메뉴 건너뛰기




Volumn 29, Issue 4, 2019, Pages 1640-1646

Medical students' attitude towards artificial intelligence: a multicentre survey

Author keywords

Artificial intelligence; Education, medical; Radiology; Surveys and questionnaires

Indexed keywords

ADULT; ARTICLE; ARTIFICIAL INTELLIGENCE; DEEP LEARNING; FEMALE; HUMAN; KNOWLEDGE; MALE; MEDICAL EDUCATION; MEDICAL SCHOOL; MEDICAL STUDENT; PRIORITY JOURNAL; RADIODIAGNOSIS; RADIOLOGIST; RADIOLOGY; STUDENT ATTITUDE; UNDERGRADUATE STUDENT; YOUNG ADULT; ATTITUDE TO COMPUTERS; CLINICAL TRIAL; EDUCATION; GERMANY; HEALTH PERSONNEL ATTITUDE; MULTICENTER STUDY; PROCEDURES; PSYCHOLOGY; QUESTIONNAIRE;

EID: 85049565229     PISSN: 09387994     EISSN: 14321084     Source Type: Journal    
DOI: 10.1007/s00330-018-5601-1     Document Type: Article
Times cited : (336)

References (15)
  • 1
    • 85042796356 scopus 로고    scopus 로고
    • Data Science: Big Data, Machine Learning, and Artificial Intelligence
    • PID: 29502583
    • Carlos RC, Kahn CE, Halabi S (2018) Data Science: Big Data, Machine Learning, and Artificial Intelligence. J Am Coll Radiol 15:497–498
    • (2018) J Am Coll Radiol , vol.15 , pp. 497-498
    • Carlos, R.C.1    Kahn, C.E.2    Halabi, S.3
  • 2
    • 85016471320 scopus 로고    scopus 로고
    • Implementing Machine Learning in Radiology Practice and Research
    • PID: 28125274
    • Kohli M, Prevedello LM, Filice RW, Geis JR (2017) Implementing Machine Learning in Radiology Practice and Research. AJR Am J Roentgenol 208:754–760
    • (2017) AJR Am J Roentgenol , vol.208 , pp. 754-760
    • Kohli, M.1    Prevedello, L.M.2    Filice, R.W.3    Geis, J.R.4
  • 4
    • 85025112337 scopus 로고    scopus 로고
    • Deep Learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks
    • PID: 28436741
    • Lakhani P, Sundaram B (2017) Deep Learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284:574–582
    • (2017) Radiology , vol.284 , pp. 574-582
    • Lakhani, P.1    Sundaram, B.2
  • 5
    • 85063021690 scopus 로고    scopus 로고
    • Available via https://www.forbes.com/sites/paulhsieh/2017/11/27/will-computers-be-reading-your-chest-x-ray/#57bd235514c5
    • Hsieh P (2017) Will Computers Be Reading Your Chest X-Ray? Forbes. Available via https://www.forbes.com/sites/paulhsieh/2017/11/27/will-computers-be-reading-your-chest-x-ray/#57bd235514c5
    • (2017) Will Computers Be Reading Your Chest X-Ray? Forbes
    • Hsieh, P.1
  • 6
    • 85063021808 scopus 로고    scopus 로고
    • Tweet on 11.07.2017. Available via
    • Ng A (2017) Tweet on 11.07.2017. Available via https://mobile.twitter.com/andrewyng/status/884810469575344128?lang=de
    • (2017)
    • Ng, A.1
  • 7
    • 0001859044 scopus 로고
    • A technique for the measurement of attitudes
    • Likert R (1932) A technique for the measurement of attitudes. Archives of Psychology. 22:55
    • (1932) Archives of Psychology. , vol.22 , pp. 55
    • Likert, R.1
  • 11
    • 85042759908 scopus 로고    scopus 로고
    • Role of Big Data and Machine Learning in Diagnostic Decision Support in Radiology
    • PID: 29502585
    • Syeda-Mahmood T (2018) Role of Big Data and Machine Learning in Diagnostic Decision Support in Radiology. J Am Coll Radiol 15:569–576
    • (2018) J Am Coll Radiol , vol.15 , pp. 569-576
    • Syeda-Mahmood, T.1
  • 12
    • 85044323846 scopus 로고    scopus 로고
    • Toward Augmented Radiologists: Changes in radiology education in the era of machine learning and Artificial Intelligence
    • Tajmir SH, Alkasab TK (2018) Toward Augmented Radiologists: Changes in radiology education in the era of machine learning and Artificial Intelligence. Acad Radiol 25:747-750
    • (2018) Acad Radiol , vol.25 , pp. 747-750
    • Tajmir, S.H.1    Alkasab, T.K.2
  • 13
    • 84982105864 scopus 로고    scopus 로고
    • Machine learning approaches in medical image analysis: From detection to diagnosis
    • PID: 27481324
    • de Bruijne M (2016) Machine learning approaches in medical image analysis: From detection to diagnosis. Med Image Anal 33:94–97
    • (2016) Med Image Anal , vol.33 , pp. 94-97
    • de Bruijne, M.1
  • 14
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva A, Kuprel B, Novoa RA et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115–118
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1    Kuprel, B.2    Novoa, R.A.3
  • 15
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan V, Peng L, Coram M et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316:2402–2410
    • (2016) JAMA , vol.316 , pp. 2402-2410
    • Gulshan, V.1    Peng, L.2    Coram, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.