메뉴 건너뛰기




Volumn 24, Issue 8, 2018, Pages 3285-3301

Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems

Author keywords

climate change; mean residence time; soil health; sustainable intensification; the global carbon cycle

Indexed keywords

AGRICULTURAL ECOSYSTEM; CARBON CYCLE; CARBON SEQUESTRATION; CLIMATE CHANGE; HOLISTIC APPROACH; ORGANIC CARBON; RESIDENCE TIME; SOIL ORGANIC MATTER; SUSTAINABILITY;

EID: 85048167346     PISSN: 13541013     EISSN: 13652486     Source Type: Journal    
DOI: 10.1111/gcb.14054     Document Type: Review
Times cited : (521)

References (190)
  • 1
    • 84959367200 scopus 로고    scopus 로고
    • Total soil organic carbon and carbon sequestration potential in Nigeria
    • Akpa, S., Odeh, I., Bishop, T., Hartemink, A., & Amapu, I. (2016). Total soil organic carbon and carbon sequestration potential in Nigeria. Geoderma, 271, 202–215. https://doi.org/10.1016/j.geoderma.2016.02.021
    • (2016) Geoderma , vol.271 , pp. 202-215
    • Akpa, S.1    Odeh, I.2    Bishop, T.3    Hartemink, A.4    Amapu, I.5
  • 2
    • 0028159937 scopus 로고
    • Changes in carbon storage in temperate humic loamy soils after forest clearing and continuous corn cropping in France
    • Arrouays, D., & Pelissier, P. (1994). Changes in carbon storage in temperate humic loamy soils after forest clearing and continuous corn cropping in France. Plant and Soil, 160(2), 215–223. https://doi.org/10.1007/bf00010147
    • (1994) Plant and Soil , vol.160 , Issue.2 , pp. 215-223
    • Arrouays, D.1    Pelissier, P.2
  • 4
    • 0030302293 scopus 로고    scopus 로고
    • Total carbon and nitrogen in soils of the world
    • Batjes, N. H. (1996). Total carbon and nitrogen in soils of the world. European Journal of Soil Science, 47, 151–163. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x
    • (1996) European Journal of Soil Science , vol.47 , pp. 151-163
    • Batjes, N.H.1
  • 5
    • 84891937275 scopus 로고    scopus 로고
    • The carbon and nitrogen in soils of the world.European
    • Batjes, N. (2014). The carbon and nitrogen in soils of the world.European. Journal of Soil Science, 65, 10–21. https://doi.org/10.1111/ejss.12114_2
    • (2014) Journal of Soil Science , vol.65 , pp. 10-21
    • Batjes, N.1
  • 6
    • 84956693473 scopus 로고    scopus 로고
    • Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks
    • Batjes, N. (2016). Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma, 269, 61–68. https://doi.org/10.1016/j.geoderma.2016.01.034
    • (2016) Geoderma , vol.269 , pp. 61-68
    • Batjes, N.1
  • 7
    • 0031473965 scopus 로고    scopus 로고
    • Possibilities for carbon sequestration in tropical and subtropical soils
    • Batjes, N. H., & Sombroek, W. G. (1997). Possibilities for carbon sequestration in tropical and subtropical soils. Global Change Biology, 3(2), 161–173. https://doi.org/10.1046/j.1365-2486.1997.00062.x
    • (1997) Global Change Biology , vol.3 , Issue.2 , pp. 161-173
    • Batjes, N.H.1    Sombroek, W.G.2
  • 8
    • 79955961271 scopus 로고    scopus 로고
    • Near infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils- Critical review and research perspectives
    • Bellon-Maurel, V., & McBratney, A. (2011). Near infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils- Critical review and research perspectives. Soil Biology and Biochemistry, 43, 1398–1410. https://doi.org/10.1016/j.soilbio.2011.02.019
    • (2011) Soil Biology and Biochemistry , vol.43 , pp. 1398-1410
    • Bellon-Maurel, V.1    McBratney, A.2
  • 9
    • 84988649111 scopus 로고    scopus 로고
    • Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro
    • Blagodatskaya, E., Blagodatsky, S., Khomyakov, N., Myachina, O., & Kuzyakov, Y. (2016). Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro. Scientific Reports, 6, 22240. https://doi.org/10.1038/srep22240
    • (2016) Scientific Reports , vol.6 , pp. 22240
    • Blagodatskaya, E.1    Blagodatsky, S.2    Khomyakov, N.3    Myachina, O.4    Kuzyakov, Y.5
  • 10
    • 55549101238 scopus 로고    scopus 로고
    • Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review
    • Blagodatskaya, E., & Kuzyakov, Y. (2008). Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review. Biology and Fertility of Soils, 45(2), 115–131. https://doi.org/10.1007/s00374-008-0334-y
    • (2008) Biology and Fertility of Soils , vol.45 , Issue.2 , pp. 115-131
    • Blagodatskaya, E.1    Kuzyakov, Y.2
  • 11
    • 36348984450 scopus 로고    scopus 로고
    • Climate change effects on organic matter decomposition rates in ecosystems from the Maritime Antarctic and Falkland Islands
    • Bokhorst, S., Huskes, A., Convey, P., & Aerts, R. (2007). Climate change effects on organic matter decomposition rates in ecosystems from the Maritime Antarctic and Falkland Islands. Global Change Biology, 13, 2642–2653.
    • (2007) Global Change Biology , vol.13 , pp. 2642-2653
    • Bokhorst, S.1    Huskes, A.2    Convey, P.3    Aerts, R.4
  • 12
    • 84872602975 scopus 로고    scopus 로고
    • What can ecological science tell us about opportunities for carbon sequestration on arid rangelands in the United States?
    • Booker, K., Huntsinger, L., Bartolome, J., Sayre, N., & Stewart, W. (2013). What can ecological science tell us about opportunities for carbon sequestration on arid rangelands in the United States? Global Environmental Change-Human and Policy Dimensions, 23(1), 240–251. https://doi.org/10.1016/j.gloenvcha.2012.10.001
    • (2013) Global Environmental Change-Human and Policy Dimensions , vol.23 , Issue.1 , pp. 240-251
    • Booker, K.1    Huntsinger, L.2    Bartolome, J.3    Sayre, N.4    Stewart, W.5
  • 13
    • 72749113967 scopus 로고    scopus 로고
    • The role of soil organic matter content in soil conservation and carbon sequestration studies: Case studies from Lithuania and the UK
    • Vols 1 and 2
    • Booth, C., Fullen, M., Jankauskas, B., Jankauskiene, G., Slepetiene, A., Kungolos, A., … Beriatos, E. (2005). The role of soil organic matter content in soil conservation and carbon sequestration studies: Case studies from Lithuania and the UK. Sustainable Development and Planning II, Vols 1 and 2, 84, 463–473.
    • (2005) Sustainable Development and Planning II , vol.84 , pp. 463-473
    • Booth, C.1    Fullen, M.2    Jankauskas, B.3    Jankauskiene, G.4    Slepetiene, A.5    Kungolos, A.6    Beriatos, E.7
  • 14
    • 84977139783 scopus 로고    scopus 로고
    • Combining livestock production information in a process-based vegetation model to reconstruct the history of grassland management
    • Chang, J., Ciais, P., Herrero, M., Havlik, P., & Campioli, M. (2016). Combining livestock production information in a process-based vegetation model to reconstruct the history of grassland management. Biogeosciences, 13, 3757–3776. https://doi.org/10.5194/bg-13-3757-2016
    • (2016) Biogeosciences , vol.13 , pp. 3757-3776
    • Chang, J.1    Ciais, P.2    Herrero, M.3    Havlik, P.4    Campioli, M.5
  • 15
    • 84922637597 scopus 로고    scopus 로고
    • Soil aggregate stability to predict organic carbon outputs from soils
    • Chaplot, V., & Cooper, M. (2015). Soil aggregate stability to predict organic carbon outputs from soils. Geoderma, 243, 205–213. https://doi.org/10.1016/j.geoderma.2014.12.013
    • (2015) Geoderma , vol.243 , pp. 205-213
    • Chaplot, V.1    Cooper, M.2
  • 16
    • 68649094966 scopus 로고    scopus 로고
    • Soil carbon pools of reclaimed minesoils under grass and forest land uses
    • Chatterjee, A., Lal, R., Shrestha, R. K., & Ussiri, D. A. N. (2009). Soil carbon pools of reclaimed minesoils under grass and forest land uses. Land Degradation & Development, 20(3), 300–307. https://doi.org/10.1002/ldr.916
    • (2009) Land Degradation & Development , vol.20 , Issue.3 , pp. 300-307
    • Chatterjee, A.1    Lal, R.2    Shrestha, R.K.3    Ussiri, D.A.N.4
  • 17
    • 33745665782 scopus 로고    scopus 로고
    • Clay-sized organo-mineral complexes in a cultivation chronosequences: Revisiting the concept of the primary organo-mineral complexes
    • Chenu, C., & Plante, A. F. (2006). Clay-sized organo-mineral complexes in a cultivation chronosequences: Revisiting the concept of the primary organo-mineral complexes. European Journal of Soil Science, 57, 596–607. https://doi.org/10.1111/j.1365-2389.2006.00834.x
    • (2006) European Journal of Soil Science , vol.57 , pp. 596-607
    • Chenu, C.1    Plante, A.F.2
  • 19
    • 84881309738 scopus 로고    scopus 로고
    • Grassland soil organic carbon stocks: Status, opportunities, vulnerabilities
    • R. Lal, K. Lorenz, R. F. J. Hüttl, B. U. Schneider, J. Von Braun, (Eds.),, Dordrecht, the Netherlands, Springer
    • Conant, R. T. (2012). Grassland soil organic carbon stocks: Status, opportunities, vulnerabilities. In R. Lal, K. Lorenz, R. F. J. Hüttl, B. U. Schneider, & J. Von Braun (Eds.), Recarbonization of the Biosphere: Ecosystems and the Global C cycle (pp. 275–302). Dordrecht, the Netherlands: Springer. https://doi.org/10.1007/978-94-007-4159-1
    • (2012) Recarbonization of the Biosphere: Ecosystems and the Global C cycle , pp. 275-302
    • Conant, R.T.1
  • 20
    • 33748856371 scopus 로고    scopus 로고
    • Soil organic matter and other attributes as indicators to evaluate soil quality in conservation systems
