-
1
-
-
77954627922
-
Viruses in the faecal microbiota of monozygotic twins and their mothers
-
Reyes, A., et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466 (2010), 334–338.
-
(2010)
Nature
, vol.466
, pp. 334-338
-
-
Reyes, A.1
-
2
-
-
80053528043
-
The human gut virome: inter-individual variation and dynamic response to diet
-
Minot, S., et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21 (2011), 1616–1625.
-
(2011)
Genome Res.
, vol.21
, pp. 1616-1625
-
-
Minot, S.1
-
3
-
-
84946600312
-
The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome
-
e01578-15
-
Hannigan, G.D., et al. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. mBio, 6, 2015 e01578-15.
-
(2015)
mBio
, vol.6
-
-
Hannigan, G.D.1
-
4
-
-
84906942533
-
Human oral viruses are personal, persistent and gender-consistent
-
Abeles, S.R., et al. Human oral viruses are personal, persistent and gender-consistent. ISME J. 8 (2014), 1753–1767.
-
(2014)
ISME J.
, vol.8
, pp. 1753-1767
-
-
Abeles, S.R.1
-
5
-
-
84865169354
-
CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome
-
Stern, A., et al. CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome. Genome Res. 22 (2012), 1985–1994.
-
(2012)
Genome Res.
, vol.22
, pp. 1985-1994
-
-
Stern, A.1
-
6
-
-
84905041075
-
A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes
-
Dutilh, B.E., et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. Commun., 5, 2014, 4498.
-
(2014)
Nat. Commun.
, vol.5
, pp. 4498
-
-
Dutilh, B.E.1
-
7
-
-
84987654794
-
Healthy human gut phageome
-
Manrique, P., et al. Healthy human gut phageome. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), 10400–10405.
-
(2016)
Proc. Natl. Acad. Sci. U. S. A.
, vol.113
, pp. 10400-10405
-
-
Manrique, P.1
-
8
-
-
58549110229
-
Determination of cell fate selection during phage lambda infection
-
St-Pierre, F., Endy, D., Determination of cell fate selection during phage lambda infection. Proc. Natl. Acad. Sci. U. S. A. 105 (2008), 20705–20710.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 20705-20710
-
-
St-Pierre, F.1
Endy, D.2
-
9
-
-
85038081501
-
The developmental switch in bacteriophage λ: a critical role of the Cro protein
-
Lee, S., et al. The developmental switch in bacteriophage λ: a critical role of the Cro protein. J. Mol. Biol. 430 (2018), 58–68.
-
(2018)
J. Mol. Biol.
, vol.430
, pp. 58-68
-
-
Lee, S.1
-
10
-
-
84920828858
-
Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions
-
Nanda, A.M., et al. Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J. Bacteriol. 197 (2015), 410–419.
-
(2015)
J. Bacteriol.
, vol.197
, pp. 410-419
-
-
Nanda, A.M.1
-
11
-
-
84961583797
-
Lytic to temperate switching of viral communities
-
Knowles, B., et al. Lytic to temperate switching of viral communities. Nature 531 (2016), 466–470.
-
(2016)
Nature
, vol.531
, pp. 466-470
-
-
Knowles, B.1
-
12
-
-
84945208078
-
Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice
-
Howe, A., et al. Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice. ISME J. 10 (2016), 1217–1227.
-
(2016)
ISME J.
, vol.10
, pp. 1217-1227
-
-
Howe, A.1
-
13
-
-
84895098499
-
When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness
-
Bondy-Denomy, J., Davidson, A.R., When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J. Microbiol. 52 (2014), 235–242.
-
(2014)
J. Microbiol.
, vol.52
, pp. 235-242
-
-
Bondy-Denomy, J.1
Davidson, A.R.2
-
14
-
-
84962090717
-
The significance of mutualistic phages for bacterial ecology and evolution
-
Obeng, N., et al. The significance of mutualistic phages for bacterial ecology and evolution. Trends Microbiol. 24 (2016), 440–449.
-
(2016)
Trends Microbiol.
