-
1
-
-
84882279850
-
Collaborative hyperparameter tuning
-
Bardenet, Rémi, Brendel, Mátyás, Kégl, Balázs, and Se-bag, Michele. Collaborative hyperparameter tuning. In Proceedings of the International Conference on Machine Learning (ICML), pp. 199-207, 2013.
-
(2013)
Proceedings of the International Conference on Machine Learning (ICML)
, pp. 199-207
-
-
Bardenet, R.1
Brendel, M.2
Kégl, B.3
Sebag, M.4
-
4
-
-
84964045363
-
Implementations of algorithms for hyper-parameter optimization
-
Bergstra, James, Bardenet, Rémi, Kégl, B, and Bengio, Y. Implementations of algorithms for hyper-parameter optimization. In NIPS Workshop on Bayesian optimization, pp. 29, 2011.
-
(2011)
NIPS Workshop on Bayesian Optimization
, pp. 29
-
-
Bergstra, J.1
Bardenet, R.2
Kégl, B.3
Bengio, Y.4
-
5
-
-
79955702502
-
LIBSVM: A library for support vector machines
-
Chang, Chih-Chung and Lin, Chih-Jen. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1-27:27, 2011. Software available at http ://www.csie.ntu.edu.tw/~cjl in/libs
-
(2011)
ACM Transactions on Intelligent Systems and Technology
, vol.2
, pp. 271-2727
-
-
Chang, C.-C.1
Lin, C.-J.2
-
7
-
-
85162391976
-
Additive Gaussian processes
-
Shawe-Taylor, J., Zemel, R. S., Bartlctt, P. L., Pereira, F., and Weinberger, K. Q. (eds.). Curran Associates, Inc.
-
Duvenaud, David K, Nickisch, Hannes, and Rasmusscn, Carl E. Additive gaussian processes. In Shawe-Taylor, J., Zemel, R. S., Bartlctt, P. L., Pereira, F., and Weinberger, K. Q. (eds.). Advances in Neural Information Processing Systems 24, pp. 226-234. Curran Associates, Inc., 2011.
-
(2011)
Advances in Neural Information Processing Systems
, vol.24
, pp. 226-234
-
-
Duvenaud, D.K.1
Nickisch, H.2
Rasmusscn, C.E.3
-
8
-
-
84919931099
-
Towards an empirical foundation for assessing Bayesian optimization of hyperparameters
-
Eggenspcrgcr, Katharina, Fcurcr, Matthias, Huttcr, Frank, Bergstra, James, Snoek, Jasper, Hoos, H, and Leyton-Brown, Kevin. Towards an empirical foundation for assessing Bayesian optimization of hyperparameters. In NIPS Workshop on Bayesian Optimization in Theory and Practice, 2013.
-
(2013)
NIPS Workshop on Bayesian Optimization in Theory and Practice
-
-
Eggenspcrgcr, K.1
Fcurcr, M.2
Huttcr, F.3
Bergstra, J.4
Snoek, J.5
Hoos, H.6
Leyton-Brown, K.7
-
11
-
-
84856930049
-
Sequential model-based optimization for general algorithm configuration
-
Hutter, F., Hoos, H. H., and Leyton-Brown, K. Sequential model-based optimization for general algorithm configuration. In Proceedings of LIONS, pp. 5077523, 2011.
-
(2011)
Proceedings of LIONS
, pp. 5077523
-
-
Hutter, F.1
Hoos, H.H.2
Leyton-Brown, K.3
-
14
-
-
85034242641
-
-
Klein, Aaron, Falkner, Stefan, Bartels, Simon, Hennig, Philipp, and Hutter, Frank. Fast Bayesian optimization of machine learning hyperparameters on large dataseis. Technical report, preprint arXiv: 1605.07079, 2016.
-
(2016)
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Dataseis
-
-
Klein, A.1
Falkner, S.2
Bartels, S.3
Hennig, P.4
Hutter, F.5
-
15
-
-
84998710865
-
A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise
-
Kushner, Harold J. A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. Journal of Fluids Engineering, 86(1):97-106, 1964.
-
(1964)
Journal of Fluids Engineering
, vol.86
, Issue.1
, pp. 97-106
-
-
Kushner, H.J.1
-
16
-
-
85020522534
-
-
Li, Lisha, Jamieson, Kevin, DeSalvo, Giulia, Rostamizadeh, Afshin, and Talwalkar, Ameet. Hyperband: A novel bandit-based approach to hyperparameter optimization. Technical report, preprint arXiv: 1603.06560, 2016.
-
(2016)
Hyperband: A Novel Bandit-based Approach to Hyperparameter Optimization
-
-
Li, L.1
Jamieson, K.2
DeSalvo, G.3
Rostamizadeh, A.4
Talwalkar, A.5
-
17
-
-
84954333999
-
-
Lu, Zhiyun, May, Avner, Liu, Kuan, Garakani, Alircza Bagheri, Guo, Dong, Bellet, Aurélien, Fan, Linxi, Collins, Michael, Kingsbury, Brian, Picheny, Michael, et al. How to scale up kernel methods to be as good as deep neural nets. Technical report, preprint arXiv:1411.4000, 2014.
-
(2014)
How to Scale Up Kernel Methods to Be As Good As Deep Neural Nets
-
-
Lu, Z.1
May, A.2
Liu, K.3
Garakani Alircza, B.4
Guo, D.5
Bellet, A.6
Fan, L.7
Collins, M.8
Kingsbury, B.9
Picheny, M.10
-
18
-
-
0342813049
-
The application of Bayesian methods for seeking the extremum
-
Mockus, Jonas, Tiesis, Vytautas, and Zilinskas, Antanas. The application of Bayesian methods for seeking the extremum. Towards Global Optimization, 2(117-129):2, 1978.