    • Conceiçao, P., Amado, T., Mielniczuk, J., & Spagnollo, E. (2005). Soil organic matter and other attributes as indicators to evaluate soil quality in conservation systems. Revista Brasileira De Ciencia Do Solo, 29(5), 777–788. https://doi.org/10.1590/s0100-06832005000500013
    • (2005) Revista Brasileira De Ciencia Do Solo , vol.29 , Issue.5 , pp. 777-788
    • Conceiçao, P.1    Amado, T.2    Mielniczuk, J.3    Spagnollo, E.4
  • 21
    • 33748747869 scopus 로고    scopus 로고
    • Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica
    • Connell, L., Redman, R., Craig, S., & Rodriguez, R. (2006). Distribution and abundance of fungi in the soils of Taylor Valley, Antarctica. Soil Biology & Biochemistry, 38(10), 3083–3094. https://doi.org/10.1016/j.soilbio.2006.02.016
    • (2006) Soil Biology & Biochemistry , vol.38 , Issue.10 , pp. 3083-3094
    • Connell, L.1    Redman, R.2    Craig, S.3    Rodriguez, R.4
  • 22
    • 58349119586 scopus 로고    scopus 로고
    • Long-term changes in mollisol organic carbon and nitrogen
    • David, M., Mclsaac, G., Darmody, R., & Omonode, R. (2009). Long-term changes in mollisol organic carbon and nitrogen. Journal of Environmental Quality, 38(1), 200–211. https://doi.org/10.2134/jeq2008.0132
    • (2009) Journal of Environmental Quality , vol.38 , Issue.1 , pp. 200-211
    • David, M.1    Mclsaac, G.2    Darmody, R.3    Omonode, R.4
  • 23
    • 33644866828 scopus 로고    scopus 로고
    • Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
    • Davidson, E., & Janssens, I. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081), 165–173. https://doi.org/10.1038/nature04514
    • (2006) Nature , vol.440 , Issue.7081 , pp. 165-173
    • Davidson, E.1    Janssens, I.2
  • 24
    • 41849150021 scopus 로고    scopus 로고
    • Plant functional traits and soil carbon sequestration in contrasting biomes
    • De Deyn, G., Cornelissen, J., & Bardgett, R. (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 11(5), 516–531. https://doi.org/10.1111/j.1461-0248.2008.01164.x
    • (2008) Ecology Letters , vol.11 , Issue.5 , pp. 516-531
    • De Deyn, G.1    Cornelissen, J.2    Bardgett, R.3
  • 25
    • 84878067145 scopus 로고    scopus 로고
    • Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges
    • Dejong, J., Soga, K., Kavazanjian, E., Burns, S., Van Paassen, L., Al Qabany, A., … Weaver, T. (2013). Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges. Geotechnique, 63(4), 287–301. https://doi.org/10.1680/geot.sip13.p.017
    • (2013) Geotechnique , vol.63 , Issue.4 , pp. 287-301
    • Dejong, J.1    Soga, K.2    Kavazanjian, E.3    Burns, S.4    Van Paassen, L.5    Al Qabany, A.6    Weaver, T.7
  • 26
    • 84881555113 scopus 로고    scopus 로고
    • A lifecycle model to evaluate carbon sequestration potential and greenhouse gas dynamics of managed grasslands
    • DeLonge, M., Ryals, R., & Silver, W. (2013). A lifecycle model to evaluate carbon sequestration potential and greenhouse gas dynamics of managed grasslands. Ecosystems, 16(6), 962–979. https://doi.org/10.1007/s10021-013-9660-5
    • (2013) Ecosystems , vol.16 , Issue.6 , pp. 962-979
    • DeLonge, M.1    Ryals, R.2    Silver, W.3
  • 27
    • 84888300347 scopus 로고    scopus 로고
    • Changes in soil organic carbon and total nitrogen stocks after conversion of meadow to cropland in Northeast China
    • Ding, F., Hu, Y., Li, L., Li, A., Shi, S., Lian, P., & Zeng, D. (2013). Changes in soil organic carbon and total nitrogen stocks after conversion of meadow to cropland in Northeast China. Plant and Soil, 373(1–2), 659–672. https://doi.org/10.1007/s11104-013-1827-5
    • (2013) Plant and Soil , vol.373 , Issue.1-2 , pp. 659-672
    • Ding, F.1    Hu, Y.2    Li, L.3    Li, A.4    Shi, S.5    Lian, P.6    Zeng, D.7
  • 28
    • 65349136008 scopus 로고    scopus 로고
    • Sequestration of organic carbon in West African soils by Amenagement en Courbes de Niveau
    • Doumbia, M., Jarju, A., Sene, M., Traore, K., Yost, R., Kablan, R., … Ballo, A. (2009). Sequestration of organic carbon in West African soils by Amenagement en Courbes de Niveau. Agronomy For Sustainable Development, 29(2), 267–275. https://doi.org/10.1051/agro:2008041
    • (2009) Agronomy For Sustainable Development , vol.29 , Issue.2 , pp. 267-275
    • Doumbia, M.1    Jarju, A.2    Sene, M.3    Traore, K.4    Yost, R.5    Kablan, R.6    Ballo, A.7
  • 29
    • 0033825728 scopus 로고    scopus 로고
    • Land quality indicators: Research plan
    • Dumanski, J., & Pieri, C. (2000). Land quality indicators: Research plan. Agriculture Ecosystems & Environment, 81(2), 93–102. https://doi.org/10.1016/s0167-8809(00)00183-3
    • (2000) Agriculture Ecosystems & Environment , vol.81 , Issue.2 , pp. 93-102
    • Dumanski, J.1    Pieri, C.2
  • 30
    • 84860690778 scopus 로고    scopus 로고
    • Soil organic matter turnover is governed by accessibility not recalcitrance
    • Dungait, J., Hopkins, D., Gregory, A., & Whitmore, A. (2012). Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology, 18(6), 1781–1796. https://doi.org/10.1111/j.1365-2486.2012.02665.x
    • (2012) Global Change Biology , vol.18 , Issue.6 , pp. 1781-1796
    • Dungait, J.1    Hopkins, D.2    Gregory, A.3    Whitmore, A.4
  • 31
    • 0017539417 scopus 로고
    • Can we control the carbon dioxide in the atmosphere?
    • Dyson, F. J. (1977). Can we control the carbon dioxide in the atmosphere? Energy, 2, 287–291. https://doi.org/10.1016/0360-5442(77)90033-0
    • (1977) Energy , vol.2 , pp. 287-291
    • Dyson, F.J.1
  • 32
    • 77957955750 scopus 로고    scopus 로고
    • New York Review of Books, 30 June 2010. Retrieved from
    • Dyson, F. (2008). The questions of global warming. New York Review of Books, 30 June 2010. Retrieved from http://www.nybooks.com/articles/2008/06/12/the-question-of-global-warming/
    • (2008) The questions of global warming
    • Dyson, F.1
  • 33
    • 85049526431 scopus 로고    scopus 로고
    • Washington, DC, Environmental and Energy Study Institute
    • EESI (2016). The role of agriculture at COP22. Washington, DC: Environmental and Energy Study Institute. http://www.eesi.org/articles/view/the-role-of-agriculture-at-cop22
    • (2016) The role of agriculture at COP22
  • 35
    • 84955399992 scopus 로고    scopus 로고
    • FAO STAT DATA/PRODUCTION. FAO, Rome, Italy
    • FAOSTAT (2015). FAO statistical database. FAO STAT DATA/PRODUCTION. FAO: Rome, Italy.
    • (2015) FAO statistical database
  • 36
    • 70449096624 scopus 로고    scopus 로고
    • FAO STAT DATA/PRODUCTION. FAO, Rome, Italy
    • FAOSTAT (2017). FAO statistical database. FAO STAT DATA/PRODUCTION. FAO: Rome, Italy.
    • (2017) FAO statistical database
  • 37
    • 84867552602 scopus 로고    scopus 로고
    • Soil fertility concepts over the past two centuries: The importance attributed to soil organic matter in developed and developing countries
    • Feller, C., Blanchart, E., Bernoux, M., Lal, R., & Manlay, R. (2012). Soil fertility concepts over the past two centuries: The importance attributed to soil organic matter in developed and developing countries. Archives in Agronomy & Soil Science, 58(suppl), 3–21. https://doi.org/10.1080/03650340.2012.693598
    • (2012) Archives in Agronomy & Soil Science , vol.58 , pp. 3-21
    • Feller, C.1    Blanchart, E.2    Bernoux, M.3    Lal, R.4    Manlay, R.5
  • 39
    • 33947236971 scopus 로고    scopus 로고
    • Towards an ecological classification of soil bacteria
    • Fierer, N., Bradford, M. A., & Jackson, R. B. (2007). Towards an ecological classification of soil bacteria. Ecology, 88, 1354–1364. https://doi.org/10.1890/05-1839
    • (2007) Ecology , vol.88 , pp. 1354-1364
    • Fierer, N.1    Bradford, M.A.2    Jackson, R.B.3
  • 40
    • 14844347488 scopus 로고    scopus 로고
    • Litter quality and the temperature sensitivity of decomposition
    • Fierer, N., Craine, J., McLauchlan, K., & Schimel, J. (2005). Litter quality and the temperature sensitivity of decomposition. Ecology, 86(2), 320–326. https://doi.org/10.1890/04-1254
    • (2005) Ecology , vol.86 , Issue.2 , pp. 320-326
    • Fierer, N.1    Craine, J.2    McLauchlan, K.3    Schimel, J.4
  • 41
    • 1842844383 scopus 로고    scopus 로고
    • Carbon input to soil may decrease soil carbon content
    • Fontaine, S., Bardoux, G., Abbadie, L., & Mariotti, A. (2004). Carbon input to soil may decrease soil carbon content. Ecology Letters, 7(4), 314–320. https://doi.org/10.1111/j.1461-0248.2004.00579.x
    • (2004) Ecology Letters , vol.7 , Issue.4 , pp. 314-320
    • Fontaine, S.1    Bardoux, G.2    Abbadie, L.3    Mariotti, A.4
  • 44
    • 3242728532 scopus 로고    scopus 로고
    • Carbon sequestration in the agricultural soils of Europe
    • Freibauer, A., Rounsevell, M., Smith, P., & Verhagen, J. (2004). Carbon sequestration in the agricultural soils of Europe. Geoderma, 122(1), 1–23. https://doi.org/10.1016/j.geoderma.2004.01.021
    • (2004) Geoderma , vol.122 , Issue.1 , pp. 1-23
    • Freibauer, A.1    Rounsevell, M.2    Smith, P.3    Verhagen, J.4
  • 45
    • 84931003821 scopus 로고    scopus 로고
    • From forest to cropland and pasture systems: A critical review of soil organic carbon stocks changes in Amazonia
    • Fujisaki, K., Perrin, A., Desjardins, T., Bernoux, M., Balbino, L., & Brossard, M. (2015). From forest to cropland and pasture systems: A critical review of soil organic carbon stocks changes in Amazonia. Global Change Biology, 21(7), 2773–2786. https://doi.org/10.1111/gcb.12906
