메뉴 건너뛰기




Volumn 25, Issue 6, 2018, Pages 747-750

Toward Augmented Radiologists: Changes in Radiology Education in the Era of Machine Learning and Artificial Intelligence

Author keywords

Artificial intelligence; education; machine learning

Indexed keywords

ACADEMIC ADVISEMENT; ARTICLE; ARTIFICIAL INTELLIGENCE; EDUCATION PROGRAM; HUMAN; LIFELONG LEARNING; MACHINE LEARNING; MEDICAL EDUCATION; PRIORITY JOURNAL; PULSE RATE; RADIOLOGIST; RADIOLOGY; CURRICULUM; EDUCATION; LEARNING; PROCEDURES;

EID: 85044323846     PISSN: 10766332     EISSN: 18784046     Source Type: Journal    
DOI: 10.1016/j.acra.2018.03.007     Document Type: Article
Times cited : (74)

References (20)
  • 1
    • 85041593093 scopus 로고    scopus 로고
    • Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success
    • Thrall, J.H., Li, X., Li, Q., et al. Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success. J Am Coll Radiol, 2018, 10.1016/j.jacr.2017.12.026.
    • (2018) J Am Coll Radiol
    • Thrall, J.H.1    Li, X.2    Li, Q.3
  • 2
    • 85034062256 scopus 로고    scopus 로고
    • Machine learning in radiology: applications beyond image interpretation
    • Lakhani, P., Prater, A.B., Hutson, R.K., et al. Machine learning in radiology: applications beyond image interpretation. J Am Coll Radiol 15 (2018), 350–359, 10.1016/j.jacr.2017.09.044.
    • (2018) J Am Coll Radiol , vol.15 , pp. 350-359
    • Lakhani, P.1    Prater, A.B.2    Hutson, R.K.3
  • 3
    • 85015225428 scopus 로고    scopus 로고
    • Machine learning for medical imaging
    • Erickson, B.J., Korfiatis, P., Akkus, Z., et al. Machine learning for medical imaging. Radiographics 37 (2017), 505–515, 10.1148/rg.2017160130.
    • (2017) Radiographics , vol.37 , pp. 505-515
    • Erickson, B.J.1    Korfiatis, P.2    Akkus, Z.3
  • 4
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan, V., Peng, L., Coram, M., et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316 (2016), 2402–2410, 10.1001/jama.2016.17216.
    • (2016) JAMA , vol.316 , pp. 2402-2410
    • Gulshan, V.1    Peng, L.2    Coram, M.3
  • 5
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva, A., Kuprel, B., Novoa, R.A., et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542 (2017), 115–118, 10.1038/nature21056.
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1    Kuprel, B.2    Novoa, R.A.3
  • 6
    • 85046585764 scopus 로고    scopus 로고
    • Viz.ai. Viz.ai
    • Available at (Accessed 19 February 2018)
    • Viz.ai. Viz.ai. Available at https://www.viz.ai/. (Accessed 19 February 2018)
  • 7
    • 85046600145 scopus 로고    scopus 로고
    • Press Announcements—FDA permits marketing of clinical decision support software for alerting providers of a potential stroke in patients
    • Available at (Accessed 19 February 2018)
    • Press Announcements—FDA permits marketing of clinical decision support software for alerting providers of a potential stroke in patients. Available at https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm596575.htm. (Accessed 19 February 2018)
  • 8
    • 85053917968 scopus 로고    scopus 로고
    • A.I. versus M.D
    • Available at (Accessed 19 February 2018)
    • Mukherjee, S., A.I. versus M.D. New Yorker, 2017 Available at https://www.newyorker.com/magazine/2017/04/03/ai-versus-md. (Accessed 19 February 2018)
    • (2017) New Yorker
    • Mukherjee, S.1
  • 9
    • 85014613499 scopus 로고    scopus 로고
    • Fully automated deep learning system for bone age assessment
    • Lee, H., Tajmir, S., Lee, J., et al. Fully automated deep learning system for bone age assessment. J Digit Imaging 30 (2017), 427–441, 10.1007/s10278-017-9955-8.
    • (2017) J Digit Imaging , vol.30 , pp. 427-441
    • Lee, H.1    Tajmir, S.2    Lee, J.3
  • 10
    • 85044285842 scopus 로고    scopus 로고
    • Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs
    • 170236
    • Larson, D.B., Chen, M.C., Lungren, M.P., et al. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology, 170236, 2017, 10.1148/radiol.2017170236.
    • (2017) Radiology
    • Larson, D.B.1    Chen, M.C.2    Lungren, M.P.3
