메뉴 건너뛰기




Volumn 29, Issue 3, 2014, Pages 228-243

Data fusion and classifier ensemble techniques for vegetation mapping in the coastal Everglades

Author keywords

classifier ensemble; data fusion; Everglades; vegetation mapping

Indexed keywords

ACCURACY ASSESSMENT; ALGORITHM; ARTIFICIAL INTELLIGENCE; AVIRIS; COASTAL ZONE; DATA PROCESSING; IMAGERY; ORTHOPHOTO; VEGETATION CLASSIFICATION; VEGETATION MAPPING; VEGETATION TYPE;

EID: 84903574339     PISSN: 10106049     EISSN: None     Source Type: Journal    
DOI: 10.1080/10106049.2012.756940     Document Type: Article
Times cited : (32)

References (59)
  • 1
    • 1642487678 scopus 로고    scopus 로고
    • Multiresolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information
    • Benz U, et al. 2004. Multiresolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing. 58:239-258.
    • (2004) ISPRS Journal of Photogrammetry and Remote Sensing , vol.58 , pp. 239-258
    • Benz, U.1
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman L. 2001. Random Forests. Machine Learning. 45:5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 4
    • 84903632514 scopus 로고    scopus 로고
    • Comprehensive Everglades Restoration Plan (CERP), [Accessed 27 October 2012]
    • Comprehensive Everglades Restoration Plan (CERP). 2012. Available from:http://www.evergladesplan.org/ [Accessed 27 October 2012].
    • (2012)
  • 5
    • 0020642209 scopus 로고
    • A quantitative method to test for consistency and correctness in photointerpretation
    • Congalton R, Mead RA. 1983. A quantitative method to test for consistency and correctness in photointerpretation. Photogrammetric Engineering & Remote Sensing. 49:69-74.
    • (1983) Photogrammetric Engineering & Remote Sensing , vol.49 , pp. 69-74
    • Congalton, R.1    Mead, R.A.2
  • 6
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of Random Forest and Adaboost tree based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
    • Chan JC-W, Paelinckx D. 2008. Evaluation of Random Forest and Adaboost tree based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sensing of Environment. 112:2999-3011.
    • (2008) Remote Sensing of Environment , vol.112 , pp. 2999-3011
    • Chan, J.C.-W.1    Paelinckx, D.2
  • 7
  • 8
    • 84865053262 scopus 로고    scopus 로고
    • Mapping tree species composition in South African savannas using an integrated airborne spectral and LiDAR system
    • Cho MZ, et al. 2012. Mapping tree species composition in South African savannas using an integrated airborne spectral and LiDAR system. Remote Sensing of Environment. 125:214-226.
    • (2012) Remote Sensing of Environment , vol.125 , pp. 214-226
    • Cho, M.Z.1
  • 10
    • 0028190448 scopus 로고
    • Landscape dimension, composition, and function in a changing everglades ecosystem
    • In: Davis SM, Ogden JC, editors Delray Beach, FL,: St Lucie Press
    • Davis SM, et al. 1994. Landscape dimension, composition, and function in a changing everglades ecosystem. In: Davis SM, Ogden JC, editors. Everglades: the ecosystem and its restoration. Delray Beach, FL: St Lucie Press; p. 419-444.
    • (1994) Everglades: The ecosystem and its restoration , pp. 419-444
    • Davis, S.M.1
  • 11
    • 0032943228 scopus 로고    scopus 로고
    • The Everglades: a perspective on the requirements and applications for vegetation map and database products
    • Doren RF, Rutchey K, Welch R. 1999. The Everglades: a perspective on the requirements and applications for vegetation map and database products. Photogrammetric Engineering and Remote Sensing. 65:155-161.
    • (1999) Photogrammetric Engineering and Remote Sensing , vol.65 , pp. 155-161
    • Doren, R.F.1    Rutchey, K.2    Welch, R.3
  • 12
    • 84860267020 scopus 로고    scopus 로고
    • Multiple classifier system for remote sensing image classification: a review
    • Du P, et al. 2012. Multiple classifier system for remote sensing image classification: a review. Sensors. 12:4764-4792.
    • (2012) Sensors , vol.12 , pp. 4764-4792
    • Du, P.1
  • 14
    • 84903632516 scopus 로고    scopus 로고
    • Florida Exotic Pest Plant Council (FLEPPC), [Accessed 27 October 2012]
