메뉴 건너뛰기




Volumn 59, Issue , 2017, Pages 79-91

Object-based habitat mapping using very high spatial resolution multispectral and hyperspectral imagery with LiDAR data

Author keywords

CHM; Eagle hyperspectral; Habitat mapping; Intensity; kNN; LiDAR; OBIA; QuickBird; Regression forest; SVM

Indexed keywords

ACCURACY ASSESSMENT; DIGITAL ELEVATION MODEL; DIGITAL TERRAIN MODEL; ECOLOGICAL MODELING; HABITAT STRUCTURE; IMAGE CLASSIFICATION; LIDAR; MACHINE LEARNING; MAPPING; QUICKBIRD; SATELLITE IMAGERY; SPATIAL RESOLUTION; SPECTRAL RESOLUTION;

EID: 85048075963     PISSN: 15698432     EISSN: 1872826X     Source Type: Journal    
DOI: 10.1016/j.jag.2017.03.007     Document Type: Article
Times cited : (34)

References (58)
  • 1
    • 84887941591 scopus 로고    scopus 로고
    • LAS Specification Version 1.4–R6
    • (Accessed 18 Febuaray, 2017)
    • ASPRS, LAS Specification Version 1.4–R6. 2011 (Accessed 18 Febuaray, 2017) http://www.asprs.org/wp-content/uploads/2010/12/LAS_1-4_R6.pdf.
    • (2011)
    • ASPRS1
  • 2
    • 77952881448 scopus 로고    scopus 로고
    • Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review
    • Adam, E., Mutanga, O., Rugege, D., Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecol. Manage. 18 (2010), 281–296.
    • (2010) Wetlands Ecol. Manage. , vol.18 , pp. 281-296
    • Adam, E.1    Mutanga, O.2    Rugege, D.3
  • 3
    • 84947574920 scopus 로고    scopus 로고
    • An Introduction to Categorical Data Analysis
    • Wiley New York, N.Y
    • Agresti, A., An Introduction to Categorical Data Analysis. 1996, Wiley, New York, N.Y.
    • (1996)
    • Agresti, A.1
  • 5
    • 79957679301 scopus 로고    scopus 로고
    • AZGCORR: User's Manual
    • Azimuth Systems UK
    • Azimuth-Systems, AZGCORR: User's Manual. 2005, Azimuth Systems, UK.
    • (2005)
    • Azimuth-Systems1
  • 6
    • 0029529269 scopus 로고
    • A Theoretical review of different mathematical models of geometric corrections applied to remote sensing images
    • Bannari, A., Morin, D., Bé Nié, G.B., Bonn, F.J., A Theoretical review of different mathematical models of geometric corrections applied to remote sensing images. Remote Sens. Rev. 13 (1995), 27–47.
    • (1995) Remote Sens. Rev. , vol.13 , pp. 27-47
    • Bannari, A.1    Morin, D.2    Bé Nié, G.B.3    Bonn, F.J.4
  • 8
    • 34548846375 scopus 로고    scopus 로고
    • Integrating LIDAR data and multispectral imagery for enhanced classification of rangeland vegetation: A meta analysis
    • Bork, E.W., Su, J.G., Integrating LIDAR data and multispectral imagery for enhanced classification of rangeland vegetation: A meta analysis. Remote Sens. Environ. 111 (2007), 11–24.
    • (2007) Remote Sens. Environ. , vol.111 , pp. 11-24
    • Bork, E.W.1    Su, J.G.2
  • 9
    • 0003419795 scopus 로고
    • Distribution-Free Statistical Test
    • Prentice-Hall Englewood Cliffs, New Jersy
    • Bradley, J.V., Distribution-Free Statistical Test. 1968, Prentice-Hall, Englewood Cliffs, New Jersy.
    • (1968)
    • Bradley, J.V.1
  • 10
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 11
    • 33745092487 scopus 로고    scopus 로고
    • Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods
    • Buddenbaum, H., Schlerf, M., Hill, J., Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods. Int. J. Remote Sens. 26 (2005), 5453–5465.