-
(1978)
Towards Global Optimization
, vol.2
, Issue.117-129
, pp. 2
-
-
Mockus, J.1
Tiesis, V.2
Zilinskas, A.3
-
20
-
-
80555140075
-
Scikit-learn: Machine learning in python
-
Oct
-
Pedregosa, Fabian, Varoquaux, Gael, Gramfort, Alexandre, Michel, Vincent, Thirion, Bertrand, Griscl, Olivier, Blondel, Mathieu, Prettenhofer, Peter, Weiss, Ron, Dubourg, Vincent, et al. Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12(Oct):2825-2830, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Griscl, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
-
21
-
-
85161980201
-
Random features for large-scale kernel machines
-
Rahimi, Ali, Recht, Benjamin, et al. Random features for large-scale kernel machines. In Advances in Neural Information Processing Systems, volume 3, pp. 5, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.3
, pp. 5
-
-
Rahimi, A.1
Recht, B.2
-
23
-
-
84949985138
-
Taking the human out of the loop: A review of Bayesian optimization
-
Shahriari, Bobak, Swersky, Kevin, Wang, Ziyu, Adams, Ryan P, and de Freitas, Nando. Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1): 148-175, 2016.
-
(2016)
Proceedings of the IEEE
, vol.104
, Issue.1
, pp. 148-175
-
-
Shahriari, B.1
Swersky, K.2
Wang, Z.3
Adams, R.P.4
De Freitas, N.5
-
25
-
-
84869201485
-
Practical Bayesian optimization of machine learning algorithms
-
Snoek, Jasper, Larochelle, Hugo, and Adams, Ryan P. Practical Bayesian optimization of machine learning algorithms. In Advances in Neural Information Processing Systems, pp. 2960-2968, 2012.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 2960-2968
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
26
-
-
49949136136
-
On the distribution of points in a cube and the approximate evaluation of integrals
-
Sobol, Ilya M. On the distribution of points in a cube and the approximate evaluation of integrals. USSR Computational Mathematics and Mathematical Physics, 7(4): 86-112, 1967.
-
(1967)
USSR Computational Mathematics and Mathematical Physics
, vol.7
, Issue.4
, pp. 86-112
-
-
Sobol, I.M.1
-
27
-
-
77956501313
-
Gaussian Process optimization in the bandit setting: No regret and experimental design
-
Furnkranz, J. and Joachims, T. (eds.), Haifa, June
-
Srinivas, N., Krause, A., Kakadc, S. ML, and M., Sccger. Gaussian Process optimization in the bandit setting: No regret and experimental design. In Furnkranz, J. and Joachims, T. (eds.), Proceedings of the 27th International Conference on Machine Learning (ICML), Haifa, June 2010.
-
(2010)
Proceedings of the 27th International Conference on Machine Learning (ICML)
-
-
Srinivas, N.1
Krause, A.2
Kakadc, S.M.L.3
Sccger, M.4
-
28
-
-
84898939805
-
Multitask Bayesian optimization
-
Swcrsky, Kevin, Snock, Jasper, and Adams, Ryan P. Multitask Bayesian optimization. In Advances in Neural Information Processing Systems, pp. 2004-2012, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 2004-2012
-
-
Swcrsky, K.1
Snock, J.2
Adams, R.P.3
-
29
-
-
84961718339
-
-
Swersky, Kevin, Duvenaud, David, Snoek, Jasper, Hutter, Frank, and Osborne, Michael A. Raiders of the lost architecture: Kernels for Bayesian optimization in conditional parameter spaces. Technical report, preprint arXiv: 1409.4011, 2014a.
-
(2014)
Raiders of the Lost Architecture: Kernels for Bayesian Optimization in Conditional Parameter Spaces
-
-
Swersky, K.1
Duvenaud, D.2
Snoek, J.3
Hutter, F.4
Osborne, M.A.5
-
30
-
-
84938340353
-
-
Swersky, Kevin, Snoek, Jasper, and Adams, Ryan Prescott. Freeze-thaw Bayesian optimization. Technical report, preprint arXiv: 1406.3896, 2014b.
-
(2014)
Freeze-thaw Bayesian Optimization
-
-
Swersky, K.1
Snoek, J.2
Adams, R.P.3
-
31
-
-
0001395850
-
On the likelihood that one unknown probability exceeds another in view of the evidence of two samples
-
Thompson, William R. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika, pp. 285-294, 1933.
-
(1933)
Biometrika
, pp. 285-294
-
-
Thompson, W.R.1
-
32
-
-
84985000572
-
Flash: Fast Bayesian optimization for data analytic pipelines
-
Krishnapuram, Balaji, Shah, Mohak, Smola, Alexander J., Aggarwal, Cham, Shen, Dou, and Rastogi, Rajeev (eds.), ACM
-
Zhang, Yuyu, Bahadori, Mohammad Taha, Su, Hang, and Sun, Jimeng. Flash: Fast bayesian optimization for data analytic pipelines. In Krishnapuram, Balaji, Shah, Mohak, Smola, Alexander J., Aggarwal, Cham, Shen, Dou, and Rastogi, Rajeev (eds.), KDD, pp. 2065-2074. ACM, 2016. ISBN 978-1-4503-4232-2.
-
(2016)
KDD
, pp. 2065-2074
-
-
Zhang, Y.1
Bahadori, T.2
Su, H.3
Sun, J.4
|