메뉴 건너뛰기




Volumn 6, Issue , 2018, Pages 30370-30377

Identification of maize leaf diseases using improved deep convolutional neural networks

Author keywords

deep convolutional neural networks; Deep learning; identification; image processing; leaf diseases

Indexed keywords

AUTOMATION; CONVOLUTION; DEEP LEARNING; DIAGNOSIS; IDENTIFICATION (CONTROL SYSTEMS); IMAGE ENHANCEMENT; IMAGE PROCESSING; NEURAL NETWORKS;

EID: 85048152436     PISSN: None     EISSN: 21693536     Source Type: Journal    
DOI: 10.1109/ACCESS.2018.2844405     Document Type: Article
Times cited : (518)

References (34)
  • 2
    • 0001659726 scopus 로고
    • Gray leaf spot of corn: A disease on the move
    • F. M. Latterell and A. E. Rossi, Gray leaf spot of corn: A disease on the move,'' Plant Disease, vol. 67, no. 8, pp. 842-847, 1983.
    • (1983) Plant Disease , vol.67 , Issue.8 , pp. 842-847
    • Latterell, F.M.1    Rossi, A.E.2
  • 3
    • 0009839214 scopus 로고
    • Maize dwarf mosaic, a new corn disease
    • L. E. Williams and L. J. Alexander, Maize dwarf mosaic, a new corn disease,'' Phytopathology, vol. 55, no. 7, pp. 802-804, 1965.
    • (1965) Phytopathology , vol.55 , Issue.7 , pp. 802-804
    • Williams, L.E.1    Alexander, L.J.2
  • 4
    • 63749088519 scopus 로고    scopus 로고
    • Curvularia leaf spot of maize: Pathogens and varietal resistance
    • Feb
    • F. C. Dai et al., Curvularia leaf spot of maize: Pathogens and varietal resistance,'' Acta Phytopathologica Sinica, vol. 28, no. 2, pp. 123-129, Feb. 1998.
    • (1998) Acta Phytopathologica Sinica , vol.28 , Issue.2 , pp. 123-129
    • Dai, F.C.1
  • 5
    • 84863167215 scopus 로고    scopus 로고
    • The corn disease remote diagnostic system in China
    • Jan
    • X. X. Li et al., The corn disease remote diagnostic system in China,'' J. Food Agricult. Environ., vol. 10, no. 1, pp. 617-620, Jan. 2012.
    • (2012) J. Food Agricult. Environ. , vol.10 , Issue.1 , pp. 617-620
    • Li, X.X.1
  • 6
    • 0032874525 scopus 로고    scopus 로고
    • Gray leaf spot: A disease of global importance in maize production
    • J. M. J. Ward, E. L. Stromberg, D. C. Nowell, and F. W. Nutter, Jr., Gray leaf spot: A disease of global importance in maize production,'' Plant Disease, vol. 83, no. 10, pp. 884-895, 1999.
    • (1999) Plant Disease , vol.83 , Issue.10 , pp. 884-895
    • Ward, J.M.J.1    Stromberg, E.L.2    Nowell, D.C.3    Nutter, F.W.4
  • 7
    • 68349106141 scopus 로고    scopus 로고
    • Plant disease diagnostic capabilities and networks
    • S. A. Miller, F. D. Beed, and C. L. Harmon, Plant disease diagnostic capabilities and networks,'' Annu. Rev. Phytopathol., vol. 47, no. 1, pp. 15-38, 2009.
    • (2009) Annu. Rev. Phytopathol. , vol.47 , Issue.1 , pp. 15-38
    • Miller, S.A.1    Beed, F.D.2    Harmon, C.L.3
  • 8
    • 33947503756 scopus 로고    scopus 로고
    • Corn leaf disease recognition based on support vector machine method
    • Jan
    • K. Song, X. Y. Sun, and J. W. Ji, Corn leaf disease recognition based on support vector machine method,'' Trans. Chin. Soc. Agricult. Eng., vol. 23, no. 1, pp. 155-157, Jan. 2007.
    • (2007) Trans. Chin. Soc. Agricult. Eng. , vol.23 , Issue.1 , pp. 155-157
    • Song, K.1    Sun, X.Y.2    Ji, J.W.3
  • 9
    • 85044270574 scopus 로고    scopus 로고
    • Research on application of probability neural network in maize leaf disease identification
    • Jun
    • L. Chen and L. Y. Wang, Research on application of probability neural network in maize leaf disease identification,'' J. Agricult. Mech. Res., vol. 33, no. 6, pp. 145-148, Jun. 2011.
    • (2011) J. Agricult. Mech. Res. , vol.33 , Issue.6 , pp. 145-148
