메뉴 건너뛰기




Volumn 10, Issue 5, 2018, Pages

Assessment of machine learning algorithms for automatic benthic cover monitoring and mapping using towed underwater video camera and high-resolution satellite images

Author keywords

Benthic cover monitoring; Hybrid classifiers; Machine learning algorithms; Towed underwater video camera

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIODIVERSITY; ECOSYSTEMS; GLOBAL POSITIONING SYSTEM; LEARNING SYSTEMS; MAPPING; MARINE APPLICATIONS; MARINE BIOLOGY; NEAREST NEIGHBOR SEARCH; SATELLITE IMAGERY; SUPPORT VECTOR MACHINES; VIDEO CAMERAS;

EID: 85047506431     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs10050773     Document Type: Article
Times cited : (35)

References (55)
  • 2
    • 84993958625 scopus 로고    scopus 로고
    • Machine Learning for benthic sand and maerl classification and coverage estimation in coastal areas around the Maltese Islands
    • Gauci, A.; Deidun, A.; Abela, J.; Zarb, K. Machine Learning for benthic sand and maerl classification and coverage estimation in coastal areas around the Maltese Islands. J. Appl. Res. Technol. 2016, 14, 338-344
    • (2016) J. Appl. Res. Technol , vol.14 , pp. 338-344
    • Gauci, A.1    Deidun, A.2    Abela, J.3    Zarb, K.4
  • 3
    • 84855532624 scopus 로고    scopus 로고
    • Development of a machine learning technique for automatic analysis of seafloor image data: Case example, Pogonophora coverage at mud volcanoes
    • Lüdtke, A.; Jerosch, K.; Herzog, O.; Schlüter, M. Development of a machine learning technique for automatic analysis of seafloor image data: Case example, Pogonophora coverage at mud volcanoes. Comput. Geosci. 2012, 39, 120-128
    • (2012) Comput. Geosci , vol.39 , pp. 120-128
    • Lüdtke, A.1    Jerosch, K.2    Herzog, O.3    Schlüter, M.4
  • 4
    • 67349217909 scopus 로고    scopus 로고
    • Ecological Informatics Ecological niche modelling of the distribution of cold-water coral habitat using underwater remote sensing data
    • Guinan, J.; Brown, C.; Dolan, M.; Grehan, A. Ecological Informatics Ecological niche modelling of the distribution of cold-water coral habitat using underwater remote sensing data. Ecol. Inform. 2009, 4, 83-92
    • (2009) Ecol. Inform , vol.4 , pp. 83-92
    • Guinan, J.1    Brown, C.2    Dolan, M.3    Grehan, A.4
  • 7
    • 84896075910 scopus 로고    scopus 로고
    • Archimer Underwater video techniques for observing coastal marine biodiversity: A review of sixty years of publications (1952-2012)
    • Mallet, D.; Pelletier, D. Archimer Underwater video techniques for observing coastal marine biodiversity: A review of sixty years of publications (1952-2012). Fish. Res. 2014, 154, 44-62
    • (2014) Fish. Res , vol.154 , pp. 44-62
    • Mallet, D.1    Pelletier, D.2
  • 8
    • 84865045311 scopus 로고    scopus 로고
    • Image-based continental shelf habitat mapping using novel automated data extraction techniques
    • Seiler, J.; Friedman, A.; Steinberg, D.; Barrett, N.; Williams, A.; Holbrook, N. Image-based continental shelf habitat mapping using novel automated data extraction techniques. Cont. Shelf Res. 2012, 45, 87-97
    • (2012) Cont. Shelf Res , vol.45 , pp. 87-97
    • Seiler, J.1    Friedman, A.2    Steinberg, D.3    Barrett, N.4    Williams, A.5    Holbrook, N.6
  • 9
    • 78650113464 scopus 로고    scopus 로고
    • Toward Adaptive Benthic Habitat Mapping Using Gaussian Process Classification
