scopus 로고    scopus 로고
    • Speech recognition with deep recurrent neural networks
    • A. Graves, A. Mohamed, and G. E. Hinton. Speech recognition with deep recurrent neural networks. In ICASSP'13, pages 6645-6649, 2013.
    • (2013) ICASSP'13 , pp. 6645-6649
    • Graves, A.1    Mohamed, A.2    Hinton, G.E.3
  • 18
    • 19944399438 scopus 로고    scopus 로고
    • Information diffusion through blogspace
    • New York, NY, USA, ACM
    • D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins. Information diffusion through blogspace. In WWW '04, pages 491-501, New York, NY, USA, 2004. ACM.
    • (2004) WWW '04 , pp. 491-501
    • Gruhl, D.1    Guha, R.2    Liben-Nowell, D.3    Tomkins, A.4
  • 19
    • 84861068492 scopus 로고    scopus 로고
    • A predictive model for the temporal dynamics of information diffusion in online social networks
    • A. Guille and H. Hacid. A predictive model for the temporal dynamics of information diffusion in online social networks. In WWW '12 Companion. ACM, 2012.
    • (2012) WWW '12 Companion ACM
    • Guille, A.1    Hacid, H.2
  • 20
    • 84887422995 scopus 로고    scopus 로고
    • Information diffusion in online social networks: A survey
    • 17-28, July
    • A. Guille, H. Hacid, C. Favre, and D. A. Zighed. Information diffusion in online social networks: A survey. SIGMOD Rec., 42(2):17-28, July 2013.
    • (2013) SIGMOD Rec. , vol.42 , pp. 2
    • Guille, A.1    Hacid, H.2    Favre, C.3    Zighed, D.A.4
  • 21
    • 33747172362 scopus 로고    scopus 로고
    • Maximizing the spread of influence through a social network
    • ACM
    • D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In KDD '03, pages 137-146. ACM, 2003.
    • (2003) KDD '03 , pp. 137-146
    • Kempe, D.1    Kleinberg, J.2    Tardos, E.3
  • 22
    • 84962508007 scopus 로고    scopus 로고
    • Predicting information diffusion in social networks using content and user's profiles
    • C. Lagnier, L. Denoyer, E. Gaussier, and P. Gallinari. Predicting information diffusion in social networks using content and user's profiles. In ECIR '13, 2013.
    • (2013) ECIR '13
    • Lagnier, C.1    Denoyer, L.2    Gaussier, E.3    Gallinari, P.4
  • 23
    • 84962546719 scopus 로고    scopus 로고
    • Extracting diffusion channels from real-world social data: A delay-agnostic learning of transmission probabilities
    • IEEE Computer Society
    • S. Lamprier, S. Bourigault, and P. Gallinari. Extracting diffusion channels from real-world social data: a delay-agnostic learning of transmission probabilities. In ASONAM'15, pages 178-185. IEEE Computer Society, 2015.
    • (2015) ASONAM'15 , pp. 178-185
    • Lamprier, S.1    Bourigault, S.2    Gallinari, P.3
  • 24
    • 71049177089 scopus 로고    scopus 로고
    • Meme-tracking and the dynamics of the news cycle
    • NY, USA, ACM
    • J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-tracking and the dynamics of the news cycle. In KDD '09, pages 497-506, NY, USA, 2009. ACM.
    • (2009) KDD '09 , pp. 497-506
    • Leskovec, J.1    Backstrom, L.2    Kleinberg, J.3
  • 26
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • Curran Associates, Inc.
    • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS'13, pages 3111-3119. Curran Associates, Inc., 2013.
    • (2013) NIPS'13 , pp. 3111-3119
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 27
    • 42149117427 scopus 로고    scopus 로고
    • Measurement and analysis of online social networks
    • New York, NY, USA, ACM
    • A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee. Measurement and analysis of online social networks. In IMC '07, pages 29-42, New York, NY, USA, 2007. ACM.
    • (2007) IMC '07 , pp. 29-42
    • Mislove, A.1    Marcon, M.2    Gummadi, K.P.3    Druschel, P.4    Bhattacharjee, B.5
  • 28
    • 84861015401 scopus 로고    scopus 로고
    • Predicting information diffusion on social networks with partial knowledge
    • New York, NY, USA, ACM
    • A. Najar, L. Denoyer, and P. Gallinari. Predicting information diffusion on social networks with partial knowledge. In WWW '12 Companion, pages 1197-1204, New York, NY, USA, 2012. ACM.
    • (2012) WWW '12 Companion , pp. 1197-1204
    • Najar, A.1    Denoyer, L.2    Gallinari, P.3
  • 29
    • 84864665720 scopus 로고    scopus 로고
    • Learning the graph of epidemic cascades
    • June
    • P. Netrapalli and S. Sanghavi. Learning the graph of epidemic cascades. SIGMETRICS Perform. Eval. Rev., 40(1):211-222, June 2012.
    • (2012) SIGMETRICS Perform. Eval. Rev. , vol.40 , Issue.1 , pp. 211-222
    • Netrapalli, P.1    Sanghavi, S.2
  • 30
    • 62549129576 scopus 로고    scopus 로고
    • Clustering in weighted networks
    • T. Opsahl and P. Panzarasa. Clustering in weighted networks. Social networks, 31(2):155-163, 2009.