    • Chen, L.1    Wang, L.Y.2
  • 10
    • 84939204639 scopus 로고    scopus 로고
    • Corn leaf disease identification based on multiple classifiers fusion
    • L. F. Xu, X. B. Xu, and H. Min, Corn leaf disease identification based on multiple classifiers fusion,'' Trans. Chin. Soc. Agricult. Eng., vol. 31, no. 14, pp. 194-201, 2015.
    • (2015) Trans. Chin. Soc. Agricult. Eng. , vol.31 , Issue.14 , pp. 194-201
    • Xu, L.F.1    Xu, X.B.2    Min, H.3
  • 11
    • 79952350518 scopus 로고    scopus 로고
    • Maize leaf disease identification based on fisher discrimination analysis
    • N. Wang, K. Wang, R. Xie, J. Lai, B. Ming, and S. Li, Maize leaf disease identification based on fisher discrimination analysis,'' Scientia Agricultura Sinica, vol. 42, no. 11, pp. 3836-3842, 2009.
    • (2009) Scientia Agricultura Sinica , vol.42 , Issue.11 , pp. 3836-3842
    • Wang, N.1    Wang, K.2    Xie, R.3    Lai, J.4    Ming, B.5    Li, S.6
  • 12
    • 85049141596 scopus 로고    scopus 로고
    • Identification of maize leaf diseases based on image technology
    • Feb
    • Z. Qi et al., Identification of maize leaf diseases based on image technology,'' J. Anhui Agricult. Univ., vol. 43, no. 2, pp. 325-330, Feb. 2016.
    • (2016) J. Anhui Agricult. Univ. , vol.43 , Issue.2 , pp. 325-330
    • Qi, Z.1
  • 13
    • 85049132104 scopus 로고    scopus 로고
    • Recognition of corn leaf disease based on quantum neural network and combination characteristic parameter
    • F. Zhang, Recognition of corn leaf disease based on quantum neural network and combination characteristic parameter,'' J. Southern Agriculture, vol. 44, no. 8, pp. 1286-1290, 2013.
    • (2013) J. Southern Agriculture , vol.44 , Issue.8 , pp. 1286-1290
    • Zhang, F.1
  • 14
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • May
    • Y. LeCun, Y. Bengio, and G. Hinton, Deep learning,'' Nature, vol. 521, pp. 436-444, May 2015.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 15
    • 84957837518 scopus 로고    scopus 로고
    • Deep learning for visual understanding: A review
    • Apr
    • Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, Deep learning for visual understanding: A review,'' Neurocomputing, vol. 187, pp. 27-48, Apr. 2016.
    • (2016) Neurocomputing , vol.187 , pp. 27-48
    • Guo, Y.1    Liu, Y.2    Oerlemans, A.3    Lao, S.4    Wu, S.5    Lew, M.S.6
  • 16
    • 84928013181 scopus 로고    scopus 로고
    • Deep learning for detecting robotic grasps
    • I. Lenz, H. Lee, and A. Saxena, Deep learning for detecting robotic grasps,'' Int. J. Robot. Res., vol. 34, nos. 4-5, pp. 705-724, 2013.
    • (2013) Int. J. Robot. Res. , vol.34 , Issue.4-5 , pp. 705-724
    • Lenz, I.1    Lee, H.2    Saxena, A.3
  • 17
    • 84938888109 scopus 로고    scopus 로고
    • Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning
    • Jul
    • B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning,'' Nature Biotechnol., vol. 33, pp. 831-838, Jul. 2015.
    • (2015) Nature Biotechnol. , vol.33 , pp. 831-838
    • Alipanahi, B.1    Delong, A.2    Weirauch, M.T.3    Frey, B.J.4
  • 18
    • 84949292765 scopus 로고    scopus 로고
    • Deep learning for remote sensing image understanding
    • Jun
    • L. P. Zhang, G. S. Xia, T. Wu, L. Lin, and X. C. Tai, Deep learning for remote sensing image understanding,'' J. Sensors, vol. 2016, Jun. 2015, Art. no. 7954154.
    • (2015) J. Sensors , vol.2016
    • Zhang, L.P.1    Xia, G.S.2    Wu, T.3    Lin, L.4    Tai, X.C.5
  • 19
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio, Learning deep architectures for AI,'' Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 21