    • (2005) Int. J. Remote Sens. , vol.26 , pp. 5453-5465
    • Buddenbaum, H.1    Schlerf, M.2    Hill, J.3
  • 12
    • 85065094662 scopus 로고    scopus 로고
    • The Cumbria Biodiversity Action Plan: Habitat Action Plan
    • CBP, The Cumbria Biodiversity Action Plan: Habitat Action Plan. 2001.
    • (2001)
    • CBP1
  • 13
    • 70349218764 scopus 로고    scopus 로고
    • Classification of tropical trees growing in a sanctuary using Hyperion (EO-1) and SAM algorithm
    • Christian, B., Krishnayya, N., Classification of tropical trees growing in a sanctuary using Hyperion (EO-1) and SAM algorithm. Curr. Sci. 96 (2009), 1601–1607.
    • (2009) Curr. Sci. , vol.96 , pp. 1601-1607
    • Christian, B.1    Krishnayya, N.2
  • 14
    • 85065094631 scopus 로고    scopus 로고
    • Cumbria BAP Species List Updated 2009
    • (Accessed 15 Febuary, 2017)
    • Cumbria Wildlife Trust, Cumbria BAP Species List Updated 2009. 2009 (Accessed 15 Febuary, 2017) http://www.cumbriawildlifetrust.org.uk/sites/default/files/cumbria%20bap%20species%20updated%20list%202009%20web.pdf.
    • (2009)
    • Cumbria Wildlife Trust1
  • 15
    • 84859928062 scopus 로고    scopus 로고
    • Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data
    • Dalponte, M., Bruzzone, L., Gianelle, D., Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sens. Environ. 123 (2012), 258–270.
    • (2012) Remote Sens. Environ. , vol.123 , pp. 258-270
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 16
    • 85050666310 scopus 로고    scopus 로고
    • QuickBird Imagery Products −Product Guide (Revision 4 7.1)
    • DigitalGlobe Inc.
    • Digital Globe, QuickBird Imagery Products −Product Guide (Revision 4 7.1). 2006, DigitalGlobe Inc.
    • (2006)
    • Digital Globe1
  • 17
    • 37549004391 scopus 로고    scopus 로고
    • Multispectral landuse classification using neural networks and support vector machines: one or the other, or both?
    • Dixon, B., Candade, N., Multispectral landuse classification using neural networks and support vector machines: one or the other, or both?. Int. J. Remote Sens. 29 (2008), 1185–1206.
    • (2008) Int. J. Remote Sens. , vol.29 , pp. 1185-1206
    • Dixon, B.1    Candade, N.2
  • 18
    • 84860267020 scopus 로고    scopus 로고
    • Multiple classifier system for remote sensing image classification: a review
    • Du, P., Xia, J., Zhang, W., Tan, K., Liu, Y., Liu, S., Multiple classifier system for remote sensing image classification: a review. Sensors 12 (2012), 4764–4792.
    • (2012) Sensors , vol.12 , pp. 4764-4792
    • Du, P.1    Xia, J.2    Zhang, W.3    Tan, K.4    Liu, Y.5    Liu, S.6
  • 19
    • 3042654673 scopus 로고    scopus 로고
    • A relative evaluation of multiclass image classification by support vector machines
    • Foody, G.M., Mathur, A., A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosc. Remote Sens. 42 (2004), 1335–1343.
    • (2004) IEEE Trans. Geosc. Remote Sens. , vol.42 , pp. 1335-1343
    • Foody, G.M.1    Mathur, A.2
  • 20
    • 34547111054 scopus 로고    scopus 로고
    • Mapping a specific class with an ensemble of classifiers
    • Foody, G., Boyd, D., Sanchez-Hernandez, C., Mapping a specific class with an ensemble of classifiers. Int. J. Remote Sens. 28 (2007), 1733–1746.
    • (2007) Int. J. Remote Sens. , vol.28 , pp. 1733-1746
    • Foody, G.1    Boyd, D.2    Sanchez-Hernandez, C.3
  • 21
    • 34748845694 scopus 로고    scopus 로고
    • Classification of floodplain vegetation by data fusion of spectral (CASI) and LiDAR data
    • Geerling, G., Labrador-Garcia, M., Clevers, J., Ragas, A., Smits, A., Classification of floodplain vegetation by data fusion of spectral (CASI) and LiDAR data. Int. J. Remote Sens. 28 (2007), 4263–4284.