    • (2009) Social Networks , vol.31 , Issue.2 , pp. 155-163
    • Opsahl, T.1    Panzarasa, P.2
  • 31
    • 84906853259 scopus 로고    scopus 로고
    • Spatial compactness meets topical consistency: Jointly modeling links and content for community detection
    • New York, NY, USA, ACM
    • M. Sachan, A. Dubey, S. Srivastava, E. P. Xing, and E. Hovy. Spatial compactness meets topical consistency: Jointly modeling links and content for community detection. In WSDM '14, pages 503-512, New York, NY, USA, 2014. ACM.
    • (2014) WSDM '14 , pp. 503-512
    • Sachan, M.1    Dubey, A.2    Srivastava, S.3    Xing, E.P.4    Hovy, E.5
  • 32
    • 70549111711 scopus 로고    scopus 로고
    • Learning continuous-time information diffusion model for social behavioral data analysis
    • Berlin, Heidelberg,. Springer-Verlag
    • K. Saito, M. Kimura, K. Ohara, and H. Motoda. Learning continuous-time information diffusion model for social behavioral data analysis. In ACML '09, pages 322-337, Berlin, Heidelberg, 2009. Springer-Verlag.
    • (2009) ACML '09 , pp. 322-337
    • Saito, K.1    Kimura, M.2    Ohara, K.3    Motoda, H.4
  • 34
    • 57749200669 scopus 로고    scopus 로고
    • Prediction of information diffusion probabilities for independent cascade model
    • Springer-Verlag
    • K. Saito, R. Nakano, and M. Kimura. Prediction of information diffusion probabilities for independent cascade model. In KES '08, pages 67-75. Springer-Verlag, 2008.
    • (2008) KES '08 , pp. 67-75
    • Saito, K.1    Nakano, R.2    Kimura, M.3
  • 35
    • 79960117862 scopus 로고    scopus 로고
    • Learning diffusion probability based on node attributes in social networks
    • M. Kryszkiewicz, H. Rybinski, A. Skowron, and Z. W. Ras, editors 6804 of LNCS, Springer
    • K. Saito, K. Ohara, Y. Yamagishi, M. Kimura, and H. Motoda. Learning diffusion probability based on node attributes in social networks. In M. Kryszkiewicz, H. Rybinski, A. Skowron, and Z. W. Ras, editors, ISMIS, volume 6804 of LNCS, pages 153-162. Springer, 2011.
    • (2011) ISMIS , pp. 153-162
    • Saito, K.1    Ohara, K.2    Yamagishi, Y.3    Kimura, M.4    Motoda, H.5
  • 36
    • 84964357492 scopus 로고    scopus 로고
    • Structured prediction of network response
    • JMLR Workshop and Conference Proceedings
    • H. Su, A. Gionis, and J. Rousu. Structured prediction of network response. In ICML'14, pages 442-450. JMLR Workshop and Conference Proceedings, 2014.
    • (2014) ICML'14 , pp. 442-450
    • Su, H.1    Gionis, A.2    Rousu, J.3
  • 37
    • 84874240615 scopus 로고    scopus 로고
    • Information-theoretic measures of influence based on content dynamics
    • New York, NY, USA, ACM
    • G. Ver Steeg and A. Galstyan. Information-theoretic measures of influence based on content dynamics. In WSDM'13, pages 3-12, New York, NY, USA, 2013. ACM.
    • (2013) WSDM'13 , pp. 3-12
    • Ver Steeg, G.1    Galstyan, A.2
  • 38
    • 84866840445 scopus 로고    scopus 로고
    • Feature-enhanced probabilistic models for diffusion network inference
    • Springer-Verlag
    • L. Wang, S. Ermon, and J. E. Hopcroft. Feature-enhanced probabilistic models for diffusion network inference. In ECML PKDD'12, pages 499-514. Springer-Verlag, 2012.
    • (2012) ECML PKDD'12 , pp. 499-514
    • Wang, L.1    Ermon, S.2    Hopcroft, J.E.3
  • 39
    • 79951755129 scopus 로고    scopus 로고
    • Modeling information diffusion in implicit networks
    • Washington, DC, USA, IEEE Computer Society
    • J. Yang and J. Leskovec. Modeling information diffusion in implicit networks. In ICDM'10, pages 599-608, Washington, DC, USA, 2010. IEEE Computer Society.
    • (2010) ICDM'10 , pp. 599-608
    • Yang, J.1    Leskovec, J.2
  • 40
    • 84906849382 scopus 로고    scopus 로고
    • Detecting cohesive and 2-mode communities indirected and undirected networks
    • New York, NY, USA, ACM
    • J. Yang, J. McAuley, and J. Leskovec. Detecting cohesive and 2-mode communities indirected and undirected networks. In WSDM '14, pages 323-332, New York, NY, USA, 2014. ACM.
    • (2014) WSDM '14 , pp. 323-332
    • Yang, J.1    McAuley, J.2    Leskovec, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.