    • 84947041871 scopus 로고    scopus 로고
    • ImageNet large scale visual recognition challenge
    • Dec
    • O. Russakovsky et al., ImageNet large scale visual recognition challenge,'' Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, Dec. 2015.
    • (2015) Int. J. Comput. Vis. , vol.115 , Issue.3 , pp. 211-252
    • Russakovsky, O.1
  • 22
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Lake Tahoe, NV, USA
    • A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet classification with deep convolutional neural networks,'' in Proc. Adv. Neural Inf. Process. Syst., Lake Tahoe, NV, USA, 2012, pp. 1097-1105.
    • (2012) Proc. Adv. Neural Inf. Process. Syst , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 23
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition,'' in Proc. Int. Conf. Learn. Represent., 2015, pp. 1-14.
    • (2015) Proc. Int. Conf. Learn. Represent. , pp. 1-14
    • Simonyan, K.1    Zisserman, A.2
  • 24
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus, Visualizing and understanding convolutional networks,'' in Proc. Eur. Conf. Comput. Vis., 2014, pp. 818-833.
    • (2014) Proc. Eur. Conf. Comput. Vis. , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 25
    • 85021853536 scopus 로고    scopus 로고
    • Identification of rice diseases using deep convolutional neural networks
    • Dec
    • Y. Lu, S. Yi, N. Zeng, Y. Liu, and Y. Zhang, Identification of rice diseases using deep convolutional neural networks,'' Neurocomputing, vol. 267, pp. 378-384, Dec. 2017.
    • (2017) Neurocomputing , vol.267 , pp. 378-384
    • Lu, Y.1    Yi, S.2    Zeng, N.3    Liu, Y.4    Zhang, Y.5
  • 26
    • 85032483778 scopus 로고    scopus 로고
    • Automated identification of northern leaf blightinfected maize plants from field imagery using deep learning
    • C. Dechant et al., Automated identification of northern leaf blightinfected maize plants from field imagery using deep learning,'' Phy-topathology, vol. 107, no. 11, pp. 1426-1432, 2017.
    • (2017) Phy-topathology , vol.107 , Issue.11 , pp. 1426-1432
    • Dechant, C.1
  • 27
    • 84988564472 scopus 로고    scopus 로고
    • Using deep learning for image-based plant disease detection
    • Sep
    • S. P. Mohanty, D. P. Hughes, and M. Salathé, Using deep learning for image-based plant disease detection,'' Frontiers Plant Sci., vol. 7, p. 1419, Sep. 2016.
    • (2016) Frontiers Plant Sci. , vol.7 , pp. 1419
    • Mohanty, S.P.1    Hughes, D.P.2    Salathé, M.3
  • 28
    • 85024478063 scopus 로고    scopus 로고
    • Automatic image-based plant disease severity estimation using deep learning
    • G. Wang, Y. Sun, and J. X. Wang, Automatic image-based plant disease severity estimation using deep learning,'' in Computational Intelligence and Neuroscience, 2017, pp. 1-8.
    • (2017) Computational Intelligence and Neuroscience , pp. 1-8
    • Wang, G.1    Sun, Y.2    Wang, J.X.3
  • 30
    • 1642380461 scopus 로고    scopus 로고
    • The problem of overfitting
    • D. M. Hawkins, The problem of overfitting,'' J. Chem. Inf. Comput. Sci., vol. 44, no. 1, pp. 1-12, 2004.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , Issue.1 , pp. 1-12
    • Hawkins, D.M.1
  • 31
    • 84913580146 scopus 로고    scopus 로고
    • Caffe: Convolutional architecture for fast feature embedding
    • Orlando, FL, USA
    • Y. Jia et al., Caffe: Convolutional architecture for fast feature embedding,'' in Proc. 22nd ACM Int. Conf. Multimedia, Orlando, FL, USA, 2014, pp. 675-678.
    • (2014) Proc. 22nd ACM Int. Conf. Multimedia , pp. 675-678
    • Jia, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.