    • (2015) Global Change Biology , vol.21 , Issue.7 , pp. 2773-2786
    • Fujisaki, K.1    Perrin, A.2    Desjardins, T.3    Bernoux, M.4    Balbino, L.5    Brossard, M.6
  • 46
    • 85019841088 scopus 로고    scopus 로고
    • Soil organic carbon changes after deforestation and agrosystem establishment in Amazonia: an assessment by diachronic approach
    • Fujisaki, K., Perrin, A., Garric, B., Balesdent, J., & Brossard, M. (2017). Soil organic carbon changes after deforestation and agrosystem establishment in Amazonia: an assessment by diachronic approach. Agriculture Ecosystems & Environment, 245, 63–73. https://doi.org/10.1016/j.agee.2017.05.011
    • (2017) Agriculture Ecosystems & Environment , vol.245 , pp. 63-73
    • Fujisaki, K.1    Perrin, A.2    Garric, B.3    Balesdent, J.4    Brossard, M.5
  • 47
    • 84929340361 scopus 로고    scopus 로고
    • Global carbon export from the terrestrial biosphere controlled by erosion
    • Galy, V., Peucker-Ehrenbrink, B., & Eglinton, T. (2015). Global carbon export from the terrestrial biosphere controlled by erosion. Nature, 521(7551), 204–207. https://doi.org/10.1038/nature14400
    • (2015) Nature , vol.521 , Issue.7551 , pp. 204-207
    • Galy, V.1    Peucker-Ehrenbrink, B.2    Eglinton, T.3
  • 48
    • 85049538158 scopus 로고    scopus 로고
    • Rome, Italy, FAO
    • Global Soil Partnership (2016). International network of black soils. Rome, Italy: FAO. http://www.fao.org/global-soil-partnership/pillars-action/1-soil-management/internationalnetworkblacksoils/en/
    • (2016) International network of black soils
  • 49
    • 84969510013 scopus 로고    scopus 로고
    • Understanding the Impacts of Soil, Climate, and Farming Practices on Soil Organic Carbon Sequestration: A Simulation Study in Australia
    • Godde, C., Thorburn, P., Biggs, J., & Meier, E. (2016). Understanding the Impacts of Soil, Climate, and Farming Practices on Soil Organic Carbon Sequestration: A Simulation Study in Australia. Frontiers in Plant Science, 7, 661. https://doi.org/10.3389/fpls.2016.00561
    • (2016) Frontiers in Plant Science , vol.7 , pp. 661
    • Godde, C.1    Thorburn, P.2    Biggs, J.3    Meier, E.4
  • 50
    • 0034914708 scopus 로고    scopus 로고
    • Estimating global land use change over the past 300 years: The HYDE database
    • Goldewijk, K. F. (2001). Estimating global land use change over the past 300 years: The HYDE database. Global Biogeochemical Cycles, 15, 417–433. https://doi.org/10.1029/1999gb001232
    • (2001) Global Biogeochemical Cycles , vol.15 , pp. 417-433
    • Goldewijk, K.F.1
  • 51
    • 78650072884 scopus 로고    scopus 로고
    • The HYDE3.1 Spatially explicit database of human-induced global land use change over the past 12,000 years
    • Goldewijk, K. K., Beusen, A., Ban Drecht, G., & de Vos, M. (2011). The HYDE3.1 Spatially explicit database of human-induced global land use change over the past 12,000 years. Global Change Biology, 20, 73–86.
    • (2011) Global Change Biology , vol.20 , pp. 73-86
    • Goldewijk, K.K.1    Beusen, A.2    Ban Drecht, G.3    de Vos, M.4
  • 52
    • 0000717203 scopus 로고
    • Adsorption of polyvinyl alcohols by montmorillonite
    • Greenland, D. (1963). Adsorption of polyvinyl alcohols by montmorillonite. Journal of Colloid Science, 18(7), 647–664. https://doi.org/10.1016/0095-8522(63)90058-8
    • (1963) Journal of Colloid Science , vol.18 , Issue.7 , pp. 647-664
    • Greenland, D.1
  • 53
    • 43949140870 scopus 로고    scopus 로고
    • Soil carbon saturation controls labile and stable carbon pool dynamics
    • Gulde, S., Chang, H., Amelung, W., Chang, C., & Six, J. (2008). Soil carbon saturation controls labile and stable carbon pool dynamics. Soil Science Society of America Journal, 72, 605–612. https://doi.org/10.2136/sssaj2007.0251
    • (2008) Soil Science Society of America Journal , vol.72 , pp. 605-612
    • Gulde, S.1    Chang, H.2    Amelung, W.3    Chang, C.4    Six, J.5
  • 54
    • 84951179518 scopus 로고    scopus 로고
    • Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature
    • Han, L., Sun, K., Jin, J., & Xing, B. (2016). Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature. Soil Biology & Biochemistry, 94, 107–121. https://doi.org/10.1016/j.soilbio.2015.11.023
    • (2016) Soil Biology & Biochemistry , vol.94 , pp. 107-121
    • Han, L.1    Sun, K.2    Jin, J.3    Xing, B.4
  • 55
    • 46449139858 scopus 로고    scopus 로고
    • Substrate quality and the temperature sensitivity of soil organic matter decomposition
    • Hartley, I., & Ineson, P. (2008). Substrate quality and the temperature sensitivity of soil organic matter decomposition. Soil Biology & Biochemistry, 40(7), 1567–1574. https://doi.org/10.1016/j.soilbio.2008.01.007
    • (2008) Soil Biology & Biochemistry , vol.40 , Issue.7 , pp. 1567-1574
    • Hartley, I.1    Ineson, P.2
  • 57
    • 79955953915 scopus 로고    scopus 로고
    • Changes in forest soil organic matter pools after a decade of elevated CO2 and O-3
    • Hofmockel, K., Zak, D., Moran, K., & Jastrow, J. (2011). Changes in forest soil organic matter pools after a decade of elevated CO2 and O-3. Soil Biology & Biochemistry, 43(7), 1518–1527. https://doi.org/10.1016/j.soilbio.2011.03.030
    • (2011) Soil Biology & Biochemistry , vol.43 , Issue.7 , pp. 1518-1527
    • Hofmockel, K.1    Zak, D.2    Moran, K.3    Jastrow, J.4
  • 58
    • 84870783677 scopus 로고    scopus 로고
    • Land transformation by humans
    • Hooke, R. L., Martin-Duque, J. F., & Pedraza, J. (2012). Land transformation by humans. GSA Today, 22(12), 4–10. https://doi.org/10.1130/gsat151a.1
    • (2012) GSA Today , vol.22 , Issue.12 , pp. 4-10
    • Hooke, R.L.1    Martin-Duque, J.F.2    Pedraza, J.3
  • 59
    • 0032854085 scopus 로고    scopus 로고
    • The annual net flux of carbon to the atmosphere from changes in land use 1850-1990
    • Houghton, R. (1999). The annual net flux of carbon to the atmosphere from changes in land use 1850-1990. Tellus Series B-Chemical and Physical Meteorology, 51(2), 298–313. https://doi.org/10.1034/j.1600-0889.1999.00013.x
    • (1999) Tellus Series B-Chemical and Physical Meteorology , vol.51 , Issue.2 , pp. 298-313
    • Houghton, R.1
  • 60
    • 0028592198 scopus 로고
    • Soil organic-matter and available water capacity
    • Hudson, B. (1994). Soil organic-matter and available water capacity. Journal of Soil and Water Conservation, 49(2), 189–194.
    • (1994) Journal of Soil and Water Conservation , vol.49 , Issue.2 , pp. 189-194
    • Hudson, B.1
  • 61
    • 85019418822 scopus 로고    scopus 로고
    • Agriculture in 2050: recalibrating Targets for Sustainable Intensification
    • Hunter, M., Smith, R., Schipanski, M., Atwood, L., & Mortensen, D. (2017). Agriculture in 2050: recalibrating Targets for Sustainable Intensification. BioScience, 67(4), 385–390. https://doi.org/10.1093/biosci/bix010
    • (2017) BioScience , vol.67 , Issue.4 , pp. 385-390
    • Hunter, M.1    Smith, R.2    Schipanski, M.3    Atwood, L.4    Mortensen, D.5
  • 62
    • 84875640672 scopus 로고    scopus 로고
    • Long-term soil carbon loss and accumulation in a catchment following the conversion of forest to arable land in northern Laos
    • Huon, S., de Rouw, A., Bonte, P., Robain, H., Valentin, C., Lefevre, I., … Sengtaheuanghoung, O. (2013). Long-term soil carbon loss and accumulation in a catchment following the conversion of forest to arable land in northern Laos. Agriculture Ecosystems & Environment, 169, 43–57. https://doi.org/10.1016/j.agee.2013.02.007
    • (2013) Agriculture Ecosystems & Environment , vol.169 , pp. 43-57
    • Huon, S.1    de Rouw, A.2    Bonte, P.3    Robain, H.4    Valentin, C.5    Lefevre, I.6    Sengtaheuanghoung, O.7
  • 63
    • 85049508755 scopus 로고    scopus 로고
    • Rome, Italy, FAO
    • ITPS (2017). GSOC map update. Rome, Italy: FAO.
    • (2017) GSOC map update
  • 64
    • 77953361540 scopus 로고    scopus 로고
    • Phytosequestration: Carbon Biosequestration by Plants and the Prospects of Genetic Engineering
    • Jansson, C., Wullschleger, S., Kalluri, U., & Tuskan, G. (2010). Phytosequestration: Carbon Biosequestration by Plants and the Prospects of Genetic Engineering. BioScience, 60(9), 685–696. https://doi.org/10.1525/bio.2010.60.9.6
    • (2010) BioScience , vol.60 , Issue.9 , pp. 685-696
    • Jansson, C.1    Wullschleger, S.2    Kalluri, U.3    Tuskan, G.4
  • 65
    • 0025731995 scopus 로고
    • Model estimates of co2 emissions from soil in response to global warming
    • Jenkinson, D., Adams, D., & Wild, A. (1991). Model estimates of co2 emissions from soil in response to global warming. Nature, 351(6324), 304–306. https://doi.org/10.1038/351304a0
    • (1991) Nature , vol.351 , Issue.6324 , pp. 304-306
    • Jenkinson, D.1    Adams, D.2    Wild, A.3
  • 66
    • 84984483854 scopus 로고
    • Interactions between fertilizer nitrogen and soil-nitrogen - the so-called priming effect
    • Jenkinson, D., Fox, R., & Rayner, J. (1985). Interactions between fertilizer nitrogen and soil-nitrogen - the so-called priming effect. Journal of Soil Science, 36(3), 425–444. https://doi.org/10.1111/j.1365-2389.1985.tb00348.x
    • (1985) Journal of Soil Science , vol.36 , Issue.3 , pp. 425-444
    • Jenkinson, D.1    Fox, R.2    Rayner, J.3
  • 67
    • 0038718847 scopus 로고    scopus 로고
    • How can increased use of biological N-2 fixation in agriculture benefit the environment?
