-
2
-
-
0001659726
-
Gray leaf spot of corn: A disease on the move
-
F. M. Latterell and A. E. Rossi, Gray leaf spot of corn: A disease on the move,'' Plant Disease, vol. 67, no. 8, pp. 842-847, 1983.
-
(1983)
Plant Disease
, vol.67
, Issue.8
, pp. 842-847
-
-
Latterell, F.M.1
Rossi, A.E.2
-
3
-
-
0009839214
-
Maize dwarf mosaic, a new corn disease
-
L. E. Williams and L. J. Alexander, Maize dwarf mosaic, a new corn disease,'' Phytopathology, vol. 55, no. 7, pp. 802-804, 1965.
-
(1965)
Phytopathology
, vol.55
, Issue.7
, pp. 802-804
-
-
Williams, L.E.1
Alexander, L.J.2
-
4
-
-
63749088519
-
Curvularia leaf spot of maize: Pathogens and varietal resistance
-
Feb
-
F. C. Dai et al., Curvularia leaf spot of maize: Pathogens and varietal resistance,'' Acta Phytopathologica Sinica, vol. 28, no. 2, pp. 123-129, Feb. 1998.
-
(1998)
Acta Phytopathologica Sinica
, vol.28
, Issue.2
, pp. 123-129
-
-
Dai, F.C.1
-
5
-
-
84863167215
-
The corn disease remote diagnostic system in China
-
Jan
-
X. X. Li et al., The corn disease remote diagnostic system in China,'' J. Food Agricult. Environ., vol. 10, no. 1, pp. 617-620, Jan. 2012.
-
(2012)
J. Food Agricult. Environ.
, vol.10
, Issue.1
, pp. 617-620
-
-
Li, X.X.1
-
6
-
-
0032874525
-
Gray leaf spot: A disease of global importance in maize production
-
J. M. J. Ward, E. L. Stromberg, D. C. Nowell, and F. W. Nutter, Jr., Gray leaf spot: A disease of global importance in maize production,'' Plant Disease, vol. 83, no. 10, pp. 884-895, 1999.
-
(1999)
Plant Disease
, vol.83
, Issue.10
, pp. 884-895
-
-
Ward, J.M.J.1
Stromberg, E.L.2
Nowell, D.C.3
Nutter, F.W.4
-
7
-
-
68349106141
-
Plant disease diagnostic capabilities and networks
-
S. A. Miller, F. D. Beed, and C. L. Harmon, Plant disease diagnostic capabilities and networks,'' Annu. Rev. Phytopathol., vol. 47, no. 1, pp. 15-38, 2009.
-
(2009)
Annu. Rev. Phytopathol.
, vol.47
, Issue.1
, pp. 15-38
-
-
Miller, S.A.1
Beed, F.D.2
Harmon, C.L.3
-
8
-
-
33947503756
-
Corn leaf disease recognition based on support vector machine method
-
Jan
-
K. Song, X. Y. Sun, and J. W. Ji, Corn leaf disease recognition based on support vector machine method,'' Trans. Chin. Soc. Agricult. Eng., vol. 23, no. 1, pp. 155-157, Jan. 2007.
-
(2007)
Trans. Chin. Soc. Agricult. Eng.
, vol.23
, Issue.1
, pp. 155-157
-
-
Song, K.1
Sun, X.Y.2
Ji, J.W.3
-
9
-
-
85044270574
-
Research on application of probability neural network in maize leaf disease identification
-
Jun
-
L. Chen and L. Y. Wang, Research on application of probability neural network in maize leaf disease identification,'' J. Agricult. Mech. Res., vol. 33, no. 6, pp. 145-148, Jun. 2011.
-
(2011)
J. Agricult. Mech. Res.
, vol.33
, Issue.6
, pp. 145-148
-
-
Chen, L.1
Wang, L.Y.2
-
10
-
-
84939204639
-
Corn leaf disease identification based on multiple classifiers fusion
-
L. F. Xu, X. B. Xu, and H. Min, Corn leaf disease identification based on multiple classifiers fusion,'' Trans. Chin. Soc. Agricult. Eng., vol. 31, no. 14, pp. 194-201, 2015.