    • (2007) Int. J. Remote Sens. , vol.28 , pp. 4263-4284
    • Geerling, G.1    Labrador-Garcia, M.2    Clevers, J.3    Ragas, A.4    Smits, A.5
  • 22
    • 84866847148 scopus 로고    scopus 로고
    • An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod Massachusetts, USA
    • Ghimire, B., Rogan, J., Galiano, V.R., Panday, P., Neeti, N., An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod Massachusetts, USA. GISci. Remote Sens. 49 (2012), 623–643.
    • (2012) GISci. Remote Sens. , vol.49 , pp. 623-643
    • Ghimire, B.1    Rogan, J.2    Galiano, V.R.3    Panday, P.4    Neeti, N.5
  • 23
    • 0035420134 scopus 로고    scopus 로고
    • Design of effective neural network ensembles for image classification purposes
    • Giacinto, G., Roli, F., Design of effective neural network ensembles for image classification purposes. Image Vision Comput. 19 (2001), 699–707.
    • (2001) Image Vision Comput. , vol.19 , pp. 699-707
    • Giacinto, G.1    Roli, F.2
  • 24
    • 26844454816 scopus 로고    scopus 로고
    • Mapping woodland species composition and structure using airborne spectral and LiDAR data
    • Hill, R., Thomson, A., Mapping woodland species composition and structure using airborne spectral and LiDAR data. Int. J. Remote Sens. 26 (2005), 3763–3779.
    • (2005) Int. J. Remote Sens. , vol.26 , pp. 3763-3779
    • Hill, R.1    Thomson, A.2
  • 25
    • 40049088615 scopus 로고    scopus 로고
    • Species identification of individual trees by combining high resolution LiDAR data with multi-spectral images
    • Holmgren, J., Persson, Å., Söderman, U., Species identification of individual trees by combining high resolution LiDAR data with multi-spectral images. Int. J. Remote Sens. 29 (2008), 1537–1552.
    • (2008) Int. J. Remote Sens. , vol.29 , pp. 1537-1552
    • Holmgren, J.1    Persson, Å.2    Söderman, U.3
  • 26
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • Huang, C., Davis, L., Townshend, J., An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 23 (2002), 725–749.
    • (2002) Int. J. Remote Sens. , vol.23 , pp. 725-749
    • Huang, C.1    Davis, L.2    Townshend, J.3
  • 27
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes, G., On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14 (1968), 55–63.
    • (1968) IEEE Trans. Inf. Theory , vol.14 , pp. 55-63
    • Hughes, G.1
  • 28
    • 84870760985 scopus 로고    scopus 로고
    • Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data
    • Immitzer, M., Atzberger, C., Koukal, T., Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data. Remote Sens. 4 (2012), 2661–2693.
    • (2012) Remote Sens. , vol.4 , pp. 2661-2693
    • Immitzer, M.1    Atzberger, C.2    Koukal, T.3
  • 29
    • 84870502365 scopus 로고    scopus 로고
    • Handbook for Phase 1 Habitat Survey – A Technique for Environmental Audit
    • Joint Nature Conservation Committee
    • JNCC, Handbook for Phase 1 Habitat Survey – A Technique for Environmental Audit. 2010, Joint Nature Conservation Committee.
    • (2010)
    • JNCC1
  • 30
    • 79957819255 scopus 로고    scopus 로고
    • Unsupervised image segmentation evaluation and refinement using a multi-scale approach
    • Johnson, B., Xie, Z., Unsupervised image segmentation evaluation and refinement using a multi-scale approach. ISPRS J. Photogramm. Remote Sens., 66, 2011.
    • (2011) ISPRS J. Photogramm. Remote Sens. , vol.66
    • Johnson, B.1    Xie, Z.2
  • 31
    • 0003946510 scopus 로고    scopus 로고
    • Principal Component Analysis
    • Springer New York
    • Jolliffe, I.T., Principal Component Analysis. 2002, Springer, New York.
    • (2002)
    • Jolliffe, I.T.1
  • 32
    • 77956884950 scopus 로고    scopus 로고
    • Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada
    • Jones, T.G., Coops, N.C., Sharma, T., Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada. Remote Sens. Environ. 114 (2010), 2841–2852.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 2841-2852
    • Jones, T.G.1    Coops, N.C.2    Sharma, T.3
  • 33
    • 0037430115 scopus 로고    scopus 로고
    • The empirical line method for the atmospheric correction of IKONOS imagery
    • Karpouzli, E., Malthus, T., The empirical line method for the atmospheric correction of IKONOS imagery. Int. J. Remote Sens. 24 (2003), 1143–1150.