    • Rigby, P.; Pizarro, O.; Williams, S. Toward Adaptive Benthic Habitat Mapping Using Gaussian Process Classification. J. Field Robot. 2010, 27, 741-758
    • (2010) J. Field Robot , vol.27 , pp. 741-758
    • Rigby, P.1    Pizarro, O.2    Williams, S.3
  • 11
    • 33644983786 scopus 로고    scopus 로고
    • Mapping coral reef benthic habitat with a hyperspectral spaceborne sensor
    • Santa Fe, NM, USA, 18-22 November
    • Kutser, T.; Miller, I.; Jupp, D. Mapping coral reef benthic habitat with a hyperspectral spaceborne sensor. In Proceedings of the Ocean Optics XVI Conference, Santa Fe, NM, USA, 18-22 November 2002
    • (2002) Proceedings of the Ocean Optics XVI Conference
    • Kutser, T.1    Miller, I.2    Jupp, D.3
  • 13
    • 84863500196 scopus 로고    scopus 로고
    • BOMBER: A tool for estimating water quality and bottom properties from remote sensing images
    • Giardino, C.; Candiani, G.; Bresciani, M.; Lee, Z.; Gagliano, S.; Pepe, M. BOMBER: A tool for estimating water quality and bottom properties from remote sensing images. Comput. Geosci. 2012, 45, 313-318
    • (2012) Comput. Geosci , vol.45 , pp. 313-318
    • Giardino, C.1    Candiani, G.2    Bresciani, M.3    Lee, Z.4    Gagliano, S.5    Pepe, M.6
  • 14
    • 84939415665 scopus 로고    scopus 로고
    • Applying data fusion techniques for benthic habitat mapping and monitoring in a coral reef ecosystem
    • Zhang, C. Applying data fusion techniques for benthic habitat mapping and monitoring in a coral reef ecosystem. ISPRS J. Photogramm. Remote Sens. 2015, 104, 213-223
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.104 , pp. 213-223
    • Zhang, C.1
  • 15
    • 84855295926 scopus 로고    scopus 로고
    • Combining angular response classification and backscatter imagery segmentation for benthic biological habitat mapping
    • Hasan, R.; Ierodiaconou, D.; Laurenson, L. Combining angular response classification and backscatter imagery segmentation for benthic biological habitat mapping. Estuar. Coast. Shelf Sci. 2012, 97, 1-9
    • (2012) Estuar. Coast. Shelf Sci , vol.97 , pp. 1-9
    • Hasan, R.1    Ierodiaconou, D.2    Laurenson, L.3
  • 16
    • 84901277306 scopus 로고    scopus 로고
    • Integrating multibeam backscatter angular response, mosaic and bathymetry data for benthic habitat mapping
    • Hasan, R.; Ierodiaconou, D.; Laurenson, L.; Schimel, A. Integrating multibeam backscatter angular response, mosaic and bathymetry data for benthic habitat mapping. PLoS ONE 2014, 9, e97339
    • (2014) PLoS ONE , vol.9
    • Hasan, R.1    Ierodiaconou, D.2    Laurenson, L.3    Schimel, A.4
  • 17
    • 84906058504 scopus 로고    scopus 로고
    • Evaluation of WorldView-2 and acoustic remote sensing for mapping benthic habitats in temperate coastal Pacific waters
    • Reshitnyk, L.; Costa, M.; Robinson, C.; Dearden, P. Evaluation of WorldView-2 and acoustic remote sensing for mapping benthic habitats in temperate coastal Pacific waters. Remote Sens. Environ. 2014, 153, 7-23
    • (2014) Remote Sens. Environ , vol.153 , pp. 7-23
    • Reshitnyk, L.1    Costa, M.2    Robinson, C.3    Dearden, P.4
  • 18
    • 84938198864 scopus 로고    scopus 로고
    • A multi-model ensemble approach to seabed mapping
    • Diesing, M.; Stephens, D. A multi-model ensemble approach to seabed mapping. J. Sea Res. 2015, 100, 62-69
    • (2015) J. Sea Res , vol.100 , pp. 62-69
    • Diesing, M.1    Stephens, D.2
  • 19
    • 84857012828 scopus 로고    scopus 로고
    • Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs
    • Phinn, S.; Roelfsema, C.; Mumby, P. Multi-scale, object-based image analysis for mapping geomorphic and ecological zones on coral reefs. Int. J. Remote Sens. 2012, 33, 3768-3797
    • (2012) Int. J. Remote Sens , vol.33 , pp. 3768-3797
    • Phinn, S.1    Roelfsema, C.2    Mumby, P.3
  • 20
    • 84873685703 scopus 로고    scopus 로고
    • Accuracy of IKONOS for mapping benthic coral-reef habitats: A case study from the Puerto Morelos Reef National Park, Mexico
    • Zapata-Ramírez, P.; Blanchon, P.; Olioso, A.; Hernandez-Nuñez, H.; Sobrino, J. Accuracy of IKONOS for mapping benthic coral-reef habitats: A case study from the Puerto Morelos Reef National Park, Mexico. Int. J. Remote Sens. 2013, 34, 3671-3687
    • (2013) Int. J. Remote Sens , vol.34 , pp. 3671-3687
    • Zapata-Ramírez, P.1    Blanchon, P.2    Olioso, A.3    Hernandez-Nuñez, H.4    Sobrino, J.5
  • 21
    • 84948995183 scopus 로고    scopus 로고
    • Mapping VHRWater Depth, Seabed and Land Cover Using Google Earth Data
    • Collin, A.; Nadaoka, K.; Nakamura, T. Mapping VHRWater Depth, Seabed and Land Cover Using Google Earth Data. ISPRS Int. J. Geo-Inf. 2014, 3, 1157-1179
    • (2014) ISPRS Int. J. Geo-Inf , vol.3 , pp. 1157-1179
    • Collin, A.1    Nadaoka, K.2    Nakamura, T.3
  • 22
    • 85027928345 scopus 로고    scopus 로고
    • High-Resolution Maps of Bathymetry and Benthic Habitats in Shallow-Water Environments Using Multispectral Remote Sensing Imagery
    • Eugenio, F.; Marcello, J.; Martin, J. High-Resolution Maps of Bathymetry and Benthic Habitats in Shallow-Water Environments Using Multispectral Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3539-3549
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , pp. 3539-3549
    • Eugenio, F.1    Marcello, J.2    Martin, J.3
  • 24
    • 84924247701 scopus 로고    scopus 로고
    • Extraction of Benthic Cover Information from Video Tows and Photographs Using Object-Based Image Analysis
    • Remote Sensing and Spatial Information Science, XXXIX-B8, XXII ISPRS Congress, Melbourne, QC, Australia, 25 August-1 September
    • Estomata, M.; Blanco, A.; Nadaoka, K.; Tomoling, E. Extraction of Benthic Cover Information from Video Tows and Photographs Using Object-Based Image Analysis. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, XXXIX-B8, XXII ISPRS Congress, Melbourne, QC, Australia, 25 August-1 September 2012; pp. 539-544
    • (2012) Proceedings of the International Archives of the Photogrammetry , pp. 539-544
    • Estomata, M.1    Blanco, A.2    Nadaoka, K.3    Tomoling, E.4
  • 25
    • 67849095610 scopus 로고    scopus 로고
    • An integrated field and remote sensing approach for mapping Seagrass Cover, Moreton Bay, Australia
    • Roelfsema, C.; Phinn, S.; Udy, N.; Maxwell, P. An integrated field and remote sensing approach for mapping Seagrass Cover, Moreton Bay, Australia. J. Spat. Sci. 2009, 54, 45-62
    • (2009) J. Spat. Sci , vol.54 , pp. 45-62
    • Roelfsema, C.1    Phinn, S.2    Udy, N.3    Maxwell, P.4
  • 27
    • 84882902606 scopus 로고    scopus 로고
    • Feature integration analysis of bag-of-features model for image retrieval
    • Yu, J.; Qin, Z.;Wan, T.; Zhang, X. Feature integration analysis of bag-of-features model for image retrieval. Neurocomputing 2013, 120, 355-364
    • (2013) Neurocomputing , vol.120 , pp. 355-364
    • Yu, J.1    Qin, Z.2    Wan, T.3    Zhang, X.4
  • 28
    • 84957806939 scopus 로고    scopus 로고