    • Florida Exotic Pest Plant Council (FLEPPC). 2012. [online]. Available from:http://www.fleppc.org/list/11list.html [Accessed 27 October 2012].
    • (2012)
  • 15
    • 0036213079 scopus 로고    scopus 로고
    • Status of land cover classification accuracy assessment
    • Foody GM. 2002. Status of land cover classification accuracy assessment. Remote Sensing of Environment. 80:185-201.
    • (2002) Remote Sensing of Environment , vol.80 , pp. 185-201
    • Foody, G.M.1
  • 16
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison, evaluating the statistical significance of differences in classification accuracy
    • Foody GM. 2004. Thematic map comparison, evaluating the statistical significance of differences in classification accuracy. Photogrammetric Engineering & Remote Sensing. 70:627-633.
    • (2004) Photogrammetric Engineering & Remote Sensing , vol.70 , pp. 627-633
    • Foody, G.M.1
  • 17
    • 34748845694 scopus 로고    scopus 로고
    • Classification of floodplain vegetation by data fusion of spectral (CASI) and LiDAR data
    • Geerling GW, et al. 2007. Classification of floodplain vegetation by data fusion of spectral (CASI) and LiDAR data. International Journal of Remote Sensing. 28:4263-4284.
    • (2007) International Journal of Remote Sensing , vol.28 , pp. 4263-4284
    • Geerling, G.W.1
  • 19
    • 0023854011 scopus 로고
    • A transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • Green AA, et al. 1988. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing. 26:65-74.
    • (1988) IEEE Transactions on Geoscience and Remote Sensing , vol.26 , pp. 65-74
    • Green, A.A.1
  • 20
    • 80052667859 scopus 로고    scopus 로고
    • Application of spectral and environmental variables to map the Kissimmee prairie ecosystem using classification trees
    • Griffin S, Rogan J, Runfola DM. 2011. Application of spectral and environmental variables to map the Kissimmee prairie ecosystem using classification trees. GIScience & Remote Sensing. 48:299-323.
    • (2011) GIScience & Remote Sensing , vol.48 , pp. 299-323
    • Griffin, S.1    Rogan, J.2    Runfola, D.M.3
  • 21
    • 84866847148 scopus 로고    scopus 로고
    • An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USA
    • Ghimire B, et al. 2012. An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USA. GIScience & Remote Sensing. 49:623-643.
    • (2012) GIScience & Remote Sensing , vol.49 , pp. 623-643
    • Ghimire, B.1
  • 22
    • 76749092270 scopus 로고    scopus 로고
    • The WEKA data mining software, an update
    • Hall M, et al. 2009. The WEKA data mining software, an update. SIGKDD Explorations. 11:1-18.
    • (2009) SIGKDD Explorations , vol.11 , pp. 1-18
    • Hall, M.1
  • 23
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the Random Forest framework for classification of hyperspectral data
    • Ham J, et al. 2005. Investigation of the Random Forest framework for classification of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing. 43:492-501.
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , pp. 492-501
    • Ham, J.1
  • 24
    • 20044367501 scopus 로고    scopus 로고
    • Classification of Iowa wetlands using an airborne hyperspectral image: a comparison of the spectral angle mapper classifier and an object-oriented approach
    • Harken J, Sugumaran R. 2005. Classification of Iowa wetlands using an airborne hyperspectral image: a comparison of the spectral angle mapper classifier and an object-oriented approach. Canadian Journal of Remote Sensing. 31:167-174.
    • (2005) Canadian Journal of Remote Sensing , vol.31 , pp. 167-174
    • Harken, J.1    Sugumaran, R.2
  • 25
    • 26844454816 scopus 로고    scopus 로고
    • Mapping woodland species composition and structure using airborne spectral and LIDAR data
    • Hill RA, Thomson AG. 2005. Mapping woodland species composition and structure using airborne spectral and LIDAR data. International Journal of Remote Sensing. 26:3763-3779.
    • (2005) International Journal of Remote Sensing , vol.26 , pp. 3763-3779
    • Hill, R.A.1    Thomson, A.G.2
  • 26
    • 0041629027 scopus 로고    scopus 로고
    • Hyperspectral image data for mapping wetland vegetation
    • Hirano A, Madden M, Welch R. 2003. Hyperspectral image data for mapping wetland vegetation. Wetlands. 23:436-448.