    • (2003) Int. J. Remote Sens. , vol.24 , pp. 1143-1150
    • Karpouzli, E.1    Malthus, T.2
  • 34
    • 77949657728 scopus 로고    scopus 로고
    • Synergistic use of QuickBird multispectral imagery and LIDAR data for object-based forest species classification
    • Ke, Y., Quackenbush, L.J., Im, J., Synergistic use of QuickBird multispectral imagery and LIDAR data for object-based forest species classification. Remote Sens. Environ. 114 (2010), 1141–1154.
    • (2010) Remote Sens. Environ. , vol.114 , pp. 1141-1154
    • Ke, Y.1    Quackenbush, L.J.2    Im, J.3
  • 35
    • 0017360990 scopus 로고
    • The measurement of observer agreement for categorical data
    • Landis, J., Koch, G.G., The measurement of observer agreement for categorical data. Biometics 33 (1977), 159–174.
    • (1977) Biometics , vol.33 , pp. 159-174
    • Landis, J.1    Koch, G.G.2
  • 39
    • 79957751533 scopus 로고    scopus 로고
    • Optimising the use of hyperspectral and LiDAR data for mapping reedbed habitats
    • Onojeghuo, A.O., Blackburn, G.A., Optimising the use of hyperspectral and LiDAR data for mapping reedbed habitats. Remote Sens. Environ. 115 (2011), 2025–2034.
    • (2011) Remote Sens. Environ. , vol.115 , pp. 2025-2034
    • Onojeghuo, A.O.1    Blackburn, G.A.2
  • 41
    • 13644256120 scopus 로고    scopus 로고
    • Support vector machines for classification in remote sensing
    • Pal, M., Mather, P., Support vector machines for classification in remote sensing. Int. J. Remote Sens. 26 (2005), 1007–1011.
    • (2005) Int. J. Remote Sens. , vol.26 , pp. 1007-1011
    • Pal, M.1    Mather, P.2
  • 42
    • 84874785808 scopus 로고    scopus 로고
    • Commercial tree species discrimination using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA) in KwaZulu-Natal, South Africa
    • Peerbhay, K.Y., Mutanga, O., Ismail, R., Commercial tree species discrimination using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA) in KwaZulu-Natal, South Africa. ISPRS J. Photogramm. Remote Sens. 79 (2013), 19–28.
    • (2013) ISPRS J. Photogramm. Remote Sens. , vol.79 , pp. 19-28
    • Peerbhay, K.Y.1    Mutanga, O.2    Ismail, R.3
  • 43
    • 0032030026 scopus 로고    scopus 로고
    • Multisensor image fusion in remote sensing: concepts, methods and applications
    • Pohl, C., Van Genderen, J., Multisensor image fusion in remote sensing: concepts, methods and applications. Int. J. Remote Sens. 19 (1998), 823–854.
    • (1998) Int. J. Remote Sens. , vol.19 , pp. 823-854
    • Pohl, C.1    Van Genderen, J.2
  • 44
    • 41749111993 scopus 로고    scopus 로고
    • Invasive species change detection using artificial neural networks and CASI hyperspectral imagery
    • Pu, R., Gong, P., Tian, Y., Miao, X., Carruthers, R.I., Anderson, G.L., Invasive species change detection using artificial neural networks and CASI hyperspectral imagery. Environ. Monit. Assess. 140 (2008), 15–32.
    • (2008) Environ. Monit. Assess. , vol.140 , pp. 15-32
    • Pu, R.1    Gong, P.2    Tian, Y.3    Miao, X.4    Carruthers, R.I.5    Anderson, G.L.6
  • 45
    • 84938751712 scopus 로고    scopus 로고
    • Combined use of LiDAR data and multispectral earth observation imagery for wetland habitat mapping
    • Rapinel, S., Hubert-Moy, L., Clément, B., Combined use of LiDAR data and multispectral earth observation imagery for wetland habitat mapping. Int. J. Appl. Earth Observ. Geoinf. 37 (2015), 56–64.