, vol.24
, pp. 440-449
-
-
Obeng, N.1
-
15
-
-
85035363813
-
Ecological and evolutionary benefits of temperate phage: what does or doesn't kill you makes you stronger
-
Published online October 6, 2017
-
Harrison, E., Brockhurst, M.A., Ecological and evolutionary benefits of temperate phage: what does or doesn't kill you makes you stronger. Bioessays, 2017, 10.1002/bies.201700112 Published online October 6, 2017.
-
(2017)
Bioessays
-
-
Harrison, E.1
Brockhurst, M.A.2
-
16
-
-
85019943640
-
Temperate bacteriophages as regulators of host behavior
-
Argov, T., et al. Temperate bacteriophages as regulators of host behavior. Curr. Opin. Microbiol. 38 (2017), 81–87.
-
(2017)
Curr. Opin. Microbiol.
, vol.38
, pp. 81-87
-
-
Argov, T.1
-
18
-
-
85029822123
-
Prophage genomics reveals patterns in phage genome organization and replication
-
Kang, H.S., et al. Prophage genomics reveals patterns in phage genome organization and replication. bioRxiv, 2017, 114819.
-
(2017)
bioRxiv
, pp. 114819
-
-
Kang, H.S.1
-
19
-
-
85042721204
-
Bacteriophages of the urinary microbiome
-
e00738-17
-
Miller-Ensminger, T., et al. Bacteriophages of the urinary microbiome. J. Bacteriol., 200, 2018 e00738-17.
-
(2018)
J. Bacteriol.
, vol.200
-
-
Miller-Ensminger, T.1
-
20
-
-
85041498917
-
Lysogeny is prevalent and widely distributed in the murine gut microbiota
-
Kim, M.S., Bae, J.W., Lysogeny is prevalent and widely distributed in the murine gut microbiota. ISME J. 12 (2018), 1127–1141.
-
(2018)
ISME J.
, vol.12
, pp. 1127-1141
-
-
Kim, M.S.1
Bae, J.W.2
-
21
-
-
84994399678
-
Culture of previously uncultured members of the human gut microbiota by culturomics
-
Lagier, J.C., et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol., 1, 2016, 16203.
-
(2016)
Nat. Microbiol.
, vol.1
, pp. 16203
-
-
Lagier, J.C.1
-
22
-
-
85042004438
-
Cross-genus rebooting of custom-made, synthetic bacteriophage genomes in L-form bacteria
-
Kilcher, S., et al. Cross-genus rebooting of custom-made, synthetic bacteriophage genomes in L-form bacteria. Proc. Natl. Acad. Sci. U. S. A. 115 (2018), 567–572.
-
(2018)
Proc. Natl. Acad. Sci. U. S. A.
, vol.115
, pp. 567-572
-
-
Kilcher, S.1
-
23
-
-
84942256417
-
Engineering modular viral scaffolds for targeted bacterial population editing
-
Ando, H., et al. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst. 23 (2015), 187–196.
-
(2015)
Cell Syst.
, vol.23
, pp. 187-196
-
-
Ando, H.1
-
24
-
-
84958818002
-
Transposable phage Mu
-
Published online October 2014
-
Harshey, R.M., et al. Transposable phage Mu. Microbiol. Spectr., 2014, 10.1128/microbiolspec.MDNA3-0007-2014 Published online October 2014.
-
(2014)
Microbiol. Spectr.
-
-
Harshey, R.M.1
-
25
-
-
0037716585
-
Prophage insertion sites
-
Campbell, A., Prophage insertion sites. Res. Microbiol. 154 (2003), 277–282.
-
(2003)
Res. Microbiol.
, vol.154
, pp. 277-282
-
-
Campbell, A.1
-
26
-
-
4544321685
-
Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion
-
Brussow, H., et al. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68 (2004), 560–602.
-
(2004)
Microbiol. Mol. Biol. Rev.
, vol.68
, pp. 560-602
-
-
Brussow, H.1
-
27
-
-
84880063503
-
Importance of prophages to evolution and virulence of bacterial pathogens
-
Fortier, L.C., Sekulovic, O., Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4 (2013), 354–365.
-
(2013)
Virulence
, vol.4
, pp. 354-365
-
-
Fortier, L.C.1
Sekulovic, O.2
-
28
-
-
84863451084
-
Phage-mediated acquisition of a type III secreted effector protein boosts growth of Salmonella by nitrate respiration
-
e00143-12
-
Lopez, C.A., et al. Phage-mediated acquisition of a type III secreted effector protein boosts growth of Salmonella by nitrate respiration. mBio, 3, 2012 e00143-12.
