메뉴 건너뛰기




Volumn 15, Issue 3, 2018, Pages 497-498

Erratum: Data Science: Big Data, Machine Learning, and Artificial Intelligence (Journal of the American College of Radiology (2018) 15(3) (497–498) (S1546144018300553) (10.1016/j.jacr.2018.01.029));Data Science: Big Data, Machine Learning, and Artificial Intelligence

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL MARKER;

EID: 85042796356     PISSN: 15461440     EISSN: 1558349X     Source Type: Journal    
DOI: 10.1016/j.jacr.2018.03.036     Document Type: Erratum
Times cited : (40)

References (18)
  • 1
    • 85042784943 scopus 로고    scopus 로고
    • “Radiology” is going away… and that's okay: Titles change, a profession evolves
    • Moehrle, A., “Radiology” is going away… and that's okay: Titles change, a profession evolves. J Am Coll Radiol 15 (2018), 499–500.
    • (2018) J Am Coll Radiol , vol.15 , pp. 499-500
    • Moehrle, A.1
  • 2
    • 85040683881 scopus 로고    scopus 로고
    • Artificial intelligence and radiology: what will the future hold?
    • King, B.F., Artificial intelligence and radiology: what will the future hold?. J Am Coll Radiol 15 (2018), 501–503.
    • (2018) J Am Coll Radiol , vol.15 , pp. 501-503
    • King, B.F.1
  • 3
    • 85041593093 scopus 로고    scopus 로고
    • Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls and criteria for success
    • Thrall, J.H., Li, X., Li, Q., et al. Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls and criteria for success. J Am Coll Radiol 15 (2018), 504–508.
    • (2018) J Am Coll Radiol , vol.15 , pp. 504-508
    • Thrall, J.H.1    Li, X.2    Li, Q.3
  • 4
    • 85041593889 scopus 로고    scopus 로고
    • Information and artificial intelligence
    • Jha, S., Topol, E.J., Information and artificial intelligence. J Am Coll Radiol 15 (2018), 509–511.
    • (2018) J Am Coll Radiol , vol.15 , pp. 509-511
    • Jha, S.1    Topol, E.J.2
  • 5
    • 85041282278 scopus 로고    scopus 로고
    • Machine learning in medical imaging
    • Giger, M.L., Machine learning in medical imaging. J Am Coll Radiol 15 (2018), 512–520.
    • (2018) J Am Coll Radiol , vol.15 , pp. 512-520
    • Giger, M.L.1
  • 6
    • 85041133227 scopus 로고    scopus 로고
    • Deep learning in radiology: does one size fit all?
    • Erickson, B.J., Korfiatis, P., Kline, T.L., et al. Deep learning in radiology: does one size fit all?. J Am Coll Radiol 15 (2018), 521–526.
    • (2018) J Am Coll Radiol , vol.15 , pp. 521-526
    • Erickson, B.J.1    Korfiatis, P.2    Kline, T.L.3
  • 7
    • 85041580279 scopus 로고    scopus 로고
    • Prediction of occult invasive disease in ductal carcinoma in situ using deep learning features
    • Shi, B., Grimm, L.J., Mazurowski, M.A., et al. Prediction of occult invasive disease in ductal carcinoma in situ using deep learning features. J Am Coll Radiol 15 (2018), 527–534.
    • (2018) J Am Coll Radiol , vol.15 , pp. 527-534
    • Shi, B.1    Grimm, L.J.2    Mazurowski, M.A.3
  • 8
    • 85041558399 scopus 로고    scopus 로고
    • Why CAD failed in mammography
    • Kohli, A., Jha, S., Why CAD failed in mammography. J Am Coll Radiol 15 (2018), 535–537.
    • (2018) J Am Coll Radiol , vol.15 , pp. 535-537
    • Kohli, A.1    Jha, S.2
  • 9
    • 85040652056 scopus 로고    scopus 로고
    • Translational radiomics—defining the strategy pipeline and considerations for application. Part 1: From methodology to clinical implementation
    • Shaikh, F., Franc, B., Allen, E., et al. Translational radiomics—defining the strategy pipeline and considerations for application. Part 1: From methodology to clinical implementation. J Am Coll Radiol 15 (2018), 538–542.
    • (2018) J Am Coll Radiol , vol.15 , pp. 538-542
    • Shaikh, F.1    Franc, B.2    Allen, E.3
  • 10
    • 85040650377 scopus 로고    scopus 로고