    • Jensen, E., & Hauggaard-Nielsen, H. (2003). How can increased use of biological N-2 fixation in agriculture benefit the environment? Plant and Soil, 252(1), 177–186. https://doi.org/10.1023/a:1024189029226
    • (2003) Plant and Soil , vol.252 , Issue.1 , pp. 177-186
    • Jensen, E.1    Hauggaard-Nielsen, H.2
  • 68
    • 0027806429 scopus 로고
    • Automated elemental analysis - a rapid and reliable but expensive measurement of total carbon and nitrogen in plant and soil samples
    • Jimenez, R., & Ladha, J. (1993). Automated elemental analysis - a rapid and reliable but expensive measurement of total carbon and nitrogen in plant and soil samples. Communications in Soil Science and Plant Analysis, 24(15–16), 1897–1924. https://doi.org/10.1080/00103629309368926
    • (1993) Communications in Soil Science and Plant Analysis , vol.24 , Issue.15-16 , pp. 1897-1924
    • Jimenez, R.1    Ladha, J.2
  • 69
    • 0043272180 scopus 로고    scopus 로고
    • The vertical distribution of soil organic carbon and its relation to climate and vegetation
    • Jobbagy, E., & Jackson, R. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423–436. https://doi.org/10.2307/2641104
    • (2000) Ecological Applications , vol.10 , Issue.2 , pp. 423-436
    • Jobbagy, E.1    Jackson, R.2
  • 70
    • 9244249865 scopus 로고    scopus 로고
    • Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO(2)
    • Jones, M., & Donnelly, A. (2004). Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO(2). New Phytologist, 164(3), 423–439. https://doi.org/10.1111/j.1469-8137.2004.01201.x
    • (2004) New Phytologist , vol.164 , Issue.3 , pp. 423-439
    • Jones, M.1    Donnelly, A.2
  • 71
    • 84949184034 scopus 로고    scopus 로고
    • Accounting more precisely for peat and other soil carbon resources
    • R. Lal, (Eds.),, Dordrecht, Holland, Springer
    • Jungkunst, H. F., Krüger, J. P., Heitkamp, F., Erasmi, S., Glatzel, S., Fiedler, S., & Lal, R. (2012). Accounting more precisely for peat and other soil carbon resources. In R. Lal, et al. (Eds.), Recarbonization of the Biosphere (pp. 127–157). Dordrecht, Holland: Springer. https://doi.org/10.1007/978-94-007-4159-1
    • (2012) Recarbonization of the Biosphere , pp. 127-157
    • Jungkunst, H.F.1    Krüger, J.P.2    Heitkamp, F.3    Erasmi, S.4    Glatzel, S.5    Fiedler, S.6    Lal, R.7
  • 72
    • 33748708013 scopus 로고    scopus 로고
    • Sorption of dissolved organic matter by mineral soils of the Siberian forest tundra
    • Kawahigashi, M., Kaiser, K., Rodionov, A., & Guggenberger, G. (2006). Sorption of dissolved organic matter by mineral soils of the Siberian forest tundra. Global Change Biology, 12(10), 1868–1877. https://doi.org/10.1111/j.1365-2486.2006.01203.x
    • (2006) Global Change Biology , vol.12 , Issue.10 , pp. 1868-1877
    • Kawahigashi, M.1    Kaiser, K.2    Rodionov, A.3    Guggenberger, G.4
  • 73
    • 85034978928 scopus 로고    scopus 로고
    • Anaerobic microsites have an unaccounted role in soil carbon stabilization
    • Keiluweit, M., Wang, T., Kleber, M., Nico, P., & Fendor, F. S. (2017). Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nature Communications, 8, 1771. https://doi.org/10.1038/s41467-017-01406-6
    • (2017) Nature Communications , vol.8 , pp. 1771
    • Keiluweit, M.1    Wang, T.2    Kleber, M.3    Nico, P.4    Fendor, F.S.5
  • 74
    • 0028993640 scopus 로고
    • The temperature-dependence of soil organic-matter decomposition, and the effect of global warming on soil organic-C storage
    • Kirschbaum, M. (1995). The temperature-dependence of soil organic-matter decomposition, and the effect of global warming on soil organic-C storage. Soil Biology & Biochemistry, 27(6), 753–760. https://doi.org/10.1016/0038-0717(94)00242-s
    • (1995) Soil Biology & Biochemistry , vol.27 , Issue.6 , pp. 753-760
    • Kirschbaum, M.1
  • 75
    • 84938514731 scopus 로고    scopus 로고
    • Global distribution of soil organic carbon—Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world
    • Köchy, M., Hiederer, R., & Freibauer, A. (2015). Global distribution of soil organic carbon—Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil, 1, 351–365. https://doi.org/10.5194/soil-1-351-2015
    • (2015) Soil , vol.1 , pp. 351-365
    • Köchy, M.1    Hiederer, R.2    Freibauer, A.3
  • 76
    • 84994336798 scopus 로고    scopus 로고
    • The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: Fourteen years on
    • Kögel-Knabner, I. (2017). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: Fourteen years on. Soil Biology & Biochemistry, 105, A3–A8. https://doi.org/10.1016/j.soilbio.2016.08.011
    • (2017) Soil Biology & Biochemistry , vol.105 , pp. A3-A8
    • Kögel-Knabner, I.1
  • 77
    • 84925460576 scopus 로고    scopus 로고
    • Soil erosion and organic carbon export by wet snow avalances
    • Korup, O., & Rixen, C. (2014). Soil erosion and organic carbon export by wet snow avalances. Cryosphere, 8, 651–658.
    • (2014) Cryosphere , vol.8 , pp. 651-658
    • Korup, O.1    Rixen, C.2
  • 78
    • 77955172212 scopus 로고    scopus 로고
    • Priming effects: Interactions between living and dead organic matter
    • Kuzyakov, Y. (2010). Priming effects: Interactions between living and dead organic matter. Soil Biology & Biochemistry, 42(9), 1363–1371. https://doi.org/10.1016/j.soilbio.2010.04.003
    • (2010) Soil Biology & Biochemistry , vol.42 , Issue.9 , pp. 1363-1371
    • Kuzyakov, Y.1
  • 79
    • 0032171624 scopus 로고    scopus 로고
    • Drop size distribution and energy load of rainstorms at Ibadan, Nigeria
    • Lal, R. (1998). Drop size distribution and energy load of rainstorms at Ibadan, Nigeria. Soil and Tillage Research., 48, 103–114. https://doi.org/10.1016/s0167-1987(98)00109-3
    • (1998) Soil and Tillage Research. , vol.48 , pp. 103-114
    • Lal, R.1
  • 80
    • 0000718080 scopus 로고    scopus 로고
    • Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect
    • Lal, R. (1999). Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect. Progress in Environmental Science, 1(4), 307–326.
    • (1999) Progress in Environmental Science , vol.1 , Issue.4 , pp. 307-326
    • Lal, R.1
  • 81
    • 0034769832 scopus 로고    scopus 로고
    • Potential of desertification control to sequester carbon and mitigate the greenhouse effect
    • Lal, R. (2001). Potential of desertification control to sequester carbon and mitigate the greenhouse effect. Climatic Change, 15, 35–72. https://doi.org/10.1023/a:1017529816140
    • (2001) Climatic Change , vol.15 , pp. 35-72
    • Lal, R.1
  • 82
    • 0038070604 scopus 로고    scopus 로고
    • Soil erosion and the global carbon budget
    • Lal, R. (2003). Soil erosion and the global carbon budget. Environment International, 29(4), 437–450. https://doi.org/10.1016/s0160-4120(02)00192-7
    • (2003) Environment International , vol.29 , Issue.4 , pp. 437-450
    • Lal, R.1
  • 83
    • 4444352985 scopus 로고    scopus 로고
    • Soil carbon sequestration in India
    • Lal, R. (2004). Soil carbon sequestration in India. Climatic Change, 65, 277–296. https://doi.org/10.1023/b:clim.0000038202.46720.37
    • (2004) Climatic Change , vol.65 , pp. 277-296
    • Lal, R.1
  • 84
    • 77957958203 scopus 로고    scopus 로고
    • Managing Soils and Ecosystems for Mitigating Anthropogenic Carbon Emissions and Advancing Global Food Security
    • Lal, R. (2010). Managing Soils and Ecosystems for Mitigating Anthropogenic Carbon Emissions and Advancing Global Food Security. BioScience, 60(9), 708–721. https://doi.org/10.1525/bio.2010.60.9.8
    • (2010) BioScience , vol.60 , Issue.9 , pp. 708-721
    • Lal, R.1
  • 85
    • 85051177940 scopus 로고    scopus 로고
    • Biochar and soil carbon sequestration
    • M. Guo, Z. He, M. Uchimiya, (Eds.),, Madison, WI, SSSA Special Publications 63
    • Lal, R. (2015). Biochar and soil carbon sequestration. In M. Guo, Z. He, & M. Uchimiya (Eds.), Agricultural and environmental applications of biochar: Advances and barriers (pp. 1–23). Madison, WI: SSSA Special Publications 63.
    • (2015) Agricultural and environmental applications of biochar: Advances and barriers , pp. 1-23
    • Lal, R.1
  • 87
    • 85061217642 scopus 로고    scopus 로고
    • Promoting “4 per thousand” and “adapting african agriculture” by South-South cooperation: Conservation agriculture and sustainable intensification
    • (In Press)
    • Lal, R. (2018). Promoting “4 per thousand” and “adapting african agriculture” by South-South cooperation: Conservation agriculture and sustainable intensification. Soil and Tillage Research (In Press).
    • (2018) Soil and Tillage Research
    • Lal, R.1
  • 88
    • 28844451897 scopus 로고    scopus 로고
    • Achieving soil carbon sequestration in the US: A challenge to policy makers
    • Lal, R., Follett, R. F., & Kimble, J. M. (2003). Achieving soil carbon sequestration in the US: A challenge to policy makers. Soil Science, 168, 1–19.
    • (2003) Soil Science , vol.168 , pp. 1-19
    • Lal, R.1    Follett, R.F.2    Kimble, J.M.3
  • 91
    • 0001606326 scopus 로고
    • Priming effects of macroorganisms on microflora - a key process of soil function
    • K. Ritz, J. Dighton, K. Giller, (Eds.),, London, Wiley
    • Lavelle, P., & Gilot, C. (1994). Priming effects of macroorganisms on microflora - a key process of soil function. In K. Ritz, J. Dighton, & K. Giller (Eds.), Beyond the Biomass: Compositional and Functional Analysis of Soil Microbial Communities (pp. 173–180). London: Wiley.
