-
1
-
-
85041593093
-
Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success
-
Thrall, J.H., Li, X., Li, Q., et al. Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success. J Am Coll Radiol, 2018, 10.1016/j.jacr.2017.12.026.
-
(2018)
J Am Coll Radiol
-
-
Thrall, J.H.1
Li, X.2
Li, Q.3
-
2
-
-
85034062256
-
Machine learning in radiology: applications beyond image interpretation
-
Lakhani, P., Prater, A.B., Hutson, R.K., et al. Machine learning in radiology: applications beyond image interpretation. J Am Coll Radiol 15 (2018), 350–359, 10.1016/j.jacr.2017.09.044.
-
(2018)
J Am Coll Radiol
, vol.15
, pp. 350-359
-
-
Lakhani, P.1
Prater, A.B.2
Hutson, R.K.3
-
3
-
-
85015225428
-
Machine learning for medical imaging
-
Erickson, B.J., Korfiatis, P., Akkus, Z., et al. Machine learning for medical imaging. Radiographics 37 (2017), 505–515, 10.1148/rg.2017160130.
-
(2017)
Radiographics
, vol.37
, pp. 505-515
-
-
Erickson, B.J.1
Korfiatis, P.2
Akkus, Z.3
-
4
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
Gulshan, V., Peng, L., Coram, M., et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316 (2016), 2402–2410, 10.1001/jama.2016.17216.
-
(2016)
JAMA
, vol.316
, pp. 2402-2410
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
-
5
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva, A., Kuprel, B., Novoa, R.A., et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542 (2017), 115–118, 10.1038/nature21056.
-
(2017)
Nature
, vol.542
, pp. 115-118
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
-
6
-
-
85046585764
-
Viz.ai. Viz.ai
-
Available at (Accessed 19 February 2018)
-
Viz.ai. Viz.ai. Available at https://www.viz.ai/. (Accessed 19 February 2018)
-
-
-
-
7
-
-
85046600145
-
Press Announcements—FDA permits marketing of clinical decision support software for alerting providers of a potential stroke in patients
-
Available at (Accessed 19 February 2018)
-
Press Announcements—FDA permits marketing of clinical decision support software for alerting providers of a potential stroke in patients. Available at https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm596575.htm. (Accessed 19 February 2018)
-
-
-
-
8
-
-
85053917968
-
A.I. versus M.D
-
Available at (Accessed 19 February 2018)
-
Mukherjee, S., A.I. versus M.D. New Yorker, 2017 Available at https://www.newyorker.com/magazine/2017/04/03/ai-versus-md. (Accessed 19 February 2018)
-
(2017)
New Yorker
-
-
Mukherjee, S.1
-
9
-
-
85014613499
-
Fully automated deep learning system for bone age assessment
-
Lee, H., Tajmir, S., Lee, J., et al. Fully automated deep learning system for bone age assessment. J Digit Imaging 30 (2017), 427–441, 10.1007/s10278-017-9955-8.
-
(2017)
J Digit Imaging
, vol.30
, pp. 427-441
-
-
Lee, H.1
Tajmir, S.2
Lee, J.3
-
10
-
-
85044285842
-
Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs
-
170236
-
Larson, D.B., Chen, M.C., Lungren, M.P., et al. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology, 170236, 2017, 10.1148/radiol.2017170236.
-
(2017)
Radiology
-
-
Larson, D.B.1
Chen, M.C.2
Lungren, M.P.3
-
11
-
-
85046582158
-
RADNET: radiologist level accuracy using deep learning for hemorrhage detection in CT scans
-
arXiv [csCV]; Available at
-
Grewal, M., Srivastava, M.M., Kumar, P., et al. RADNET: radiologist level accuracy using deep learning for hemorrhage detection in CT scans. arXiv [csCV]; Available at http://arxiv.org/abs/1710.04934, 2017.