-
(2012)
mBio
, vol.3
-
-
Lopez, C.A.1
-
29
-
-
84880509968
-
Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome
-
Modi, S.R., et al. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 499 (2013), 219–222.
-
(2013)
Nature
, vol.499
, pp. 219-222
-
-
Modi, S.R.1
-
30
-
-
84943258596
-
Effects of long-term antibiotic therapy on human oral and fecal viromes
-
Abeles, S.R., et al. Effects of long-term antibiotic therapy on human oral and fecal viromes. PLoS One, 10, 2015, e0134941.
-
(2015)
PLoS One
, vol.10
-
-
Abeles, S.R.1
-
31
-
-
84958068920
-
Spatial disturbances in altered mucosal and luminal gut viromes of diet-induced obese mice
-
Kim, S.W., Bae, J.W., Spatial disturbances in altered mucosal and luminal gut viromes of diet-induced obese mice. Environ. Microbiol. 18 (2016), 1498–1510.
-
(2016)
Environ. Microbiol.
, vol.18
, pp. 1498-1510
-
-
Kim, S.W.1
Bae, J.W.2
-
32
-
-
84975275010
-
Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses
-
Enault, F., et al. Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. ISME J. 11 (2017), 237–247.
-
(2017)
ISME J.
, vol.11
, pp. 237-247
-
-
Enault, F.1
-
33
-
-
84906302990
-
Pervasive domestication of defective prophages by bacteria
-
Bobay, L.M., et al. Pervasive domestication of defective prophages by bacteria. Proc. Natl. Acad. Sci. U. S. A. 111 (2014), 12127–12132.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. 12127-12132
-
-
Bobay, L.M.1
-
34
-
-
85030328621
-
Phage tail-like bacteriocins
-
Scholl, D., Phage tail-like bacteriocins. Annu. Rev. Virol. 4 (2017), 453–467.
-
(2017)
Annu. Rev. Virol.
, vol.4
, pp. 453-467
-
-
Scholl, D.1
-
35
-
-
85041357931
-
Expanding the molecular weaponry of bacterial species
-
Lopez, J., Feldman, M.F., Expanding the molecular weaponry of bacterial species. J. Biol. Chem. 293 (2018), 1515–1516.
-
(2018)
J. Biol. Chem.
, vol.293
, pp. 1515-1516
-
-
Lopez, J.1
Feldman, M.F.2
-
36
-
-
84865240356
-
Prophage excision activates Listeria competence genes that promote phagosomal escape and virulence
-
Rabinovich, L., et al. Prophage excision activates Listeria competence genes that promote phagosomal escape and virulence. Cell 17 (2012), 792–802.
-
(2012)
Cell
, vol.17
, pp. 792-802
-
-
Rabinovich, L.1
-
37
-
-
84942035103
-
A new perspective on lysogeny: prophages as active regulatory switches of bacteria
-
Feiner, R., et al. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat. Rev. Microbiol. 13 (2015), 641–650.
-
(2015)
Nat. Rev. Microbiol.
, vol.13
, pp. 641-650
-
-
Feiner, R.1
-
38
-
-
84908325168
-
Developmentally-regulated excision of the SPβ prophage reconstitutes a gene required for spore envelope maturation in Bacillus subtilis
-
Abe, K., et al. Developmentally-regulated excision of the SPβ prophage reconstitutes a gene required for spore envelope maturation in Bacillus subtilis. PLoS Genet., 10, 2014, e1004636.
-
(2014)
PLoS Genet.
, vol.10
-
-
Abe, K.1
-
39
-
-
22744452053
-
Population fitness and the regulation of Escherichia coli genes by bacterial viruses
-
Chen, Y., et al. Population fitness and the regulation of Escherichia coli genes by bacterial viruses. PLoS Biol., 3, 2005, e229.
-
(2005)
PLoS Biol.
, vol.3
-
-
Chen, Y.1
-
40
-
-
68949099565
-
The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations
-
Schuch, R., Fischetti, V.A., The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations. PLoS One, 4, 2009, e6532.