    • Translational radiomics—defining the strategy pipeline and considerations for application. Part 2: From clinical implementation to enterprise
    • Shaikh, F., Franc, B., Allen, E., et al. Translational radiomics—defining the strategy pipeline and considerations for application. Part 2: From clinical implementation to enterprise. J Am Coll Radiol 15 (2018), 543–549.
    • (2018) J Am Coll Radiol , vol.15 , pp. 543-549
    • Shaikh, F.1    Franc, B.2    Allen, E.3
  • 11
    • 85038349245 scopus 로고    scopus 로고
    • Comparison between manual auditing and a natural language process with machine learning algorithm to evaluate faculty use of standardized reports in radiology
    • Guimaraes, C.V., Grzeszczuk, R., Bisset, G.S. III, Donnelly, L.F., Comparison between manual auditing and a natural language process with machine learning algorithm to evaluate faculty use of standardized reports in radiology. J Am Coll Radiol, 2018, 550–553.
    • (2018) J Am Coll Radiol , pp. 550-553
    • Guimaraes, C.V.1    Grzeszczuk, R.2    Bisset, G.S.3    Donnelly, L.F.4
  • 12
    • 85040724288 scopus 로고    scopus 로고
    • Evaluating report text variation and informativeness: natural language processing of CT chest imaging for pulmonary embolism
    • Huesch, M., Cherian, R., Labib, S., Mahraj, R., Evaluating report text variation and informativeness: natural language processing of CT chest imaging for pulmonary embolism. J Am Coll Radiol, 2018, 554–562.
    • (2018) J Am Coll Radiol , pp. 554-562
    • Huesch, M.1    Cherian, R.2    Labib, S.3    Mahraj, R.4
  • 13
    • 85040788741 scopus 로고    scopus 로고
    • Performing an informatics consult: methods and challenges
    • Schuler, A., Callahan, A., Jung, K., Shah, N.H., Performing an informatics consult: methods and challenges. J Am Coll Radiol, 2018, 563–568.
    • (2018) J Am Coll Radiol , pp. 563-568
    • Schuler, A.1    Callahan, A.2    Jung, K.3    Shah, N.H.4
  • 14
    • 85042759908 scopus 로고    scopus 로고
    • Role of big data and machine learning in diagnostic decision support in radiology
    • Syeda-Mahmood, T., Role of big data and machine learning in diagnostic decision support in radiology. J Am Coll Radiol, 2018, 569–576.
    • (2018) J Am Coll Radiol , pp. 569-576
    • Syeda-Mahmood, T.1
  • 15
    • 85041571631 scopus 로고    scopus 로고
    • The ACR data science institute and AI advisory group: harnessing the power of artificial intelligence to improve patient care
    • McGinty, G.B., Allen, B. Jr, The ACR data science institute and AI advisory group: harnessing the power of artificial intelligence to improve patient care. J Am Coll Radiol 15 (2018), 577–579.
    • (2018) J Am Coll Radiol , vol.15 , pp. 577-579
    • McGinty, G.B.1    Allen, B.2
  • 16
    • 85041624159 scopus 로고    scopus 로고
    • Protecting your patients’ interests in the era of big data, artificial intelligence, and predictive analytics
    • Balthazar, P., Harri, P., Prater, A., Safdar, N.M., Protecting your patients’ interests in the era of big data, artificial intelligence, and predictive analytics. J Am Coll Radiol 15 (2018), 580–586.
    • (2018) J Am Coll Radiol , vol.15 , pp. 580-586
    • Balthazar, P.1    Harri, P.2    Prater, A.3    Safdar, N.M.4
  • 17
    • 85037032558 scopus 로고    scopus 로고
    • Gunderman—triumph of the machines
    • Gunderman—triumph of the machines. J Am Coll Radiol 15 (2018), 587–588.
    • (2018) J Am Coll Radiol , vol.15 , pp. 587-588
  • 18
    • 85042781344 scopus 로고    scopus 로고
    • Timbuk3. The future's so bright, I gotta wear shades. Greetings from Timbuk3 [album]. I.R.S. Records; 1986. Available at Accessed February 2
    • Timbuk3. The future's so bright, I gotta wear shades. Greetings from Timbuk3 [album]. I.R.S. Records; 1986. Available at https://en.wikipedia.org/wiki/. Accessed February 2, 2018.
    • (2018)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.