    • (1994) Beyond the Biomass: Compositional and Functional Analysis of Soil Microbial Communities , pp. 173-180
    • Lavelle, P.1    Gilot, C.2
  • 94
    • 20344363194 scopus 로고    scopus 로고
    • Soil organic matter dynamics after deforestation along a farm field chronosequence in southern highlands of Ethiopia
    • Lemenih, M., Karltun, E., & Olsson, M. (2005). Soil organic matter dynamics after deforestation along a farm field chronosequence in southern highlands of Ethiopia. Agriculture Ecosystems & Environment, 109(1–2), 9–19. https://doi.org/10.1016/j.agee.2005.02.015
    • (2005) Agriculture Ecosystems & Environment , vol.109 , Issue.1-2 , pp. 9-19
    • Lemenih, M.1    Karltun, E.2    Olsson, M.3
  • 95
    • 24344458905 scopus 로고    scopus 로고
    • Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing
    • Li, C., Frolking, S., & Butterbach-Bahl, K. (2005). Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing. Climatic Change, 72(3), 321–338. https://doi.org/10.1007/s10584-005-6791-5
    • (2005) Climatic Change , vol.72 , Issue.3 , pp. 321-338
    • Li, C.1    Frolking, S.2    Butterbach-Bahl, K.3
  • 96
    • 61349112507 scopus 로고    scopus 로고
    • Peatlands and the carbon cycle: From local processes to global implications - a synthesis
    • Limpens, J., Berendse, F., Blodau, C., Canadell, J., Freeman, C., Holden, J., … Schaepman-Strub, G. (2008). Peatlands and the carbon cycle: From local processes to global implications - a synthesis. Biogeosciences, 5(5), 1475–1491. https://doi.org/10.5194/bg-5-1475-2008
    • (2008) Biogeosciences , vol.5 , Issue.5 , pp. 1475-1491
    • Limpens, J.1    Berendse, F.2    Blodau, C.3    Canadell, J.4    Freeman, C.5    Holden, J.6    Schaepman-Strub, G.7
  • 97
    • 83555176466 scopus 로고    scopus 로고
    • Carbon balances in US croplands during the last two decades of the twentieth century
    • Lokupitiya, E., Paustian, K., Easter, M., Williams, S., Andren, O., & Katterer, T. (2012). Carbon balances in US croplands during the last two decades of the twentieth century. Biogeochemistry, 107(1–3), 207–225. https://doi.org/10.1007/s10533-010-9546-y
    • (2012) Biogeochemistry , vol.107 , Issue.1-3 , pp. 207-225
    • Lokupitiya, E.1    Paustian, K.2    Easter, M.3    Williams, S.4    Andren, O.5    Katterer, T.6
  • 98
    • 33645919290 scopus 로고    scopus 로고
    • The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in sub-soil horizons
    • Lorenz, K., & Lal, R. (2005). The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in sub-soil horizons. Advance Agronomy, 88, 36–66.
    • (2005) Advance Agronomy , vol.88 , pp. 36-66
    • Lorenz, K.1    Lal, R.2
  • 99
    • 34548411800 scopus 로고    scopus 로고
    • Stabilization of organic carbon in chemically separated pools in reclaimed coal mine soils in Ohio
    • Lorenz, K., & Lal, R. (2007). Stabilization of organic carbon in chemically separated pools in reclaimed coal mine soils in Ohio. Geoderma, 141, 294–301. https://doi.org/10.1016/j.geoderma.2007.06.008
    • (2007) Geoderma , vol.141 , pp. 294-301
    • Lorenz, K.1    Lal, R.2
  • 100
    • 0037371256 scopus 로고    scopus 로고
    • Is there a critical level of organic matter in the agricultural soils of temperate regions: A review
    • Loveland, P., & Webb, J. (2003). Is there a critical level of organic matter in the agricultural soils of temperate regions: A review. Soil Tillage Research, 70, 1–8. https://doi.org/10.1016/s0167-1987(02)00139-3
    • (2003) Soil Tillage Research , vol.70 , pp. 1-8
    • Loveland, P.1    Webb, J.2
  • 101
    • 0027842922 scopus 로고
    • Management of tropical soils as sinks or sources of atmospheric carbon
    • Lugo, A., & Brown, S. (1993). Management of tropical soils as sinks or sources of atmospheric carbon. Plant and Soil, 149(1), 27–41. https://doi.org/10.1007/bf00010760
    • (1993) Plant and Soil , vol.149 , Issue.1 , pp. 27-41
    • Lugo, A.1    Brown, S.2
  • 102
    • 0034554736 scopus 로고    scopus 로고
    • ‘Clay hutches’: a novel interaction between bacteria and clay minerals
    • Lünsdorf, H., Erb, R. W., Abraham, W. R., & Timmis, K. N. (2000). ‘Clay hutches’: a novel interaction between bacteria and clay minerals. Environmental Microbiology, 2(2), 161–168.
    • (2000) Environmental Microbiology , vol.2 , Issue.2 , pp. 161-168
    • Lünsdorf, H.1    Erb, R.W.2    Abraham, W.R.3    Timmis, K.N.4
  • 105
    • 85006167836 scopus 로고    scopus 로고
    • Increased uncertainty in soil carbon stock measurement with spatial scale and sampling profile depth in world grasslands: A systematic analysis
    • Maillard, E., McConkey, B., & Angers, D. (2017). Increased uncertainty in soil carbon stock measurement with spatial scale and sampling profile depth in world grasslands: A systematic analysis. Agriculture Ecosystems & Environment, 236, 268–276. https://doi.org/10.1016/j.agee.2016.11.024
    • (2017) Agriculture Ecosystems & Environment , vol.236 , pp. 268-276
    • Maillard, E.1    McConkey, B.2    Angers, D.3
  • 108
    • 72049126660 scopus 로고    scopus 로고
    • Conservation of soil organic carbon, biodiversity and the provision of other ecosystem services along climatic gradients in West Africa
    • Marks, E., Aflakpui, G., Nkem, J., Poch, R., Khouma, M., Kokou, K., … Sebastia, M. (2009). Conservation of soil organic carbon, biodiversity and the provision of other ecosystem services along climatic gradients in West Africa. Biogeosciences, 6(8), 1825–1838. https://doi.org/10.5194/bg-6-1825-2009
    • (2009) Biogeosciences , vol.6 , Issue.8 , pp. 1825-1838
    • Marks, E.1    Aflakpui, G.2    Nkem, J.3    Poch, R.4    Khouma, M.5    Kokou, K.6    Sebastia, M.7
  • 109
    • 84973097773 scopus 로고    scopus 로고
    • Soil organic carbon, carbon stock and their relationships to physical attributes under forest soils in central Amazonia
    • Marques, J., Luizao, F., Teixeira, W., Vitel, C., & Marques, E. (2016). Soil organic carbon, carbon stock and their relationships to physical attributes under forest soils in central Amazonia. Revista Arvore, 40(2), 197–208. https://doi.org/10.1590/0100-67622016000200002
    • (2016) Revista Arvore , vol.40 , Issue.2 , pp. 197-208
    • Marques, J.1    Luizao, F.2    Teixeira, W.3    Vitel, C.4    Marques, E.5
  • 110
    • 0034051110 scopus 로고    scopus 로고
    • Plant residue biochemistry regulates soil carbon cycling and carbon sequestration
    • Martens, D. (2000). Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biology & Biochemistry, 32(3), 361–369. https://doi.org/10.1016/s0038-0717(99)00162-5
    • (2000) Soil Biology & Biochemistry , vol.32 , Issue.3 , pp. 361-369
    • Martens, D.1
  • 111
    • 84857975408 scopus 로고    scopus 로고
    • Land degradation impact on soil carbon losses through water erosion and CO2 emissions
    • Mchunu, C., & Chaplot, V. (2012). Land degradation impact on soil carbon losses through water erosion and CO2 emissions. Geoderma, 177, 72–79. https://doi.org/10.1016/j.geoderma.2012.01.038
    • (2012) Geoderma , vol.177 , pp. 72-79
    • Mchunu, C.1    Chaplot, V.2
  • 113
    • 85030650108 scopus 로고    scopus 로고
    • Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world
    • Melillo, J. M., Frey, S. D., DeAngelis, K. M., Werner, W. J., Bernard, M. J., Bowles, F. P., & Grandy, A. S. (2017). Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 358(6359), 101–105.
    • (2017) Science , vol.358 , Issue.6359 , pp. 101-105
    • Melillo, J.M.1    Frey, S.D.2    DeAngelis, K.M.3    Werner, W.J.4    Bernard, M.J.5    Bowles, F.P.6    Grandy, A.S.7
  • 114
    • 85040776668 scopus 로고    scopus 로고
    • Limited effect of organic matter on soil available water capacity
    • Minsany, B., & McBratney, A. B. (2017). Limited effect of organic matter on soil available water capacity. European Journal of Soil Science, 69, 39–47. https://doi.org/10.1111/ejss.12475
    • (2017) European Journal of Soil Science , vol.69 , pp. 39-47
    • Minsany, B.1    McBratney, A.B.2
  • 116
    • 84961119118 scopus 로고    scopus 로고
    • Selective organic carbon losses from soils by sheet erosion and main controls
    • Müller-Nedebock, D., Chivenge, P., & Chaplot, V. (2016). Selective organic carbon losses from soils by sheet erosion and main controls. Earth Surface Processes and Landforms, 41(10), 1399–1408. https://doi.org/10.1002/esp.3916
    • (2016) Earth Surface Processes and Landforms , vol.41 , Issue.10 , pp. 1399-1408
    • Müller-Nedebock, D.1    Chivenge, P.2    Chaplot, V.3
  • 117
    • 74449091720 scopus 로고    scopus 로고
    • Harvest impacts on soil carbon storage in temperate forests
    • Nave, L., Vance, E., Swanston, C., & Curtis, P. (2010). Harvest impacts on soil carbon storage in temperate forests. Forest Ecology and Management, 259(5), 857–866. https://doi.org/10.1016/j.foreco.2009.12.009
    • (2010) Forest Ecology and Management , vol.259 , Issue.5 , pp. 857-866
    • Nave, L.1    Vance, E.2    Swanston, C.3    Curtis, P.4
  • 118
    • 77953686640 scopus 로고    scopus 로고
    • Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment
    • Nowinski, N., Taneva, L., Trumbore, S., & Welker, J. (2010). Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia, 163(3), 785–792. https://doi.org/10.1007/s00442-009-1556-x
    • (2010) Oecologia , vol.163 , Issue.3 , pp. 785-792
    • Nowinski, N.1    Taneva, L.2    Trumbore, S.3    Welker, J.4
  • 119
    • 67649229448 scopus 로고    scopus 로고
    • Changes in carbon and inorganic nutrients after clear felling a rainforest in Malaysia and planting with acacia mangium
    • Nykvist, N., & Sim, B. (2009). Changes in carbon and inorganic nutrients after clear felling a rainforest in Malaysia and planting with acacia mangium. Journal of Tropical Forest Science, 21(2), 98–112.