-
(2009)
PLoS One
, vol.4
-
-
Schuch, R.1
Fischetti, V.A.2
-
41
-
-
84978849193
-
Temperate phages both mediate and drive adaptive evolution in pathogen biofilms
-
Davies, E.V., et al. Temperate phages both mediate and drive adaptive evolution in pathogen biofilms. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), 8266–8271.
-
(2016)
Proc. Natl. Acad. Sci. U. S. A.
, vol.113
, pp. 8266-8271
-
-
Davies, E.V.1
-
42
-
-
78650883397
-
Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae
-
Carrolo, M., et al. Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae. PLoS One, 5, 2010, e15678.
-
(2010)
PLoS One
, vol.5
-
-
Carrolo, M.1
-
43
-
-
79953024811
-
Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1
-
Godeke, J., et al. Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1. ISME J. 5 (2011), 613–626.
-
(2011)
ISME J.
, vol.5
, pp. 613-626
-
-
Godeke, J.1
-
44
-
-
0142214650
-
Prophage contributions to bacterial population dynamics
-
Bossi, L., et al. Prophage contributions to bacterial population dynamics. J. Bacteriol. 185 (2003), 6467–6471.
-
(2003)
J. Bacteriol.
, vol.185
, pp. 6467-6471
-
-
Bossi, L.1
-
45
-
-
84874828536
-
Temperate bacterial viruses as double-edged swords in bacterial warfare
-
Gama, J.A., et al. Temperate bacterial viruses as double-edged swords in bacterial warfare. PLoS One, 8, 2013, e59043.
-
(2013)
PLoS One
, vol.8
-
-
Gama, J.A.1
-
46
-
-
84971595198
-
Temperate phages enhance pathogen fitness in chronic lung infection
-
Davies, E.V., et al. Temperate phages enhance pathogen fitness in chronic lung infection. ISME J. 10 (2016), 2553–2555.
-
(2016)
ISME J.
, vol.10
, pp. 2553-2555
-
-
Davies, E.V.1
-
47
-
-
84971642824
-
Temperate phages promote colicin-dependent fitness of Salmonella enterica serovar Typhimurium
-
Nedialkova, N., et al. Temperate phages promote colicin-dependent fitness of Salmonella enterica serovar Typhimurium. Environ. Microbiol. 18 (2016), 1591–1603.
-
(2016)
Environ. Microbiol.
, vol.18
, pp. 1591-1603
-
-
Nedialkova, N.1
-
48
-
-
0034056335
-
Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice
-
Zhang, X., et al. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J. Infect. Dis. 181 (2000), 664–670.
-
(2000)
J. Infect. Dis.
, vol.181
, pp. 664-670
-
-
Zhang, X.1
-
49
-
-
84876005978
-
Prophage induction is enhanced and required for renal disease and lethality in an EHEC mouse model
-
Tyler, J.S., et al. Prophage induction is enhanced and required for renal disease and lethality in an EHEC mouse model. PLoS Pathog., 9, 2013, e1003236.
-
(2013)
PLoS Pathog.
, vol.9
-
-
Tyler, J.S.1
-
50
-
-
59049089396
-
Killing niche competitors by remote-control bacteriophage induction
-
Selva, L., et al. Killing niche competitors by remote-control bacteriophage induction. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 1234–1238.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 1234-1238
-
-
Selva, L.1
-
51
-
-
84994504484
-
Bacterial viruses enable their hosts to acquire antibiotic resistance genes from neighboring cells
-
Haaber, J., et al. Bacterial viruses enable their hosts to acquire antibiotic resistance genes from neighboring cells. Nat. Commun., 7, 2016, 13333.
-
(2016)
Nat. Commun.
, vol.7
, pp. 13333
-
-
Haaber, J.1
-
52
-
-
85014850788
-
Novel 'superspreader’ bacteriophages promote horizontal gene transfer by transformation
-
Keen, E.C., et al. Novel 'superspreader’ bacteriophages promote horizontal gene transfer by transformation. mBio 8 (2017), e02115–e02116.
-
(2017)
mBio
, vol.8
, pp. e02115-e02116
-
-
Keen, E.C.1
-
53
-
-
85035028829
-
How do bacteriophages promote antibiotic resistance in the environment?