-
(2015)
Trans. Chin. Soc. Agricult. Eng.
, vol.31
, Issue.14
, pp. 194-201
-
-
Xu, L.F.1
Xu, X.B.2
Min, H.3
-
11
-
-
79952350518
-
Maize leaf disease identification based on fisher discrimination analysis
-
N. Wang, K. Wang, R. Xie, J. Lai, B. Ming, and S. Li, Maize leaf disease identification based on fisher discrimination analysis,'' Scientia Agricultura Sinica, vol. 42, no. 11, pp. 3836-3842, 2009.
-
(2009)
Scientia Agricultura Sinica
, vol.42
, Issue.11
, pp. 3836-3842
-
-
Wang, N.1
Wang, K.2
Xie, R.3
Lai, J.4
Ming, B.5
Li, S.6
-
12
-
-
85049141596
-
Identification of maize leaf diseases based on image technology
-
Feb
-
Z. Qi et al., Identification of maize leaf diseases based on image technology,'' J. Anhui Agricult. Univ., vol. 43, no. 2, pp. 325-330, Feb. 2016.
-
(2016)
J. Anhui Agricult. Univ.
, vol.43
, Issue.2
, pp. 325-330
-
-
Qi, Z.1
-
13
-
-
85049132104
-
Recognition of corn leaf disease based on quantum neural network and combination characteristic parameter
-
F. Zhang, Recognition of corn leaf disease based on quantum neural network and combination characteristic parameter,'' J. Southern Agriculture, vol. 44, no. 8, pp. 1286-1290, 2013.
-
(2013)
J. Southern Agriculture
, vol.44
, Issue.8
, pp. 1286-1290
-
-
Zhang, F.1
-
14
-
-
84930630277
-
Deep learning
-
May
-
Y. LeCun, Y. Bengio, and G. Hinton, Deep learning,'' Nature, vol. 521, pp. 436-444, May 2015.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
15
-
-
84957837518
-
Deep learning for visual understanding: A review
-
Apr
-
Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, Deep learning for visual understanding: A review,'' Neurocomputing, vol. 187, pp. 27-48, Apr. 2016.
-
(2016)
Neurocomputing
, vol.187
, pp. 27-48
-
-
Guo, Y.1
Liu, Y.2
Oerlemans, A.3
Lao, S.4
Wu, S.5
Lew, M.S.6
-
16
-
-
84928013181
-
Deep learning for detecting robotic grasps
-
I. Lenz, H. Lee, and A. Saxena, Deep learning for detecting robotic grasps,'' Int. J. Robot. Res., vol. 34, nos. 4-5, pp. 705-724, 2013.
-
(2013)
Int. J. Robot. Res.
, vol.34
, Issue.4-5
, pp. 705-724
-
-
Lenz, I.1
Lee, H.2
Saxena, A.3
-
17
-
-
84938888109
-
Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
-
Jul
-
B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning,'' Nature Biotechnol., vol. 33, pp. 831-838, Jul. 2015.
-
(2015)
Nature Biotechnol.
, vol.33
, pp. 831-838
-
-
Alipanahi, B.1
Delong, A.2
Weirauch, M.T.3
Frey, B.J.4
-
18
-
-
84949292765
-
Deep learning for remote sensing image understanding
-
Jun
-
L. P. Zhang, G. S. Xia, T. Wu, L. Lin, and X. C. Tai, Deep learning for remote sensing image understanding,'' J. Sensors, vol. 2016, Jun. 2015, Art. no. 7954154.
-
(2015)
J. Sensors
, vol.2016
-
-
Zhang, L.P.1
Xia, G.S.2
Wu, T.3
Lin, L.4
Tai, X.C.5
-
19
-
-
69349090197
-
Learning deep architectures for AI
-
Y. Bengio, Learning deep architectures for AI,'' Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009.
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
20
-
-
77951298115
-
The pascal visual object classes (voc) challenge
-
Jun
-
M. Everingham, L.Van Gool, C. K. I.Williams, J.Winn, and A. Zisserman, The PASCAL visual object classes (VOC) challenge,'' Int. J. Comput. Vis., vol. 88, no. 2, pp. 303-338, Jun. 2010.
-
(2010)
Int. J. Comput. Vis.