    • Effective face recognition using bag of features with additive kernels
    • Yang, S.; Bebis, G.; Chu, Y.; Zhao, L. Effective face recognition using bag of features with additive kernels. J. Electron. Imaging 2016, 25
    • (2016) J. Electron. Imaging , pp. 25
    • Yang, S.1    Bebis, G.2    Chu, Y.3    Zhao, L.4
  • 29
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123-140
    • (1996) Mach. Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 30
    • 84904153565 scopus 로고    scopus 로고
    • Classification of Multispectral Satellite Images Using Ensemble Techniques of Bagging, Boosting and Ada-Boost
    • Systems, Communication and Information Technology Applications (CSCITA) Classification, Mumbai, India, 4-5 April
    • Kulkarni, S.; Kelkar, V. Classification of Multispectral Satellite Images Using Ensemble Techniques of Bagging, Boosting and Ada-Boost. In Proceedings of the International Conference on Circuits, Systems, Communication and Information Technology Applications (CSCITA) Classification, Mumbai, India, 4-5 April 2014; pp. 253-258
    • (2014) Proceedings of the International Conference on Circuits , pp. 253-258
    • Kulkarni, S.1    Kelkar, V.2
  • 31
    • 84866847148 scopus 로고    scopus 로고
    • An Evaluation of Bagging, Boosting, and Random Forests for Land-Cover Classiication in Cape Cod, Massachusetts, USA
    • Ghimire, B.; Rogan, J.; Rodriguez-Galiano, V.; Panday, P.; Neeti, N. An Evaluation of Bagging, Boosting, and Random Forests for Land-Cover Classiication in Cape Cod, Massachusetts, USA. GISci. Remote Sens. 2012, 5, 623-643
    • (2012) GISci. Remote Sens , vol.5 , pp. 623-643
    • Ghimire, B.1    Rogan, J.2    Rodriguez-Galiano, V.3    Panday, P.4    Neeti, N.5
  • 32
    • 0034476942 scopus 로고    scopus 로고
    • Multiple Criteria for Evaluating Machine Learning Algorithms for Land Cover Classification from Satellite Data
    • DeFries, R.; Chan, J. Multiple Criteria for Evaluating Machine Learning Algorithms for Land Cover Classification from Satellite Data. Remote Sens. Environ. 2000, 74, 503-515
    • (2000) Remote Sens. Environ , vol.74 , pp. 503-515
    • DeFries, R.1    Chan, J.2
  • 33
    • 34249753618 scopus 로고
    • Support-Vector Networks
    • Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273-297
    • (1995) Mach. Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 34
    • 84924411499 scopus 로고    scopus 로고
    • Combination of Genetic Algorithm and Dempster-Shafer Theory of Evidence for Land Cover Classification Using Integration of Sar and Optical Satellite Imagery
    • Remote Sensing and Spatial Information Sciences, Volume XXXIX-B7, XXXIX Congres, Melbourne, QC, Australia, 25 August-1 September
    • Chu, H.; Ge, L. Combination of Genetic Algorithm and Dempster-Shafer Theory of Evidence for Land Cover Classification Using Integration of Sar and Optical Satellite Imagery. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B7, XXXIX Congres, Melbourne, QC, Australia, 25 August-1 September 2012; pp. 173-178
    • (2012) Proceedings of the International Archives of the Photogrammetry , pp. 173-178
    • Chu, H.1    Ge, L.2
  • 35
    • 67650759361 scopus 로고    scopus 로고
    • A kernel functions analysis for support vector machines for land cover classification
    • Kavzoglu, T.; Colkesen, I. A kernel functions analysis for support vector machines for land cover classification. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 352-359