-
Balcázar, J.L., How do bacteriophages promote antibiotic resistance in the environment?. Clin. Microbiol. Infect. 24 (2018), 447–449.
-
(2018)
Clin. Microbiol. Infect.
, vol.24
, pp. 447-449
-
-
Balcázar, J.L.1
-
54
-
-
85045766520
-
Comprehensive analysis of mobile genetic elements in the gut microbiome reveals phylum-level niche-adaptive gene pools
-
Jiang, X., et al. Comprehensive analysis of mobile genetic elements in the gut microbiome reveals phylum-level niche-adaptive gene pools. bioRxiv, 2017, 214213.
-
(2017)
bioRxiv
, pp. 214213
-
-
Jiang, X.1
-
55
-
-
84922964128
-
Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics
-
Roux, S., et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLife, 3, 2014, e03125.
-
(2014)
eLife
, vol.3
-
-
Roux, S.1
-
56
-
-
84945491851
-
Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton
-
Labonte, J., et al. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J. 9 (2015), 2386–2399.
-
(2015)
ISME J.
, vol.9
, pp. 2386-2399
-
-
Labonte, J.1
-
57
-
-
84903835646
-
Strain- and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products
-
Beitel, C.W., et al. Strain- and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products. PeerJ, 2, 2014, e415.
-
(2014)
PeerJ
, vol.2
-
-
Beitel, C.W.1
-
58
-
-
85020779896
-
Scaffolding bacterial genomes and probing host-virus interactions in gut microbiome by proximity ligation (chromosome capture) assay
-
Marbouty, M., et al. Scaffolding bacterial genomes and probing host-virus interactions in gut microbiome by proximity ligation (chromosome capture) assay. Sci. Adv., 3, 2017, e1602105.
-
(2017)
Sci. Adv.
, vol.3
-
-
Marbouty, M.1
-
59
-
-
85009084204
-
Prophage-mediated defense against viral attack and viral counter-defense
-
Dedrick, R.M., et al. Prophage-mediated defense against viral attack and viral counter-defense. Nat. Microbiol., 9, 2017, 16251.
-
(2017)
Nat. Microbiol.
, vol.9
, pp. 16251
-
-
Dedrick, R.M.1
-
60
-
-
84976274304
-
Prophages mediate defense against phage infection through diverse mechanisms
-
Bondy-Denomy, J., et al. Prophages mediate defense against phage infection through diverse mechanisms. ISME J. 10 (2016), 2854–2866.
-
(2016)
ISME J.
, vol.10
, pp. 2854-2866
-
-
Bondy-Denomy, J.1
-
61
-
-
0026566361
-
The Rex system of bacteriophage lambda: tolerance and altruistic cell death
-
Parma, D.H., et al. The Rex system of bacteriophage lambda: tolerance and altruistic cell death. Genes Dev. 6 (1992), 497–510.
-
(1992)
Genes Dev.
, vol.6
, pp. 497-510
-
-
Parma, D.H.1
-
62
-
-
84959862900
-
Carriage of λ latent virus is costly for its bacterial host due to frequent reactivation in monoxenic mouse intestine
-
De Paepe, M., et al. Carriage of λ latent virus is costly for its bacterial host due to frequent reactivation in monoxenic mouse intestine. PLoS Genet., 12, 2016, e1005861.
-
(2016)
PLoS Genet.
, vol.12
-
-
De Paepe, M.1
-
63
-
-
85012157574
-
Communication between viruses guides lysis–lysogeny decisions
-
Erez, Z., et al. Communication between viruses guides lysis–lysogeny decisions. Nature 541 (2017), 488–493.
-
(2017)
Nature
, vol.541
, pp. 488-493
-
-
Erez, Z.1
-
64
-
-
79251573217
-
Cryptic prophages help bacteria cope with adverse environments
-
Wang, X., et al. Cryptic prophages help bacteria cope with adverse environments. Nat. Commun., 1, 2010, 147.
-
(2010)
Nat. Commun.
, vol.1
, pp. 147
-
-
Wang, X.1
-
65
-
-
80052052462
-
Within-host competition determines reproductive success of temperate bacteriophages
-
Refardt, D., Within-host competition determines reproductive success of temperate bacteriophages. ISME J. 5 (2011), 1451–1460.