    • (2009) Journal of Tropical Forest Science , vol.21 , Issue.2 , pp. 98-112
    • Nykvist, N.1    Sim, B.2
  • 120
    • 31144452516 scopus 로고    scopus 로고
    • Soil organic carbon as an indicator of environmental quality at the national scale: Inventory monitoring methods and policy relevance
    • Ogle, S., & Paustian, K. (2005). Soil organic carbon as an indicator of environmental quality at the national scale: Inventory monitoring methods and policy relevance. Canadian Journal of Soil Science, 85(4), 531–540. https://doi.org/10.4141/s04-087
    • (2005) Canadian Journal of Soil Science , vol.85 , Issue.4 , pp. 531-540
    • Ogle, S.1    Paustian, K.2
  • 122
    • 0002737717 scopus 로고
    • The global extent of soil degradation
    • D. J. Greenland, I. Szabols, (Eds.),, Wallingford, UK, CAB International
    • Oldeman, L. R. (1994). The global extent of soil degradation. In D. J. Greenland, & I. Szabols (Eds.), Soil Resilience and Sustainable Land Use (pp. 99–118). Wallingford, UK: CAB International.
    • (1994) Soil Resilience and Sustainable Land Use , pp. 99-118
    • Oldeman, L.R.1
  • 123
    • 84901809381 scopus 로고    scopus 로고
    • Experimental considerations, treatments and methods in determining soil organic carbon sequestration rates
    • Olson, K. R., Al-Kaisi, M., Lal, R., & Lowery, B. (2014). Experimental considerations, treatments and methods in determining soil organic carbon sequestration rates. Soil Science Society of America Journal, 78, 348–360. https://doi.org/10.2136/sssaj2013.09.0412
    • (2014) Soil Science Society of America Journal , vol.78 , pp. 348-360
    • Olson, K.R.1    Al-Kaisi, M.2    Lal, R.3    Lowery, B.4
  • 124
    • 84859761784 scopus 로고    scopus 로고
    • Impacts of Land-Use Change, Slope, and Erosion on Soil Organic Carbon Retention and Storage
    • Olson, K., Gennadiyev, A., Zhidkin, A., & Markelov, M. (2012). Impacts of Land-Use Change, Slope, and Erosion on Soil Organic Carbon Retention and Storage. Soil Science, 177(4), 269–278. https://doi.org/10.1097/ss.0b013e318244d8d2
    • (2012) Soil Science , vol.177 , Issue.4 , pp. 269-278
    • Olson, K.1    Gennadiyev, A.2    Zhidkin, A.3    Markelov, M.4
  • 126
    • 0035212659 scopus 로고    scopus 로고
    • The supramolecular structure of humic substances
    • Piccolo, A. (2001). The supramolecular structure of humic substances. Soil Science, 166, 810–832. https://doi.org/10.1097/00010694-200111000-00007
    • (2001) Soil Science , vol.166 , pp. 810-832
    • Piccolo, A.1
  • 127
    • 84869882501 scopus 로고    scopus 로고
    • Physical, chemical, and biochemical mechanisms of soil organic matter stabilization under conservation tillage systems: A central role for microbes and microbial by-products in C sequestration
    • Plaza, C., Courtier-Murias, D., Fernandez, J., Polo, A., & Simpson, A. (2013). Physical, chemical, and biochemical mechanisms of soil organic matter stabilization under conservation tillage systems: A central role for microbes and microbial by-products in C sequestration. Soil Biology & Biochemistry, 57, 124–134. https://doi.org/10.1016/j.soilbio.2012.07.026
    • (2013) Soil Biology & Biochemistry , vol.57 , pp. 124-134
    • Plaza, C.1    Courtier-Murias, D.2    Fernandez, J.3    Polo, A.4    Simpson, A.5
  • 128
    • 84870398923 scopus 로고    scopus 로고
    • Management opportunities for enhancing terrestrial carbon dioxide sinks
    • Post, W., Izaurralde, R., West, T., Liebig, M., & King, A. (2012). Management opportunities for enhancing terrestrial carbon dioxide sinks. Frontiers in Ecology and the Environment, 10(10), 554–561. https://doi.org/10.1890/120065
    • (2012) Frontiers in Ecology and the Environment , vol.10 , Issue.10 , pp. 554-561
    • Post, W.1    Izaurralde, R.2    West, T.3    Liebig, M.4    King, A.5
  • 129
    • 0034009113 scopus 로고    scopus 로고
    • Soil carbon sequestration and land-use change: Processes and potential
    • Post, W., & Kwon, K. (2000). Soil carbon sequestration and land-use change: Processes and potential. Global Change Biology, 6(3), 317–327. https://doi.org/10.1046/j.1365-2486.2000.00308.x
    • (2000) Global Change Biology , vol.6 , Issue.3 , pp. 317-327
    • Post, W.1    Kwon, K.2
  • 130
    • 85015661187 scopus 로고    scopus 로고
    • The whole-soil carbon flux in response to warming
    • Pries, C., Castanha, C., Porras, R., & Torn, M. (2017). The whole-soil carbon flux in response to warming. Science, 355(6332), 1420–1422. https://doi.org/10.1126/science.aal1319
    • (2017) Science , vol.355 , Issue.6332 , pp. 1420-1422
    • Pries, C.1    Castanha, C.2    Porras, R.3    Torn, M.4
  • 132
    • 84921468756 scopus 로고    scopus 로고
    • Woody plant encroachment into grasslands leads to accelerated erosion of previously stable organic carbon from dryland soils
    • Puttock, A., Dungait, J., Macleod, C., Bol, R., & Brazier, R. (2014). Woody plant encroachment into grasslands leads to accelerated erosion of previously stable organic carbon from dryland soils. Journal of Geophysical Research-Biogeosciences, 119(12), 2345–2357. https://doi.org/10.1002/2014jg002635
    • (2014) Journal of Geophysical Research-Biogeosciences , vol.119 , Issue.12 , pp. 2345-2357
    • Puttock, A.1    Dungait, J.2    Macleod, C.3    Bol, R.4    Brazier, R.5
  • 133
    • 45449111176 scopus 로고    scopus 로고
    • Farming the planet. 1. Geographic distribution of global agricultural lands in the year 2000
    • Ramankutty, N., Evan, A. T., Monfreda, C., & Foley, J. A. (2008). Farming the planet. 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles, 22, 1–19.
    • (2008) Global Biogeochemical Cycles , vol.22 , pp. 1-19
    • Ramankutty, N.1    Evan, A.T.2    Monfreda, C.3    Foley, J.A.4
  • 134
    • 0033301771 scopus 로고    scopus 로고
    • Estimating historical changes in global land cover: croplands from 1700 to 1992
    • Ramankutty, N., & Foley, J. A. (1999). Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochemical Cycles, 13, 997–1027.
    • (1999) Global Biogeochemical Cycles , vol.13 , pp. 997-1027
    • Ramankutty, N.1    Foley, J.A.2
  • 135
    • 21244495311 scopus 로고    scopus 로고
    • Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation
    • Rasse, D., Rumpel, C., & Dignac, M. (2005). Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant and Soil, 269(1–2), 341–356. https://doi.org/10.1007/s11104-004-0907-y
    • (2005) Plant and Soil , vol.269 , Issue.1-2 , pp. 341-356
    • Rasse, D.1    Rumpel, C.2    Dignac, M.3
  • 136
    • 0038267552 scopus 로고    scopus 로고
    • Effect of soil organic carbon on soil water retention
    • Rawls, W., Pachepsky, Y., Ritchie, J., Sobecki, T., & Bloodworth, H. (2003). Effect of soil organic carbon on soil water retention. Geoderma, 116(1–2), 61–76. https://doi.org/10.1016/s0016-7061(03)00094-6
    • (2003) Geoderma , vol.116 , Issue.1-2 , pp. 61-76
    • Rawls, W.1    Pachepsky, Y.2    Ritchie, J.3    Sobecki, T.4    Bloodworth, H.5
  • 137
    • 0033863535 scopus 로고    scopus 로고
    • Soil carbon differences among forest, agriculture, and secondary vegetation in lower montane Ecuador
    • Rhoades, C., Eckert, G., & Coleman, D. (2000). Soil carbon differences among forest, agriculture, and secondary vegetation in lower montane Ecuador. Ecological Applications, 10(2), 497–505. https://doi.org/10.2307/2641109
    • (2000) Ecological Applications , vol.10 , Issue.2 , pp. 497-505
    • Rhoades, C.1    Eckert, G.2    Coleman, D.3
  • 138
    • 34248588048 scopus 로고    scopus 로고
    • Soil carbon turnover and sequestration in native subtropical tree plantations
    • Richards, A., Dalal, R., & Schmidt, S. (2007). Soil carbon turnover and sequestration in native subtropical tree plantations. Soil Biology & Biochemistry, 39(8), 2078–2090. https://doi.org/10.1016/j.soilbio.2007.03.012
    • (2007) Soil Biology & Biochemistry , vol.39 , Issue.8 , pp. 2078-2090
    • Richards, A.1    Dalal, R.2    Schmidt, S.3
  • 139
    • 84941878319 scopus 로고    scopus 로고
    • Nitrogen addition changes grassland soil organic matter decomposition
    • Riggs, C., Hobbie, S., Bach, E., Hofmockel, K., & Kazanski, C. (2015). Nitrogen addition changes grassland soil organic matter decomposition. Biogeochemistry, 125(2), 203–219. https://doi.org/10.1007/s10533-015-0123-2
    • (2015) Biogeochemistry , vol.125 , Issue.2 , pp. 203-219
    • Riggs, C.1    Hobbie, S.2    Bach, E.3    Hofmockel, K.4    Kazanski, C.5
  • 140
    • 35648985081 scopus 로고    scopus 로고
    • Reconstruction of late-Holocene slope and dry valley sediment dynamics in a Belgian loess environment
    • Rommens, T., Verstraeten, G., Peeters, I., Poesen, J., Govers, G., Van Rompaey, A., … Lang, A. (2007). Reconstruction of late-Holocene slope and dry valley sediment dynamics in a Belgian loess environment. Holocene, 17, 777–788. https://doi.org/10.1177/0959683607080519
    • (2007) Holocene , vol.17 , pp. 777-788
    • Rommens, T.1    Verstraeten, G.2    Peeters, I.3    Poesen, J.4    Govers, G.5    Van Rompaey, A.6    Lang, A.7
  • 141
    • 78650308317 scopus 로고    scopus 로고
    • Deep soil organic matter-a key but poorly understood component of terrestrial C cycle
    • Rumpel, C., & Kogel-Knabner, I. (2011). Deep soil organic matter-a key but poorly understood component of terrestrial C cycle. Plant and Soil, 338(1–2), 143–158. https://doi.org/10.1007/s11104-010-0391-5
    • (2011) Plant and Soil , vol.338 , Issue.1-2 , pp. 143-158
    • Rumpel, C.1    Kogel-Knabner, I.2
  • 142
    • 84859484072 scopus 로고    scopus 로고
    • Variation in soil carbon stocks and their determinants across a precipitation gradient in West Africa
    • Saiz, G., Bird, M., Domingues, T., Schrodt, F., Schwarz, M., Feldpausch, T., … Lloyd, J. (2012). Variation in soil carbon stocks and their determinants across a precipitation gradient in West Africa. Global Change Biology, 18(5), 1670–1683. https://doi.org/10.1111/j.1365-2486.2012.02657.x
    • (2012) Global Change Biology , vol.18 , Issue.5 , pp. 1670-1683
    • Saiz, G.1    Bird, M.2    Domingues, T.3    Schrodt, F.4    Schwarz, M.5    Feldpausch, T.6    Lloyd, J.7
  • 144
    • 84893187395 scopus 로고    scopus 로고
    • Global soil carbon: Understanding and managing the largest terrestrial carbon pool
    • Scharlemann, J., Tanner, E., Hiederer, R., & Kapos, V. (2014). Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management, 5(1), 81–91. https://doi.org/10.4155/cmt.13.77
    • (2014) Carbon Management , vol.5 , Issue.1 , pp. 81-91
    • Scharlemann, J.1    Tanner, E.2    Hiederer, R.3    Kapos, V.4
  • 145
    • 80053916851 scopus 로고    scopus 로고
    • Persistence of soil organic matter as an ecosystem property
    • Schmidt, M., Torn, M., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I., … Trumbore, S. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49–56. https://doi.org/10.1038/nature10386
    • (2011) Nature , vol.478 , Issue.7367 , pp. 49-56
    • Schmidt, M.1    Torn, M.2    Abiven, S.3    Dittmar, T.4    Guggenberger, G.5    Janssens, I.6    Trumbore, S.7
  • 146
    • 80052957271 scopus 로고    scopus 로고
    • Quo vadis soil organic matter research? A biological link to chemistry of humification
    • Schnitzer, M., & Monreal, C. M. (2011). Quo vadis soil organic matter research? A biological link to chemistry of humification. Advances in Agronomy, 113, 139–213.