    • (2009) Int. J. Appl. Earth Obs. Geoinf , vol.11 , pp. 352-359
    • Kavzoglu, T.1    Colkesen, I.2
  • 36
    • 84875518690 scopus 로고    scopus 로고
    • Data Mining and Support Vector Regression Machine Learning in Semiconductor Manufacturing to improve virtual metrology
    • Wailea, HI, USA, 7-10 January
    • Lenz, B.; Barak, B. Data Mining and Support Vector Regression Machine Learning in Semiconductor Manufacturing to improve virtual metrology. In Proceedings of the Annual Hawaii International Conference on System Sciences, Wailea, HI, USA, 7-10 January 2013; pp. 3447-3456
    • (2013) Proceedings of the Annual Hawaii International Conference on System Sciences , pp. 3447-3456
    • Lenz, B.1    Barak, B.2
  • 37
    • 67650863412 scopus 로고    scopus 로고
    • An adaptive thresholding multiple classifiers system for remote sensing image classification
    • Tzeng, Y.; Fan, K.; Chen, K. An adaptive thresholding multiple classifiers system for remote sensing image classification. Eng. Remote Sens. 2009, 75, 679-687
    • (2009) Eng. Remote Sens , vol.75 , pp. 679-687
    • Tzeng, Y.1    Fan, K.2    Chen, K.3
  • 38
    • 0038702303 scopus 로고    scopus 로고
    • On Machine Learning Methods for Chinese Document Categorization
    • He, J.; Tan, A.; Tan, C. On Machine Learning Methods for Chinese Document Categorization. Appl. Intell. 2003, 18, 311-322
    • (2003) Appl. Intell , vol.18 , pp. 311-322
    • He, J.1    Tan, A.2    Tan, C.3
  • 39
    • 84863083806 scopus 로고    scopus 로고
    • A hybrid text classification approach with low dependency on parameter by integrating K-nearest neighbor and support vector machine
    • Wan, C.; Lee, L.; Rajkumar, R.; Isa, D. A hybrid text classification approach with low dependency on parameter by integrating K-nearest neighbor and support vector machine. Expert Syst. Appl. 2012, 39, 11880-11888
    • (2012) Expert Syst. Appl , vol.39 , pp. 11880-11888
    • Wan, C.1    Lee, L.2    Rajkumar, R.3    Isa, D.4
  • 40
    • 77954823964 scopus 로고    scopus 로고
    • Dayton, OH, USA. (accessed on 20 June 2017)
    • Gutierrez-Osuna, R. Lecture Notes CS 790: Introduction to Pattern Recognition; Dayton, OH, USA. 2002. Available online: http://research.cs.tamu.edu/prism/lectures/iss/iss_l1.pdf (accessed on 20 June 2017)
    • (2002) Lecture Notes CS 790: Introduction to Pattern Recognition
  • 41
    • 84865233213 scopus 로고    scopus 로고
    • Noisy data elimination using mutual k-nearest neighbor for classification mining
    • Liu, H.; Zhang, S. Noisy data elimination using mutual k-nearest neighbor for classification mining. J. Syst. Softw. 2012, 85, 1067-1074
    • (2012) J. Syst. Softw , vol.85 , pp. 1067-1074
    • Liu, H.1    Zhang, S.2
  • 43
    • 84899109542 scopus 로고    scopus 로고
    • Evaluation of classification techniques for benthic habitat mapping
    • Muslim, A.; Komatsu, T.; Dianachia, D. Evaluation of classification techniques for benthic habitat mapping. Proc. SPIE 2012, 8525, 85250W
    • (2012) Proc. SPIE , vol.8525
    • Muslim, A.1    Komatsu, T.2    Dianachia, D.3
  • 44
    • 85018622677 scopus 로고    scopus 로고
    • Mapping seagrass coverage and spatial patterns with high spatial resolution IKONOS imagery
    • Pu, R.; Bell, S. Mapping seagrass coverage and spatial patterns with high spatial resolution IKONOS imagery. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 145-158