-
(2011)
ISME J.
, vol.5
, pp. 1451-1460
-
-
Refardt, D.1
-
66
-
-
84928053119
-
Polylysogeny magnifies competitiveness of a bacterial pathogen in vivo
-
Burns, N., et al. Polylysogeny magnifies competitiveness of a bacterial pathogen in vivo. Evol. Appl. 8 (2014), 346–351.
-
(2014)
Evol. Appl.
, vol.8
, pp. 346-351
-
-
Burns, N.1
-
67
-
-
84879663855
-
Enterococcus faecalis prophage dynamics and contributions to pathogenic traits
-
Matos, R.C., et al. Enterococcus faecalis prophage dynamics and contributions to pathogenic traits. PLoS Genet., 9, 2013, e1003539.
-
(2013)
PLoS Genet.
, vol.9
-
-
Matos, R.C.1
-
68
-
-
84867903844
-
A composite bacteriophage alters colonization by an intestinal commensal bacterium
-
Duerkop, B.A., et al. A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 17621–17626.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 17621-17626
-
-
Duerkop, B.A.1
-
69
-
-
84922245262
-
Disease-specific alterations in the enteric virome in inflammatory bowel disease
-
Norman, J.M., et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160 (2015), 447–460.
-
(2015)
Cell
, vol.160
, pp. 447-460
-
-
Norman, J.M.1
-
70
-
-
85025599680
-
Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children
-
Zhao, G., et al. Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children. Proc. Natl. Acad. Sci. U. S. A. 114 (2017), E6166–E6175.
-
(2017)
Proc. Natl. Acad. Sci. U. S. A.
, vol.114
, pp. E6166-E6175
-
-
Zhao, G.1
-
71
-
-
84963959977
-
Enteric viruses ameliorate gut inflammation via Toll-like receptor 3 and Toll-like receptor 7-mediated interferon-β production
-
Yang, J.Y., et al. Enteric viruses ameliorate gut inflammation via Toll-like receptor 3 and Toll-like receptor 7-mediated interferon-β production. Immunity 44 (2016), 889–900.
-
(2016)
Immunity
, vol.44
, pp. 889-900
-
-
Yang, J.Y.1
-
72
-
-
84954442290
-
Transkingdom control of viral infection and immunity in the mammalian intestine
-
aad5872
-
Pfeiffer, J.K., Virgin, H.W., Transkingdom control of viral infection and immunity in the mammalian intestine. Science, 351, 2016 aad5872.
-
(2016)
Science
, vol.351
-
-
Pfeiffer, J.K.1
Virgin, H.W.2
-
73
-
-
85018297391
-
Ménage à trois in the human gut: interactions between host, bacteria and phages
-
Mirzaei, M.K., Maurice, C.F., Ménage à trois in the human gut: interactions between host, bacteria and phages. Nat. Rev. Microbiol. 15 (2017), 397–408.
-
(2017)
Nat. Rev. Microbiol.
, vol.15
, pp. 397-408
-
-
Mirzaei, M.K.1
Maurice, C.F.2
-
74
-
-
85037060220
-
Internalization of a polysialic acid-binding Escherichia coli bacteriophage into eukaryotic neuroblastoma cells
-
Lehti, T.A., et al. Internalization of a polysialic acid-binding Escherichia coli bacteriophage into eukaryotic neuroblastoma cells. Nat. Commun., 8, 2017, 1915.
-
(2017)
Nat. Commun.
, vol.8
, pp. 1915
-
-
Lehti, T.A.1
-
75
-
-
84879515171
-
Bacteriophage adhering to mucus provide a non-host-derived immunity
-
Barr, J.J., et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 10771–10776.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 10771-10776
-
-
Barr, J.J.1
-
76
-
-
0024467207
-
Some properties of dendritic macrophages from peripheral lymph
-
Barfoot, R., et al. Some properties of dendritic macrophages from peripheral lymph. Immunology, 68, 1989, 233.
-
(1989)
Immunology
, vol.68
, pp. 233
-
-
Barfoot, R.1
-
77
-
-
0035321325
-
Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria
-
Rescigno, M., et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2 (2001), 361–367.