    • (2003) Wetlands , vol.23 , pp. 436-448
    • Hirano, A.1    Madden, M.2    Welch, R.3
  • 28
    • 71549173731 scopus 로고    scopus 로고
    • Fusing optical and radar data to estimate sagebrush, herbaceous, and bare ground cover in Yellowstone
    • Huang S, et al. 2010. Fusing optical and radar data to estimate sagebrush, herbaceous, and bare ground cover in Yellowstone. Remote Sensing of Environment. 114:251-264.
    • (2010) Remote Sensing of Environment , vol.114 , pp. 251-264
    • Huang, S.1
  • 29
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognition
    • Hughes GF. 1968. On the mean accuracy of statistical pattern recognition. IEEE Transactions on Information Theory. 14:55-63.
    • (1968) IEEE Transactions on Information Theory , vol.14 , pp. 55-63
    • Hughes, G.F.1
  • 31
    • 79957819255 scopus 로고    scopus 로고
    • Unsupervised image segmentation evaluation and refinement using a multi-scale approach
    • Johnson B, Xie Z. 2011. Unsupervised image segmentation evaluation and refinement using a multi-scale approach. ISPRS Journal of Photogrammetry and Remote Sensing. 66:473-483.
    • (2011) ISPRS Journal of Photogrammetry and Remote Sensing , vol.66 , pp. 473-483
    • Johnson, B.1    Xie, Z.2
  • 32
    • 79951828052 scopus 로고    scopus 로고
    • Remote sensing of vegetation pattern and condition to monitor changes in Everglades biogeochemistry
    • Jones JW. 2011. Remote sensing of vegetation pattern and condition to monitor changes in Everglades biogeochemistry. Critical Reviews in Environmental Science and Technology. 41:64-91.
    • (2011) Critical Reviews in Environmental Science and Technology , vol.41 , pp. 64-91
    • Jones, J.W.1
  • 33
    • 77956884950 scopus 로고    scopus 로고
    • Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada
    • Jones TG, Coops NC, Sharma T. 2010. Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada. Remote Sensing of Environment. 114:2841-2852.
    • (2010) Remote Sensing of Environment , vol.114 , pp. 2841-2852
    • Jones, T.G.1    Coops, N.C.2    Sharma, T.3
  • 34
    • 84856762488 scopus 로고    scopus 로고
    • Hyperspectral data for mangrove species mapping: A comparison of pixel-based and object-based approach
    • Kamal M, Phinn S. 2011. Hyperspectral data for mangrove species mapping: A comparison of pixel-based and object-based approach. Remote Sensing. 3:2222-2242.
    • (2011) Remote Sensing , vol.3 , pp. 2222-2242
    • Kamal, M.1    Phinn, S.2
  • 36
    • 0017360990 scopus 로고
    • The measurement of observer agreement for categorical data
    • Landis J, Koch GG. 1977. The measurement of observer agreement for categorical data. Biometrics. 33:159-174.
    • (1977) Biometrics , vol.33 , pp. 159-174
    • Landis, J.1    Koch, G.G.2
  • 37
    • 31344453556 scopus 로고    scopus 로고
    • Mapping invasive plants using hyperspectral imagery and Breiman and Cutler classifications (Random Forest)
    • Lawrence RL, Wood SD, Sheley RL. 2006. Mapping invasive plants using hyperspectral imagery and Breiman and Cutler classifications (Random Forest). Remote Sensing of Environment. 100:356-362.
    • (2006) Remote Sensing of Environment , vol.100 , pp. 356-362
    • Lawrence, R.L.1    Wood, S.D.2    Sheley, R.L.3
  • 38
    • 79955383550 scopus 로고    scopus 로고
    • Assessing object-based classification, advantages and limitations
    • Liu D, Xia M. 2010. Assessing object-based classification, advantages and limitations. Remote Sensing Letters. 1:187-194.
    • (2010) Remote Sensing Letters , vol.1 , pp. 187-194
    • Liu, D.1    Xia, M.2
  • 41
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani F, Bruzzone L. 2004. Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing. 42:1778-1790.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 44
    • 84859644121 scopus 로고    scopus 로고
    • Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment
    • Naidoo L, et al. 2012. Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment. ISPRS Journal of Photogrammetry and Remote Sensing. 69:167-179.
    • (2012) ISPRS Journal of Photogrammetry and Remote Sensing , vol.69 , pp. 167-179
    • Naidoo, L.1
  • 45
    • 0032030026 scopus 로고    scopus 로고