    • (2015) Int. J. Appl. Earth Observ. Geoinf. , vol.37 , pp. 56-64
    • Rapinel, S.1    Hubert-Moy, L.2    Clément, B.3
  • 47
    • 85056354006 scopus 로고    scopus 로고
    • Data fusion for remote sensing applications
    • C.H. Chen CRC Press Boca Raton
    • Solberg, A.H.S., Data fusion for remote sensing applications. Chen, C.H., (eds.) Signal and Image Processing for Remote Sensing, 2006, CRC Press, Boca Raton, 515–537.
    • (2006) Signal and Image Processing for Remote Sensing , pp. 515-537
    • Solberg, A.H.S.1
  • 49
    • 84875665195 scopus 로고    scopus 로고
    • eCognition Developer 9.0 Reference Book
    • Trimble, eCognition Developer 9.0 Reference Book. 2014.
    • (2014)
    • Trimble1
  • 50
    • 84948982312 scopus 로고    scopus 로고
    • eCognition Developer 9.0 User Guide
    • Trimble, eCognition Developer 9.0 User Guide. 2014.
    • (2014)
    • Trimble1
  • 51
    • 0003450542 scopus 로고    scopus 로고
    • Statistical Learning Theory
    • Wiley New York
    • Vapnik, V.N., Vapnik, V., Statistical Learning Theory. 1998, Wiley New York.
    • (1998)
    • Vapnik, V.N.1    Vapnik, V.2
  • 52
    • 41249095779 scopus 로고    scopus 로고
    • Spatially explicit characterization of boreal forest gap dynamics using multi-temporal lidar data
    • Vepakomma, U., St-Onge, B., Kneeshaw, D., Spatially explicit characterization of boreal forest gap dynamics using multi-temporal lidar data. Remote Sens. Environ. 112 (2008), 2326–2340.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 2326-2340
    • Vepakomma, U.1    St-Onge, B.2    Kneeshaw, D.3
  • 54
    • 33745727320 scopus 로고    scopus 로고
    • Detecting urban vegetation from IKONOS data using an object-oriented approach
    • Zhang, X., Feng, X., Detecting urban vegetation from IKONOS data using an object-oriented approach. Int. Geosci. Remote Sens. Symp., 2005, p1475.
    • (2005) Int. Geosci. Remote Sens. Symp. , pp. p1475
    • Zhang, X.1    Feng, X.2
  • 55
    • 84868023232 scopus 로고    scopus 로고
    • Mapping individual tree species in an urban forest using airborne lidar data and hyperspectral imagery
    • Zhang, C., Qiu, F., Mapping individual tree species in an urban forest using airborne lidar data and hyperspectral imagery. Photogramm. Eng. Remote Sens. 78 (2012), 1079–1087.
    • (2012) Photogramm. Eng. Remote Sens. , vol.78 , pp. 1079-1087
    • Zhang, C.1    Qiu, F.2
  • 56
    • 84903574339 scopus 로고    scopus 로고
    • Data fusion and classifier ensemble techniques for vegetation mapping in the coastal Everglades
    • Zhang, C., Xie, Z., Data fusion and classifier ensemble techniques for vegetation mapping in the coastal Everglades. Geocarto Int. 29 (2014), 228–243.
    • (2014) Geocarto Int. , vol.29 , pp. 228-243
    • Zhang, C.1    Xie, Z.2
  • 57
    • 84924225421 scopus 로고    scopus 로고
    • Combining hyperspectral and LiDAR data for vegetation mapping in the Florida Everglades
    • Zhang, C., Combining hyperspectral and LiDAR data for vegetation mapping in the Florida Everglades. Photogramm. Engin. Remote Sens. 80 (2014), 733–743.
    • (2014) Photogramm. Engin. Remote Sens. , vol.80 , pp. 733-743
    • Zhang, C.1
  • 58
    • 84939415665 scopus 로고    scopus 로고
    • Applying data fusion techniques for benthic habitat mapping and monitoring in a coral reef ecosystem
    • Zhang, C., Applying data fusion techniques for benthic habitat mapping and monitoring in a coral reef ecosystem. ISPRS J. Photogramm. Remote Sens. 104 (2015), 213–223.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.104 , pp. 213-223
    • Zhang, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.