-
(2001)
Nat. Immunol.
, vol.2
, pp. 361-367
-
-
Rescigno, M.1
-
78
-
-
84879373236
-
Resident viruses and their interactions with the immune system
-
Duerkop, B.A., Hooper, L.V., Resident viruses and their interactions with the immune system. Nat. Immunol. 14 (2013), 654–659.
-
(2013)
Nat. Immunol.
, vol.14
, pp. 654-659
-
-
Duerkop, B.A.1
Hooper, L.V.2
-
79
-
-
85039910974
-
Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers
-
e01874-17
-
Nguyen, S., et al. Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. mBio, 8, 2018 e01874-17.
-
(2018)
mBio
, vol.8
-
-
Nguyen, S.1
-
80
-
-
85016641343
-
Means to facilitate the overcoming of gastric juice barrier by a therapeutic staphylococcal bacteriophage A5/80
-
Miedzybrodzki, R., et al. Means to facilitate the overcoming of gastric juice barrier by a therapeutic staphylococcal bacteriophage A5/80. Front. Microbiol., 23, 2017, 467.
-
(2017)
Front. Microbiol.
, vol.23
, pp. 467
-
-
Miedzybrodzki, R.1
-
81
-
-
0141891348
-
Metagenomic analyses of an uncultured viral community from human feces
-
Breitbart, M., et al. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 185 (2003), 6220–6223.
-
(2003)
J. Bacteriol.
, vol.185
, pp. 6220-6223
-
-
Breitbart, M.1
-
82
-
-
84943657766
-
Early life dynamics of the human gut virome and bacterial microbiome in infants
-
Lim, E.S., et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21 (2015), 1228–1234.
-
(2015)
Nat. Med.
, vol.21
, pp. 1228-1234
-
-
Lim, E.S.1
-
83
-
-
85030318437
-
Viral communities of the human gut: metagenomic analysis of composition and dynamics
-
Published online October 3, 2017
-
Aggarwala, V., et al. Viral communities of the human gut: metagenomic analysis of composition and dynamics. Mob. DNA, 2017, 10.1186/s13100-017-0095 Published online October 3, 2017.
-
(2017)
Mob. DNA
-
-
Aggarwala, V.1
-
84
-
-
84903616167
-
Exploiting gut bacteriophages for human health
-
Dalmasso, M., et al. Exploiting gut bacteriophages for human health. Trends Microbiol. 22 (2014), 399–405.
-
(2014)
Trends Microbiol.
, vol.22
, pp. 399-405
-
-
Dalmasso, M.1
-
85
-
-
84961711517
-
Genetic and life history traits associated with the distribution of prophages in bacteria
-
Touchon, M., et al. Genetic and life history traits associated with the distribution of prophages in bacteria. ISME J. 10 (2016), 2744–2754.
-
(2016)
ISME J.
, vol.10
, pp. 2744-2754
-
-
Touchon, M.1
-
86
-
-
70349397986
-
In vivo replication of T4 and T7 bacteriophages in germ-free mice colonized with Escherichia coli
-
Weiss, M., et al. In vivo replication of T4 and T7 bacteriophages in germ-free mice colonized with Escherichia coli. Virology 10 (2009), 16–23.
-
(2009)
Virology
, vol.10
, pp. 16-23
-
-
Weiss, M.1
-
87
-
-
84869214358
-
Virulent bacteriophages can target O104:H4 enteroaggregative Escherichia coli in the mouse intestine
-
Maura, D., Virulent bacteriophages can target O104:H4 enteroaggregative Escherichia coli in the mouse intestine. Antimicrob. Agents Chemother. 56 (2012), 6235–6242.
-
(2012)
Antimicrob. Agents Chemother.
, vol.56
, pp. 6235-6242
-
-
Maura, D.1
-
88
-
-
84890281518
-
Gnotobiotic mouse model of phage–bacterial host dynamics in the human gut
-
Reyes, A., et al. Gnotobiotic mouse model of phage–bacterial host dynamics in the human gut. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 20236–20241.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 20236-20241
-
-
Reyes, A.1
-
89
-
-
84921283583
-
BREX is a novel phage resistance system widespread in microbial genomes
-
Goldfarb, T., et al. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J. 34 (2015), 169–183.