    • Multisensor image fusion in remote sensing: concepts, methods and applications
    • Pohl C, Van Genderen JL. 1998. Multisensor image fusion in remote sensing: concepts, methods and applications. International Journal of Remote Sensing. 19:823-854.
    • (1998) International Journal of Remote Sensing , vol.19 , pp. 823-854
    • Pohl, C.1    Van Genderen, J.L.2
  • 46
    • 84855970934 scopus 로고    scopus 로고
    • An assessment of the effectiveness of a Random Forest classifier for land-cover classification
    • Rodriguez-Galiano VF, et al. 2012. An assessment of the effectiveness of a Random Forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing. 67:93-104.
    • (2012) ISPRS Journal of Photogrammetry and Remote Sensing , vol.67 , pp. 93-104
    • Rodriguez-Galiano, V.F.1
  • 47
    • 1942452360 scopus 로고    scopus 로고
    • Remote sensing technology for mapping and monitoring land-cover and land-use change
    • Rogan J, Chen D. 2004. Remote sensing technology for mapping and monitoring land-cover and land-use change. Progress in Planning. 61:301-325.
    • (2004) Progress in Planning , vol.61 , pp. 301-325
    • Rogan, J.1    Chen, D.2
  • 48
    • 58149222589 scopus 로고    scopus 로고
    • Development of vegetation maps for assessing Everglades restoration progress
    • Rutchey K, Schall T, Sklar F. 2008. Development of vegetation maps for assessing Everglades restoration progress. Wetlands. 28:806-816.
    • (2008) Wetlands , vol.28 , pp. 806-816
    • Rutchey, K.1    Schall, T.2    Sklar, F.3
  • 50
    • 85056354006 scopus 로고    scopus 로고
    • Data fusion for remote sensing applications
    • In: Chen CH, editors Boca Raton, FL,: CRC Press
    • Solberg AHS. 2006. Data fusion for remote sensing applications. In: Chen CH, editor. Signal and image processing for remote sensing. Boca Raton, FL: CRC Press; p. 515-537.
    • (2006) Signal and image processing for remote sensing , pp. 515-537
    • Solberg, A.H.S.1
  • 53
    • 80053584464 scopus 로고    scopus 로고
    • Kernel-based texture in remote sensing image classification
    • Warner T. 2011. Kernel-based texture in remote sensing image classification. Geography Compass. 5:781-798.
    • (2011) Geography Compass , vol.5 , pp. 781-798
    • Warner, T.1
  • 54
    • 77953005976 scopus 로고    scopus 로고
    • Mapping of hyperspectral AVIRIS data using machine-learning algorithms
    • Waske B, et al. 2009. Mapping of hyperspectral AVIRIS data using machine-learning algorithms. Canadian Journal of Remote Sensing. 35:S106-S116.
    • (2009) Canadian Journal of Remote Sensing , vol.35
    • Waske, B.1
  • 56
    • 33745615125 scopus 로고    scopus 로고
    • Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery
    • Yu Q, et al. 2006. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogrammetric Engineering & Remote Sensing. 72:799-811.
    • (2006) Photogrammetric Engineering & Remote Sensing , vol.72 , pp. 799-811
    • Yu, Q.1
  • 57
    • 79551513995 scopus 로고    scopus 로고
    • Multi-source remote sensing data fusion: status and trends
    • Zhang J. 2010. Multi-source remote sensing data fusion: status and trends. International Journal of Image and Data Fusion. 1:5-24.
    • (2010) International Journal of Image and Data Fusion , vol.1 , pp. 5-24
    • Zhang, J.1
  • 58
    • 84862164250 scopus 로고    scopus 로고
    • Combining object-based texture measures with a neural network for vegetation mapping in the Everglades from hyperspectral imagery
    • Zhang C, Xie Z. 2012. Combining object-based texture measures with a neural network for vegetation mapping in the Everglades from hyperspectral imagery. Remote Sensing of Environment. 124:310-320.
    • (2012) Remote Sensing of Environment , vol.124 , pp. 310-320
    • Zhang, C.1    Xie, Z.2
  • 59
    • 84903632508 scopus 로고    scopus 로고
    • Object-based vegetation mapping in the Kissimmee River watershed using HyMap data and machine learning techniques
    • Zhang C, Xie Z., accepted. Object-based vegetation mapping in the Kissimmee River watershed using HyMap data and machine learning techniques. Wetlands.
    • Wetlands
    • Zhang, C.1    Xie, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.