-
2
-
-
84962005949
-
-
H. Lee, M. Ranzato, Y. Bengio, G.E. Hinton, Y. LeCun, and A.Y. Ng, editors. Proceedings of the Deep Learning and Unsupervised Feature Learning Workshop (NIPS 2010). 2010.
-
(2010)
Proceedings of the Deep Learning and Unsupervised Feature Learning Workshop (NIPS 2010)
-
-
Lee, H.1
Ranzato, M.2
Bengio, Y.3
Hinton, G.E.4
LeCun, Y.5
Ng, A.Y.6
-
3
-
-
84962007884
-
-
K. Yu, R. Salakhutdinov, Y. LeCun, G.E. Hinton, and Y. Bengio, editors. Proceedings of the Workshop on Learning Feature Hierarchies (ICML 2009). 2009.
-
(2009)
Proceedings of the Workshop on Learning Feature Hierarchies (ICML 2009)
-
-
Yu, K.1
Salakhutdinov, R.2
LeCun, Y.3
Hinton, G.E.4
Bengio, Y.5
-
7
-
-
84904743910
-
On the complexity of neural network classifiers: A comparison between shallow and deep architectures
-
To be published
-
M. Bianchini and F. Scarselli. On the complexity of neural network classifiers: A comparison between shallow and deep architectures. IEEE Transactions on Neural Networks, 2014. To be published.
-
(2014)
IEEE Transactions on Neural Networks
-
-
Bianchini, M.1
Scarselli, F.2
-
9
-
-
0345195977
-
Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results
-
F. Scarselli and A.C. Tsoi. Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results. Neural Networks, 11:15-37, 1998.
-
(1998)
Neural Networks
, vol.11
, pp. 15-37
-
-
Scarselli, F.1
Tsoi, A.C.2
-
10
-
-
0034069365
-
On the approximation capability of recurrent neural networks
-
B. Hammer. On the approximation capability of recurrent neural networks. Neurocom- puting, 31(1-4):107-123, 2000.
-
(2000)
Neurocomputing
, vol.31
, Issue.1-4
, pp. 107-123
-
-
Hammer, B.1
-
11
-
-
26944454812
-
Recursive neural networks for processing graphs with labelled edges: Theory and applications
-
M. Bianchini, M. Maggini, L. Sarti, and F. Scarselli. Recursive neural networks for processing graphs with labelled edges: Theory and applications. Neural Networks, 18(8):1040-1050, 2005.
-
(2005)
Neural Networks
, vol.18
, Issue.8
, pp. 1040-1050
-
-
Bianchini, M.1
Maggini, M.2
Sarti, L.3
Scarselli, F.4
-
12
-
-
58649092639
-
Computational capabilities of graph neural networks
-
F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, and G. Monfardini. Computational capabilities of graph neural networks. IEEE Transactions on Neural Networks, 20(1):81-102, 2009.
-
(2009)
IEEE Transactions on Neural Networks
, vol.20
, Issue.1
, pp. 81-102
-
-
Scarselli, F.1
Gori, M.2
Tsoi, A.C.3
Hagenbuchner, M.4
Monfardini, G.5
-
13
-
-
0032096332
-
Representations and rates of approximation of real-valued boolean functions by neural networks
-
V. Kurkova, P. Savicky, and K. Hlavackova. Representations and rates of approximation of real-valued boolean functions by neural networks. Neural Networks, 11(4):651-659, 1998.
-
(1998)
Neural Networks
, vol.11
, Issue.4
, pp. 651-659
-
-
Kurkova, V.1
Savicky, P.2
Hlavackova, K.3
-
15
-
-
0001295178
-
On the power of small-depth threshold circuits
-
J. Håstad and M. Goldmann. On the power of small-depth threshold circuits. Computational Complexity, 1(2):113-129, 1991.
-
(1991)
Computational Complexity
, vol.1
, Issue.2
, pp. 113-129
-
-
Håstad, J.1
Goldmann, M.2
-
16
-
-
4644327403
-
Vapnik-Chervonenkis dimension of neural nets
-
M.A. Arbib, editor. Cambridge, MA: MIT Press. Second Edition
-
P.L. Bartlett and W. Maass. Vapnik-Chervonenkis dimension of neural nets. In M.A. Arbib, editor, The Handbook of Brain Theory and Neural Networks, pages 1188-1192. Cambridge, MA: MIT Press, 2003. Second Edition.
-
(2003)
The Handbook of Brain Theory and Neural Networks
, pp. 1188-1192
-
-
Bartlett, P.L.1
Maass, W.2
-
17
-
-
84947801804
-
A generative model that learns Betti numbers from a data set
-
Bruges, Belgium
-
M. Maillot, M. Aupetit, and G. Govaert. A generative model that learns Betti num- bers from a data set. In ESANN2012, 15th European Symposium on Artificial Neural Networks, pages 537-542, Bruges, Belgium, 2012.
-
(2012)
ESANN2012, 15th European Symposium on Artificial Neural Networks
, pp. 537-542
-
-
Maillot, M.1
Aupetit, M.2
Govaert, G.3
|