-
(2017)
-
-
Grewal, M.1
Srivastava, M.M.2
Kumar, P.3
-
12
-
-
85046602238
-
Application of Deep Learning in Neuroradiology: Automated Detection of Basal Ganglia Hemorrhage using 2D-Convolutional Neural Networks
-
arXiv [csCV]; Available at
-
Desai, V., Flanders, A.E., Lakhani, P., Application of Deep Learning in Neuroradiology: Automated Detection of Basal Ganglia Hemorrhage using 2D-Convolutional Neural Networks. arXiv [csCV]; Available at http://arxiv.org/abs/1710.03823, 2017.
-
(2017)
-
-
Desai, V.1
Flanders, A.E.2
Lakhani, P.3
-
13
-
-
85034811319
-
Automated critical test findings identification and online notification system using artificial intelligence in imaging
-
Prevedello, L.M., Erdal, B.S., Ryu, J.L., et al. Automated critical test findings identification and online notification system using artificial intelligence in imaging. Radiology 285 (2017), 923–931, 10.1148/radiol.2017162664.
-
(2017)
Radiology
, vol.285
, pp. 923-931
-
-
Prevedello, L.M.1
Erdal, B.S.2
Ryu, J.L.3
-
14
-
-
85046583067
-
Cardio—Arterys
-
Available at (Accessed 19 February 2018)
-
Cardio—Arterys. Available at https://arterys.com/cardio. (Accessed 19 February 2018)
-
-
-
-
15
-
-
85046598581
-
Arterys Cardio 510(k) Premarket Notification
-
Available at (Accessed 19 February 2018)
-
Arterys Cardio 510(k) Premarket Notification. Available at https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K163253. (Accessed 19 February 2018)
-
-
-
-
16
-
-
85021296993
-
Pixel-level deep segmentation: artificial intelligence quantifies muscle on computed tomography for body morphometric analysis
-
Lee, H., Troschel, F.M., Tajmir, S., et al. Pixel-level deep segmentation: artificial intelligence quantifies muscle on computed tomography for body morphometric analysis. J Digit Imaging 30 (2017), 487–498, 10.1007/s10278-017-9988-z.
-
(2017)
J Digit Imaging
, vol.30
, pp. 487-498
-
-
Lee, H.1
Troschel, F.M.2
Tajmir, S.3
-
17
-
-
85046599656
-
Systems and methods for emulating DEXA scores based on ct images
-
Available at (Accessed 19 February 2018)
-
Bregman-Amitai, O., Elnekave, E., Systems and methods for emulating DEXA scores based on ct images. US Pat, 2016 Available at https://patentimages.storage.googleapis.com/b7/fa/53/724bd0e74dbeac/US20160015347A1.pdf. (Accessed 19 February 2018)
-
(2016)
US Pat
-
-
Bregman-Amitai, O.1
Elnekave, E.2
-
18
-
-
85046596660
-
Machine Learning Powered Automatic Organ Classification for Patient Specific Organ Dose Estimation
-
In: Proceedings of the Society for Imaging Informatics in Medicine Annual Meeting; Available at
-
Cho, J., Lee, E., Lee, H., et al. Machine Learning Powered Automatic Organ Classification for Patient Specific Organ Dose Estimation. In: Proceedings of the Society for Imaging Informatics in Medicine Annual Meeting; Available at https://c.ymcdn.com/sites/siim.org/resource/resmgr/siim2017/abstracts/analytics1-Do.pdf, 2017.
-
(2017)
-
-
Cho, J.1
Lee, E.2
Lee, H.3
-
19
-
-
85046582372
-
-
(Accessed 19 February 2018)
-
RADLogics, http://radlogics.com/. (Accessed 19 February 2018)
-
-
-
RADLogics1
-
20
-
-
85046591743
-
-
(Accessed 6 March 2018)
-
ACR Data Science Institute, http://www.acrdsi.org/. (Accessed 6 March 2018)
-
-
-
ACR Data Science Institute1
|