    • (2017) Int. J. Appl. Earth Obs. Geoinf , vol.54 , pp. 145-158
    • Pu, R.1    Bell, S.2
  • 45
    • 84924351114 scopus 로고    scopus 로고
    • Integrating field survey data with satellite image data to improve shallow water seagrass maps: The role of AUV and snorkeller surveys
    • Roelfsema, C.; Lyons, M.; Dunbabin, M.; Kovacs, E.; Phinn, S. Integrating field survey data with satellite image data to improve shallow water seagrass maps: The role of AUV and snorkeller surveys. Remote Sens. Lett. 2015, 6, 135-144
    • (2015) Remote Sens. Lett , vol.6 , pp. 135-144
    • Roelfsema, C.1    Lyons, M.2    Dunbabin, M.3    Kovacs, E.4    Phinn, S.5
  • 47
    • 84867605388 scopus 로고    scopus 로고
    • Alternative spatially enhanced integrative techniques for mapping seagrass in Florida's marine ecosystem
    • Baumstark, R.; Dixon, B.; Carlson, P.; Palandro, D.; Kolasa, K. Alternative spatially enhanced integrative techniques for mapping seagrass in Florida's marine ecosystem. Int. J. Remote Sens. 2013, 34, 1248-1264
    • (2013) Int. J. Remote Sens , vol.34 , pp. 1248-1264
    • Baumstark, R.1    Dixon, B.2    Carlson, P.3    Palandro, D.4    Kolasa, K.5
  • 48
    • 85047569753 scopus 로고    scopus 로고
    • Mapping seagrass and colonized hard bottom in Springs Coast, Florida using WorldView-2 satellite imagery
    • Baumstark, R.; Duffey, R.; Pu, R. Mapping seagrass and colonized hard bottom in Springs Coast, Florida using WorldView-2 satellite imagery. Estuar. Coast. Shelf Sci. 2016, 170, 45-60
    • (2016) Estuar. Coast. Shelf Sci , vol.170 , pp. 45-60
    • Baumstark, R.1    Duffey, R.2    Pu, R.3
  • 50
    • 79959287954 scopus 로고    scopus 로고
    • Predicting species diversity of benthic communities within turbid nearshore using full-waveform bathymetric LiDAR and machine learners
    • Collin, A.; Archambault, P.; Long, B. Predicting species diversity of benthic communities within turbid nearshore using full-waveform bathymetric LiDAR and machine learners. PLoS ONE 2011, 6, e21265
    • (2011) PLoS ONE , vol.6
    • Collin, A.1    Archambault, P.2    Long, B.3
  • 51
    • 84939213759 scopus 로고    scopus 로고
    • Object-based Image Analysis for Coral Reef Benthic Habitat Mapping with Several Classification Algorithms
    • Wahidin, N.; Siregar, V.; Nababan, B.; Jaya, I.;Wouthuyzen, S. Object-based Image Analysis for Coral Reef Benthic Habitat Mapping with Several Classification Algorithms. Procedia Environ. Sci. 2015, 24, 222-227
    • (2015) Procedia Environ. Sci , vol.24 , pp. 222-227
    • Wahidin, N.1    Siregar, V.2    Nababan, B.3    Jaya, I.4    Wouthuyzen, S.5
  • 53
    • 84873108230 scopus 로고    scopus 로고
    • Getting to the point: Accuracy of point count in monitoring ecosystem change
    • Pante, E.; Dustan, P. Getting to the point: Accuracy of point count in monitoring ecosystem change. J. Mar. Biol. 2012
    • (2012) J. Mar. Biol
    • Pante, E.1    Dustan, P.2
  • 55
    • 78650891017 scopus 로고    scopus 로고
    • Integrating field data with high spatial resolution multispectral satellite imagery for calibration and validation of coral reef benthic community maps
    • Roelfsema, C.; Phinn, S. Integrating field data with high spatial resolution multispectral satellite imagery for calibration and validation of coral reef benthic community maps. J. Appl. Remote Sens. 2010, 4
    • (2010) J. Appl. Remote Sens , pp. 4
    • Roelfsema, C.1    Phinn, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.