  • 11
    • 85046582158 scopus 로고    scopus 로고
    • RADNET: radiologist level accuracy using deep learning for hemorrhage detection in CT scans
    • arXiv [csCV]; Available at
    • Grewal, M., Srivastava, M.M., Kumar, P., et al. RADNET: radiologist level accuracy using deep learning for hemorrhage detection in CT scans. arXiv [csCV]; Available at http://arxiv.org/abs/1710.04934, 2017.
    • (2017)
    • Grewal, M.1    Srivastava, M.M.2    Kumar, P.3
  • 12
    • 85046602238 scopus 로고    scopus 로고
    • Application of Deep Learning in Neuroradiology: Automated Detection of Basal Ganglia Hemorrhage using 2D-Convolutional Neural Networks
    • arXiv [csCV]; Available at
    • Desai, V., Flanders, A.E., Lakhani, P., Application of Deep Learning in Neuroradiology: Automated Detection of Basal Ganglia Hemorrhage using 2D-Convolutional Neural Networks. arXiv [csCV]; Available at http://arxiv.org/abs/1710.03823, 2017.
    • (2017)
    • Desai, V.1    Flanders, A.E.2    Lakhani, P.3
  • 13
    • 85034811319 scopus 로고    scopus 로고
    • Automated critical test findings identification and online notification system using artificial intelligence in imaging
    • Prevedello, L.M., Erdal, B.S., Ryu, J.L., et al. Automated critical test findings identification and online notification system using artificial intelligence in imaging. Radiology 285 (2017), 923–931, 10.1148/radiol.2017162664.
    • (2017) Radiology , vol.285 , pp. 923-931
    • Prevedello, L.M.1    Erdal, B.S.2    Ryu, J.L.3
  • 14
    • 85046583067 scopus 로고    scopus 로고
    • Cardio—Arterys
    • Available at (Accessed 19 February 2018)
    • Cardio—Arterys. Available at https://arterys.com/cardio. (Accessed 19 February 2018)
  • 15
    • 85046598581 scopus 로고    scopus 로고
    • Arterys Cardio 510(k) Premarket Notification
    • Available at (Accessed 19 February 2018)
    • Arterys Cardio 510(k) Premarket Notification. Available at https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K163253. (Accessed 19 February 2018)
  • 16
    • 85021296993 scopus 로고    scopus 로고
    • Pixel-level deep segmentation: artificial intelligence quantifies muscle on computed tomography for body morphometric analysis
    • Lee, H., Troschel, F.M., Tajmir, S., et al. Pixel-level deep segmentation: artificial intelligence quantifies muscle on computed tomography for body morphometric analysis. J Digit Imaging 30 (2017), 487–498, 10.1007/s10278-017-9988-z.
    • (2017) J Digit Imaging , vol.30 , pp. 487-498
    • Lee, H.1    Troschel, F.M.2    Tajmir, S.3
  • 17
    • 85046599656 scopus 로고    scopus 로고
    • Systems and methods for emulating DEXA scores based on ct images
    • Available at (Accessed 19 February 2018)
    • Bregman-Amitai, O., Elnekave, E., Systems and methods for emulating DEXA scores based on ct images. US Pat, 2016 Available at https://patentimages.storage.googleapis.com/b7/fa/53/724bd0e74dbeac/US20160015347A1.pdf. (Accessed 19 February 2018)
    • (2016) US Pat
    • Bregman-Amitai, O.1    Elnekave, E.2
  • 18
    • 85046596660 scopus 로고    scopus 로고
    • Machine Learning Powered Automatic Organ Classification for Patient Specific Organ Dose Estimation
    • In: Proceedings of the Society for Imaging Informatics in Medicine Annual Meeting; Available at
    • Cho, J., Lee, E., Lee, H., et al. Machine Learning Powered Automatic Organ Classification for Patient Specific Organ Dose Estimation. In: Proceedings of the Society for Imaging Informatics in Medicine Annual Meeting; Available at https://c.ymcdn.com/sites/siim.org/resource/resmgr/siim2017/abstracts/analytics1-Do.pdf, 2017.
    • (2017)
    • Cho, J.1    Lee, E.2    Lee, H.3
  • 19
    • 85046582372 scopus 로고    scopus 로고
    • (Accessed 19 February 2018)
    • RADLogics, http://radlogics.com/. (Accessed 19 February 2018)
    • RADLogics1
  • 20
    • 85046591743 scopus 로고    scopus 로고
    • (Accessed 6 March 2018)
    • ACR Data Science Institute, http://www.acrdsi.org/. (Accessed 6 March 2018)
    • ACR Data Science Institute1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.