, vol.88
, Issue.2
, pp. 303-338
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.I.3
Winn, J.4
Zisserman, A.5
-
21
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
Dec
-
O. Russakovsky et al., ImageNet large scale visual recognition challenge,'' Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, Dec. 2015.
-
(2015)
Int. J. Comput. Vis.
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
-
22
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Lake Tahoe, NV, USA
-
A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet classification with deep convolutional neural networks,'' in Proc. Adv. Neural Inf. Process. Syst., Lake Tahoe, NV, USA, 2012, pp. 1097-1105.
-
(2012)
Proc. Adv. Neural Inf. Process. Syst
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
23
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition,'' in Proc. Int. Conf. Learn. Represent., 2015, pp. 1-14.
-
(2015)
Proc. Int. Conf. Learn. Represent.
, pp. 1-14
-
-
Simonyan, K.1
Zisserman, A.2
-
24
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
M. D. Zeiler and R. Fergus, Visualizing and understanding convolutional networks,'' in Proc. Eur. Conf. Comput. Vis., 2014, pp. 818-833.
-
(2014)
Proc. Eur. Conf. Comput. Vis.
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
25
-
-
85021853536
-
Identification of rice diseases using deep convolutional neural networks
-
Dec
-
Y. Lu, S. Yi, N. Zeng, Y. Liu, and Y. Zhang, Identification of rice diseases using deep convolutional neural networks,'' Neurocomputing, vol. 267, pp. 378-384, Dec. 2017.
-
(2017)
Neurocomputing
, vol.267
, pp. 378-384
-
-
Lu, Y.1
Yi, S.2
Zeng, N.3
Liu, Y.4
Zhang, Y.5
-
26
-
-
85032483778
-
Automated identification of northern leaf blightinfected maize plants from field imagery using deep learning
-
C. Dechant et al., Automated identification of northern leaf blightinfected maize plants from field imagery using deep learning,'' Phy-topathology, vol. 107, no. 11, pp. 1426-1432, 2017.
-
(2017)
Phy-topathology
, vol.107
, Issue.11
, pp. 1426-1432
-
-
Dechant, C.1
-
27
-
-
84988564472
-
Using deep learning for image-based plant disease detection
-
Sep
-
S. P. Mohanty, D. P. Hughes, and M. Salathé, Using deep learning for image-based plant disease detection,'' Frontiers Plant Sci., vol. 7, p. 1419, Sep. 2016.
-
(2016)
Frontiers Plant Sci.
, vol.7
, pp. 1419
-
-
Mohanty, S.P.1
Hughes, D.P.2
Salathé, M.3
-
28
-
-
85024478063
-
Automatic image-based plant disease severity estimation using deep learning
-
G. Wang, Y. Sun, and J. X. Wang, Automatic image-based plant disease severity estimation using deep learning,'' in Computational Intelligence and Neuroscience, 2017, pp. 1-8.
-
(2017)
Computational Intelligence and Neuroscience
, pp. 1-8
-
-
Wang, G.1
Sun, Y.2
Wang, J.X.3
-
30
-
-
1642380461
-
The problem of overfitting
-
D. M. Hawkins, The problem of overfitting,'' J. Chem. Inf. Comput. Sci., vol. 44, no. 1, pp. 1-12, 2004.
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, Issue.1
, pp. 1-12
-
-
Hawkins, D.M.1
-
31
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Orlando, FL, USA
-
Y. Jia et al., Caffe: Convolutional architecture for fast feature embedding,'' in Proc. 22nd ACM Int. Conf. Multimedia, Orlando, FL, USA, 2014, pp. 675-678.
-
(2014)
Proc. 22nd ACM Int. Conf. Multimedia
, pp. 675-678
-
-
Jia, Y.1
-
33
-
-
84937522268
-
Going deeper with convolutions
-
Boston, MA, USA, Jun
-
C. Szegedy et al., Going deeper with convolutions,'' in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Boston, MA, USA, Jun. 2014, pp. 1-9.
-
(2014)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
, pp. 1-9
-
-
Szegedy, C.1
-
34
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, Dropout: A simple way to prevent neural networks from overfitting,'' J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958, 2014.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
|