    • (2011) Advances in Agronomy , vol.113 , pp. 139-213
    • Schnitzer, M.1    Monreal, C.M.2
  • 147
    • 84992736566 scopus 로고    scopus 로고
    • Laser-induced breakdown spectroscopy (LIBS) to measure quantitatively soil carbon with emphasis on soil organic carbon. A review
    • Senesi, G., & Senesi, N. (2016). Laser-induced breakdown spectroscopy (LIBS) to measure quantitatively soil carbon with emphasis on soil organic carbon. A review. Analytica Chimica Acta, 938, 7–17. https://doi.org/10.1016/j.aca.2016.07.039
    • (2016) Analytica Chimica Acta , vol.938 , pp. 7-17
    • Senesi, G.1    Senesi, N.2
  • 148
    • 0036326452 scopus 로고    scopus 로고
    • Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils
    • Six, J., Conant, R., Paul, E., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241(2), 155–176. https://doi.org/10.1023/a:1016125726789
    • (2002) Plant and Soil , vol.241 , Issue.2 , pp. 155-176
    • Six, J.1    Conant, R.2    Paul, E.3    Paustian, K.4
  • 149
    • 84869152276 scopus 로고    scopus 로고
    • Soils and climate change
    • Smith, P. (2012). Soils and climate change. Current Opinion in Environmental Sustainability, 4(5), 539–544. https://doi.org/10.1016/j.cosust.2012.06.005
    • (2012) Current Opinion in Environmental Sustainability , vol.4 , Issue.5 , pp. 539-544
    • Smith, P.1
  • 150
    • 84905015300 scopus 로고    scopus 로고
    • Do grasslands act as a perpetual sink for carbon?
    • Smith, P. (2014). Do grasslands act as a perpetual sink for carbon? Global Change Biology, 20(9), 2708–2711. https://doi.org/10.1111/gcb.12561
    • (2014) Global Change Biology , vol.20 , Issue.9 , pp. 2708-2711
    • Smith, P.1
  • 151
    • 78650214327 scopus 로고    scopus 로고
    • The effect of young biochar on soil respiration
    • Smith, J., Collins, H., & Bailey, V. (2010). The effect of young biochar on soil respiration. Soil Biology & Biochemistry, 42(12), 2345–2347. https://doi.org/10.1016/j.soilbio.2010.09.013
    • (2010) Soil Biology & Biochemistry , vol.42 , Issue.12 , pp. 2345-2347
    • Smith, J.1    Collins, H.2    Bailey, V.3
  • 153
    • 65549086399 scopus 로고    scopus 로고
    • Comprehensive dataset of global landcover change for land surface model applications
    • Sterling, S., & Ducharne, A. (2008). Comprehensive dataset of global landcover change for land surface model applications. Global Biogeochemical Cycles, 22(3), GB3017. https://doi.org/10.1029/2007gb002959
    • (2008) Global Biogeochemical Cycles , vol.22 , Issue.3 , pp. GB3017
    • Sterling, S.1    Ducharne, A.2
  • 155
    • 34548564595 scopus 로고    scopus 로고
    • Soil carbon saturation: Concept, evidence and evaluation
    • Stewart, C., Paustian, K., Conant, R., Plante, A., & Six, J. (2007). Soil carbon saturation: Concept, evidence and evaluation. Biogeochemistry, 86(1), 19–31. https://doi.org/10.1007/s10533-007-9140-0
    • (2007) Biogeochemistry , vol.86 , Issue.1 , pp. 19-31
    • Stewart, C.1    Paustian, K.2    Conant, R.3    Plante, A.4    Six, J.5
  • 156
    • 0036802837 scopus 로고    scopus 로고
    • Carbon in Russian soils
    • Stolbovoi, V. (2002). Carbon in Russian soils. Climatic Change, 55(1–2), 131–156. https://doi.org/10.1023/a:1020289403835
    • (2002) Climatic Change , vol.55 , Issue.1-2 , pp. 131-156
    • Stolbovoi, V.1
  • 157
    • 29344456188 scopus 로고    scopus 로고
    • A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn
    • Striegl, R., Aiken, G., Dornblaser, M., Raymond, P., & Wickland, K. (2005). A decrease in discharge-normalized DOC export by the Yukon River during summer through autumn. Geophysical Research Letters, 32(21), L21413. https://doi.org/10.1029/2005gl024413
    • (2005) Geophysical Research Letters , vol.32 , Issue.21 , pp. L21413
    • Striegl, R.1    Aiken, G.2    Dornblaser, M.3    Raymond, P.4    Wickland, K.5
  • 158
    • 84859135468 scopus 로고    scopus 로고
    • Challenges and opportunities in linking carbon sequestration, livelihoods and ecosystem service provision in drylands
    • Stringer, L., Dougill, A., Thomas, A., Spracklen, D., Chesterman, S., Speranza, C., … Kopolo, G. (2012). Challenges and opportunities in linking carbon sequestration, livelihoods and ecosystem service provision in drylands. Environmental Science & Policy, 19–20, 121–135. https://doi.org/10.1016/j.envsci.2012.02.004
    • (2012) Environmental Science & Policy , vol.19-20 , pp. 121-135
    • Stringer, L.1    Dougill, A.2    Thomas, A.3    Spracklen, D.4    Chesterman, S.5    Speranza, C.6    Kopolo, G.7
  • 160
    • 0038041243 scopus 로고    scopus 로고
    • Organic matter transformations and soil fertility in a treed pasture in semiarid NE Brazil
    • Tiessen, H., Menezes, R., Salcedo, I., & Wick, B. (2003). Organic matter transformations and soil fertility in a treed pasture in semiarid NE Brazil. Plant and Soil, 252(2), 195–205. https://doi.org/10.1023/a:1024762501920
    • (2003) Plant and Soil , vol.252 , Issue.2 , pp. 195-205
    • Tiessen, H.1    Menezes, R.2    Salcedo, I.3    Wick, B.4
  • 161
    • 0033815388 scopus 로고    scopus 로고
    • Review of elevated atmospheric CO2 effects on agro-ecosystems: Residue decomposition processes and soil C storage
    • Torbert, H., Prior, S., Rogers, H., & Wood, C. (2000). Review of elevated atmospheric CO2 effects on agro-ecosystems: Residue decomposition processes and soil C storage. Plant and Soil, 224(1), 59–73. https://doi.org/10.1023/a:1004797123881
    • (2000) Plant and Soil , vol.224 , Issue.1 , pp. 59-73
    • Torbert, H.1    Prior, S.2    Rogers, H.3    Wood, C.4
  • 166
    • 3343003244 scopus 로고    scopus 로고
    • Carbon stock assessment for a forest-to-coffee conversion landscape in Sumber-Jaya (Lampung, Indonesia): From allometric equations to land use change analysis
    • van Noordwijk, M., Rahayu, S., Hairiah, K., Wulan, Y., Farida, A., & Verbist, B. (2002). Carbon stock assessment for a forest-to-coffee conversion landscape in Sumber-Jaya (Lampung, Indonesia): From allometric equations to land use change analysis. Science in China Series C-Life Sciences, 45, 75–86.
    • (2002) Science in China Series C-Life Sciences , vol.45 , pp. 75-86
    • van Noordwijk, M.1    Rahayu, S.2    Hairiah, K.3    Wulan, Y.4    Farida, A.5    Verbist, B.6
  • 167
    • 0042920606 scopus 로고    scopus 로고
    • Substantial labile carbon stocks and microbial activity in deeply weathered soils below a tropical wet forest
    • Veldkamp, E., Becker, A., Schwendenmann, L., Clark, D., & Schulte-Bisping, H. (2003). Substantial labile carbon stocks and microbial activity in deeply weathered soils below a tropical wet forest. Global Change Biology, 9(8), 1171–1184. https://doi.org/10.1046/j.1365-2486.2003.00656.x
    • (2003) Global Change Biology , vol.9 , Issue.8 , pp. 1171-1184
    • Veldkamp, E.1    Becker, A.2    Schwendenmann, L.3    Clark, D.4    Schulte-Bisping, H.5
  • 168
    • 77954761188 scopus 로고    scopus 로고
    • Effect of slope position and land use on nitrous oxide emissions (Seine Basin, France)
    • Vilain, G., Garnier, J., Tallex, G., & Callier, P. (2010). Effect of slope position and land use on nitrous oxide emissions (Seine Basin, France). Agricultural & Forest Meteorology, 150, 1192–1202.