-
(2015)
EMBO J.
, vol.34
, pp. 169-183
-
-
Goldfarb, T.1
-
90
-
-
85032682250
-
DISARM is a widespread bacterial defense system with broad anti-phage activities
-
Ofir, G., et al. DISARM is a widespread bacterial defense system with broad anti-phage activities. Nat. Microbiol. 3 (2018), 90–98.
-
(2018)
Nat. Microbiol.
, vol.3
, pp. 90-98
-
-
Ofir, G.1
-
91
-
-
85041237426
-
Systematic discovery of antiphage defense systems in the microbial pangenome
-
Published online 25 January 2018
-
Doron, S., et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science, 2018, 10.1126/science.aar4120 Published online 25 January 2018.
-
(2018)
Science
-
-
Doron, S.1
-
92
-
-
84855245603
-
Antibiotics in feed induce prophages in swine fecal microbiomes
-
e00260-11
-
Allen, H.K., et al. Antibiotics in feed induce prophages in swine fecal microbiomes. mBio, 2, 2011 e00260-11.
-
(2011)
mBio
, vol.2
-
-
Allen, H.K.1
-
93
-
-
85029177350
-
The in-feed antibiotic carbadox induces phage gene transcription in the swine gut microbiome
-
Johnson, T.A., et al. The in-feed antibiotic carbadox induces phage gene transcription in the swine gut microbiome. mBio 8 (2017), e00709–e00717.
-
(2017)
mBio
, vol.8
, pp. e00709-e00717
-
-
Johnson, T.A.1
-
94
-
-
85015281807
-
Inflammation boosts bacteriophage transfer between Salmonella spp
-
Diard, M., et al. Inflammation boosts bacteriophage transfer between Salmonella spp. Science 355 (2017), 1211–1215.
-
(2017)
Science
, vol.355
, pp. 1211-1215
-
-
Diard, M.1
-
95
-
-
0029866651
-
Long-circulating bacteriophage as antibacterial agents
-
Merril, C.R., et al. Long-circulating bacteriophage as antibacterial agents. Proc. Natl. Acad. Sci. U. S. A. 93 (1996), 3188–3192.
-
(1996)
Proc. Natl. Acad. Sci. U. S. A.
, vol.93
, pp. 3188-3192
-
-
Merril, C.R.1
-
96
-
-
84941143176
-
Oral application of T4 phage induces weak antibody production in the gut and in the blood
-
Majewksa, J., et al. Oral application of T4 phage induces weak antibody production in the gut and in the blood. Viruses 7 (2015), 4783–4799.
-
(2015)
Viruses
, vol.7
, pp. 4783-4799
-
-
Majewksa, J.1
-
97
-
-
0015182749
-
Immunologic responses to bacteriophage phi-X 174 in immunodeficiency diseases
-
Ochs, H.D., et al. Immunologic responses to bacteriophage phi-X 174 in immunodeficiency diseases. J. Clin. Invest. 50 (1971), 2559–2568.
-
(1971)
J. Clin. Invest.
, vol.50
, pp. 2559-2568
-
-
Ochs, H.D.1
-
98
-
-
85021795668
-
Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen
-
Roach, D.R., et al. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe 12 (2017), 38–47.
-
(2017)
Cell Host Microbe
, vol.12
, pp. 38-47
-
-
Roach, D.R.1
-
99
-
-
84963785503
-
Computational approaches to predict bacteriophage–host relationships
-
Edwards, R.A., et al. Computational approaches to predict bacteriophage–host relationships. FEMS Microbiol. Rev. 40 (2016), 258–272.
-
(2016)
FEMS Microbiol. Rev.
, vol.40
, pp. 258-272
-
-
Edwards, R.A.1
-
100
-
-
85034641556
-
The gut microbiota facilitates drifts in the genetic diversity and infectivity of bacterial viruses
-
De Sordi, L., et al. The gut microbiota facilitates drifts in the genetic diversity and infectivity of bacterial viruses. Cell Host Microbe 22 (2017), 801–808.
-
(2017)
Cell Host Microbe
, vol.22
, pp. 801-808
-
-
De Sordi, L.1
|