    • (2010) Agricultural & Forest Meteorology , vol.150 , pp. 1192-1202
    • Vilain, G.1    Garnier, J.2    Tallex, G.3    Callier, P.4
  • 169
    • 48349144510 scopus 로고    scopus 로고
    • Micro-aggregation and organic matter storage at the silt size scale
    • Vitro, I., Barre, P., & Chenu, C. (2008). Micro-aggregation and organic matter storage at the silt size scale. Geoderma, 146, 326–335.
    • (2008) Geoderma , vol.146 , pp. 326-335
    • Vitro, I.1    Barre, P.2    Chenu, C.3
  • 170
    • 77949267691 scopus 로고    scopus 로고
    • Turnerover of intra- and extra-aggregate organic matter at the silt-size scale
    • Vitro, I., Moni, C., Swanson, C., & Chenu, C. (2010). Turnerover of intra- and extra-aggregate organic matter at the silt-size scale. Geoderma, 156, 1–10.
    • (2010) Geoderma , vol.156 , pp. 1-10
    • Vitro, I.1    Moni, C.2    Swanson, C.3    Chenu, C.4
  • 171
    • 84874732770 scopus 로고    scopus 로고
    • Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology
    • Wagai, R., Kishimoto-Mo, A., Yonemura, S., Shirato, Y., Hiradate, S., & Yagasaki, Y. (2013). Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology. Global Change Biology, 19(4), 1114–1125. https://doi.org/10.1111/gcb.12112
    • (2013) Global Change Biology , vol.19 , Issue.4 , pp. 1114-1125
    • Wagai, R.1    Kishimoto-Mo, A.2    Yonemura, S.3    Shirato, Y.4    Hiradate, S.5    Yagasaki, Y.6
  • 172
    • 84870231108 scopus 로고    scopus 로고
    • The influence of changes in forest management over the past 200 years on present soil organic carbon stocks
    • Waldchen, J., Schulze, E., Schoning, I., Schrumpf, M., & Sierra, C. (2013). The influence of changes in forest management over the past 200 years on present soil organic carbon stocks. Forest Ecology and Management, 289, 243–254. https://doi.org/10.1016/j.foreco.2012.10.014
    • (2013) Forest Ecology and Management , vol.289 , pp. 243-254
    • Waldchen, J.1    Schulze, E.2    Schoning, I.3    Schrumpf, M.4    Sierra, C.5
  • 173
    • 48249088914 scopus 로고    scopus 로고
    • The changing sediment load of the Mekong River
    • 37[150TCSLOT]2.0.CO;2
    • Walling, D. (2008). The changing sediment load of the Mekong River. Ambio, 37(3), 150–157. https://doi.org/10.1579/0044-7447(2008) 37[150:TCSLOT]2.0.CO;2
    • (2008) Ambio , vol.37 , Issue.3 , pp. 150-157
    • Walling, D.1
  • 174
    • 84894099645 scopus 로고    scopus 로고
    • Soil aggregation and the stabilization of organic carbon as affected by erosion and deposition
    • Wang, X., Cammeraat, E., Cerli, C., & Kalbitz, K. (2014). Soil aggregation and the stabilization of organic carbon as affected by erosion and deposition. Soil Biology & Biochemistry, 72, 55–65. https://doi.org/10.1016/j.soilbio.2014.01.018
    • (2014) Soil Biology & Biochemistry , vol.72 , pp. 55-65
    • Wang, X.1    Cammeraat, E.2    Cerli, C.3    Kalbitz, K.4
  • 175
    • 84900431108 scopus 로고    scopus 로고
    • Soil organic carbon redistribution by water erosion-the role of CO2 emissions for the carbon budget
    • Wang, X., Cammeraat, E., Romeijn, P., & Kalbitz, K. (2014). Soil organic carbon redistribution by water erosion-the role of CO2 emissions for the carbon budget. PLoS ONE, 9(5), e96299. https://doi.org/10.1371/journal.pone.0096299
    • (2014) PLoS ONE , vol.9 , Issue.5
    • Wang, X.1    Cammeraat, E.2    Romeijn, P.3    Kalbitz, K.4
  • 177
    • 84894218460 scopus 로고    scopus 로고
    • The fate of buried organic carbon in colluvial soils: A long-term perspective
    • Wang, Z., Van Oost, K., Lang, A., Quine, T., Clymans, W., Merckx, R., … Govers, G. (2014). The fate of buried organic carbon in colluvial soils: A long-term perspective. Biogeosciences, 11(3), 873–883. https://doi.org/10.5194/bg-11-873-2014
    • (2014) Biogeosciences , vol.11 , Issue.3 , pp. 873-883
    • Wang, Z.1    Van Oost, K.2    Lang, A.3    Quine, T.4    Clymans, W.5    Merckx, R.6    Govers, G.7
  • 178
    • 84906794856 scopus 로고    scopus 로고
    • Contemporary land use/land cover thypes determine soil organic carbon stocks in south-west Rwanda
    • Wasige, J. E., Groen, T. A., Rwamukwaya, B. M., Tumwesigye, W., Smaling, E. M. A., & Jetten, V. (2014). Contemporary land use/land cover thypes determine soil organic carbon stocks in south-west Rwanda. Nutrient Cycling in Agroecosystems, 100(1), 19–33. https://doi.org/10.1007/s10705-014-9623-z
    • (2014) Nutrient Cycling in Agroecosystems , vol.100 , Issue.1 , pp. 19-33
    • Wasige, J.E.1    Groen, T.A.2    Rwamukwaya, B.M.3    Tumwesigye, W.4    Smaling, E.M.A.5    Jetten, V.6
  • 180
    • 0036714042 scopus 로고    scopus 로고
    • A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the united states
    • West, T. O., & Marland, G. (2002). A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the united states. Agriculture Ecosystems & Environment, 91(1–3), 217–232. https://doi.org/10.1016/s0167-8809(01)00233-x
    • (2002) Agriculture Ecosystems & Environment , vol.91 , Issue.1-3 , pp. 217-232
    • West, T.O.1    Marland, G.2
  • 181
    • 0036850951 scopus 로고    scopus 로고
    • Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis
    • West, T. O., & Post, W. M. (2002). Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Science Society of America Journal, 66(6), 1930–1946. https://doi.org/10.2136/sssaj2002.1930
    • (2002) Soil Science Society of America Journal , vol.66 , Issue.6 , pp. 1930-1946
    • West, T.O.1    Post, W.M.2
  • 182
    • 33846453258 scopus 로고    scopus 로고
    • Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity
    • West, T., & Six, J. (2007). Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Climatic Change, 80, 25–41. https://doi.org/10.1007/s10584-006-9173-8
    • (2007) Climatic Change , vol.80 , pp. 25-41
    • West, T.1    Six, J.2
  • 183
    • 78650744264 scopus 로고    scopus 로고
    • In-situ determination of soil carbon pool by inelasatic neutron scattering
    • Wielopolski, L., Chatterjee, A., Mitra, S., & Lal, R. (2011). In-situ determination of soil carbon pool by inelasatic neutron scattering. Geoderma, 160, 394–399. https://doi.org/10.1016/j.geoderma.2010.10.009
    • (2011) Geoderma , vol.160 , pp. 394-399
    • Wielopolski, L.1    Chatterjee, A.2    Mitra, S.3    Lal, R.4
  • 184
    • 84953837593 scopus 로고    scopus 로고
    • The fluvial flux of particulate organic matter from the UK: The emission factor of soil erosion
    • Worrall, F., Burt, T., & Howden, N. (2016). The fluvial flux of particulate organic matter from the UK: The emission factor of soil erosion. Earth Surface Processes and Landforms, 41(1), 61–71. https://doi.org/10.1002/esp.3795
    • (2016) Earth Surface Processes and Landforms , vol.41 , Issue.1 , pp. 61-71
    • Worrall, F.1    Burt, T.2    Howden, N.3
  • 185
    • 84888213267 scopus 로고    scopus 로고
    • Priming and substrate quality interactions in soil organic matter models
    • Wutzler, T., & Reichstein, M. (2013). Priming and substrate quality interactions in soil organic matter models. Biogeosciences, 10, 2089–2103. https://doi.org/10.5194/bg-10-2089-2013
    • (2013) Biogeosciences , vol.10 , pp. 2089-2103
    • Wutzler, T.1    Reichstein, M.2
  • 186
    • 19344370942 scopus 로고    scopus 로고
    • Losses of soil organic carbon under wind erosion in China
    • Yan, H., Wang, S., Wang, C., Zhang, G., & Patel, N. (2005). Losses of soil organic carbon under wind erosion in China. Global Change Biology, 11(5), 828–840. https://doi.org/10.1111/j.1365-2486.2005.00950.x
    • (2005) Global Change Biology , vol.11 , Issue.5 , pp. 828-840
    • Yan, H.1    Wang, S.2    Wang, C.3    Zhang, G.4    Patel, N.5
  • 187
    • 0037767425 scopus 로고    scopus 로고
    • Soil carbon dynamics after forest harvest: An ecosystem paradigm reconsidered
    • Yanai, R., Currie, W., & Goodale, C. (2003). Soil carbon dynamics after forest harvest: An ecosystem paradigm reconsidered. Ecosystems, 6(3), 197–212. https://doi.org/10.1007/s10021-002-0206-5
    • (2003) Ecosystems , vol.6 , Issue.3 , pp. 197-212
    • Yanai, R.1    Currie, W.2    Goodale, C.3
  • 189
    • 84964822083 scopus 로고    scopus 로고
    • Pedogenic carbonates: Forms and formation processes
    • Zamanian, K., Pustovoytov, K., & Kzyakov, Y. (2016). Pedogenic carbonates: Forms and formation processes. Earth-Science Reviews, 157, 1–17. https://doi.org/10.1016/j.earscirev.2016.03.003
    • (2016) Earth-Science Reviews , vol.157 , pp. 1-17
    • Zamanian, K.1    Pustovoytov, K.2    Kzyakov, Y.3
  • 190
    • 84931003551 scopus 로고    scopus 로고
    • Soil carbon dynamics following land-use change varied with temperature and precipitation gradients: Evidence from stable isotopes
    • Zhang, K., Dang, H., Zhang, Q., & Cheng, X. (2015). Soil carbon dynamics following land-use change varied with temperature and precipitation gradients: Evidence from stable isotopes. Global Change Biology, 21(7), 2762–2772. https://doi.org/10.1111/gcb.12886
    • (2015) Global Change Biology , vol.21 , Issue.7 , pp. 2762-2772
    • Zhang, K.1    Dang, H.2    Zhang, Q.3    Cheng, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.