메뉴 건너뛰기




Volumn , Issue , 2016, Pages 2252-2260

Learning multiagent communication with backpropagation

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION; MULTI AGENT SYSTEMS;

EID: 85018860957     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1184)

References (37)
  • 2
    • 84871781883 scopus 로고    scopus 로고
    • An overview of recent progress in the study of distributed multi-agent coordination
    • Y. Cao, W. Yu, W. Ren, and G. Chen. An overview of recent progress in the study of distributed multi-agent coordination. IEEE Transactions on Industrial Informatics, 1(9):427-438, 2013.
    • (2013) IEEE Transactions on Industrial Informatics , vol.1 , Issue.9 , pp. 427-438
    • Cao, Y.1    Yu, W.2    Ren, W.3    Chen, G.4
  • 3
    • 0032208335 scopus 로고    scopus 로고
    • Elevator group control using multiple reinforcement learning agents
    • R. H. Crites and A. G. Barto. Elevator group control using multiple reinforcement learning agents. Machine Learning, 33(2):235-262, 1998.
    • (1998) Machine Learning , vol.33 , Issue.2 , pp. 235-262
    • Crites, R.H.1    Barto, A.G.2
  • 5
    • 0034207091 scopus 로고    scopus 로고
    • Probabilistic approach to collaborative multi-robot localization
    • D. Fox, W. Burgard, H. Kruppa, and S. Thrun. Probabilistic approach to collaborative multi-robot localization. Autonomous Robots, 8(3):325-344, 2000.
    • (2000) Autonomous Robots , vol.8 , Issue.3 , pp. 325-344
    • Fox, D.1    Burgard, W.2    Kruppa, H.3    Thrun, S.4
  • 7
    • 0012296128 scopus 로고    scopus 로고
    • Multiagent planning with factored MDPs
    • C. Guestrin, D. Koller, and R. Parr. Multiagent planning with factored MDPs. In NIPS, 2001.
    • (2001) NIPS
    • Guestrin, C.1    Koller, D.2    Parr, R.3
  • 8
    • 84937779024 scopus 로고    scopus 로고
    • Deep learning for real-time atari game play using offline monte-carlo tree search planning
    • X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang. Deep learning for real-time atari game play using offline monte-carlo tree search planning. In NIPS, 2014.
    • (2014) NIPS
    • Guo, X.1    Singh, S.2    Lee, H.3    Lewis, R.L.4    Wang, X.5
  • 9
    • 85083953090 scopus 로고    scopus 로고
    • Neural GPUs learn algorithms
    • L. Kaiser and I. Sutskever. Neural gpus learn algorithms. In ICLR, 2016.
    • (2016) ICLR
    • Kaiser, L.1    Sutskever, I.2
  • 11
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
    • (2015) ICLR
    • Kingma, D.1    Ba, J.2
  • 12
    • 0012286079 scopus 로고    scopus 로고
    • An algorithm for distributed reinforcement learning in cooperative multi-agent systems
    • M. Lauer and M. A. Riedmiller. An algorithm for distributed reinforcement learning in cooperative multi-agent systems. In ICML, 2000.
    • (2000) ICML
    • Lauer, M.1    Riedmiller, M.A.2
  • 15
    • 0001547175 scopus 로고    scopus 로고
    • Value-function reinforcement learning in Markov games
    • M. L. Littman. Value-function reinforcement learning in markov games. Cognitive Systems Research, 2(1):55-66, 2001.
    • (2001) Cognitive Systems Research , vol.2 , Issue.1 , pp. 55-66
    • Littman, M.L.1
  • 16
    • 85083951314 scopus 로고    scopus 로고
    • Move evaluation in go using deep convolutional neural networks
    • C. J. Maddison, A. Huang, I. Sutskever, and D. Silver. Move evaluation in go using deep convolutional neural networks. In ICLR, 2015.
    • (2015) ICLR
    • Maddison, C.J.1    Huang, A.2    Sutskever, I.3    Silver, D.4
  • 17
    • 85028097976 scopus 로고    scopus 로고
    • Coordination of communication in robot teams by reinforcement learning
    • D. Maravall, J. De Lope, and R. Domnguez. Coordination of communication in robot teams by reinforcement learning. Robotics and Autonomous Systems, 61(7):661-666, 2013.
    • (2013) Robotics and Autonomous Systems , vol.61 , Issue.7 , pp. 661-666
    • Maravall, D.1    De Lope, J.2    Domnguez, R.3
  • 18
    • 0030647149 scopus 로고    scopus 로고
    • Reinforcement learning in the multi-robot domain
    • M. Matari. Reinforcement learning in the multi-robot domain. Autonomous Robots, 4(1):73-83, 1997.
    • (1997) Autonomous Robots , vol.4 , Issue.1 , pp. 73-83
    • Matari, M.1
  • 19
    • 84868340899 scopus 로고    scopus 로고
    • Querypomdp: Pomdp-based communication in multiagent systems
    • F. S. Melo, M. Spaan, and S. J. Witwicki. Querypomdp: Pomdp-based communication in multiagent systems. In Multi-Agent Systems, pages 189-204, 2011.
    • (2011) Multi-Agent Systems , pp. 189-204
    • Melo, F.S.1    Spaan, M.2    Witwicki, S.J.3
  • 21
    • 64149119332 scopus 로고    scopus 로고
    • Consensus and cooperation in networked multi-agent systems
    • R. Olfati-Saber, J. Fax, and R. Murray. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 95(1):215-233, 2007.
    • (2007) Proceedings of the IEEE , vol.95 , Issue.1 , pp. 215-233
    • Olfati-Saber, R.1    Fax, J.2    Murray, R.3
  • 22
    • 0020276268 scopus 로고
    • Reverend bayes on inference engines: A distributed hierarchical approach
    • J. Pearl. Reverend bayes on inference engines: A distributed hierarchical approach. In AAAI, 1982.
    • (1982) AAAI
    • Pearl, J.1
  • 25
    • 0031648211 scopus 로고    scopus 로고
    • Towards collaborative and adversarial learning: A case study in robotic soccer
    • P. Stone and M. Veloso. Towards collaborative and adversarial learning: A case study in robotic soccer. International Journal of Human Computer Studies, (48), 1998.
    • (1998) International Journal of Human Computer Studies , Issue.48
    • Stone, P.1    Veloso, M.2
  • 30
    • 85152198941 scopus 로고
    • Multi-agent reinforcement learning: Independent vs. Cooperative agents
    • M. Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In ICML, 1993.
    • (1993) ICML
    • Tan, M.1
  • 31
  • 33
    • 67649405225 scopus 로고    scopus 로고
    • Reinforcement learning to play an optimal nash equilibrium in team Markov games
    • X. Wang and T. Sandholm. Reinforcement learning to play an optimal nash equilibrium in team markov games. In NIPS, pages 1571-1578, 2002.
    • (2002) NIPS , pp. 1571-1578
    • Wang, X.1    Sandholm, T.2
  • 34
    • 85083951707 scopus 로고    scopus 로고
    • Towards ai-complete question answering: A set of prerequisite toy tasks
    • J. Weston, A. Bordes, S. Chopra, and T. Mikolov. Towards ai-complete question answering: A set of prerequisite toy tasks. In ICLR, 2016.
    • (2016) ICLR
    • Weston, J.1    Bordes, A.2    Chopra, S.3    Mikolov, T.4
  • 35
    • 0000337576 scopus 로고
    • Simple statistical gradient-following algorithms for connectionist reinforcement learning
    • R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. In Machine Learning, pages 229-256, 1992.
    • (1992) Machine Learning , pp. 229-256
    • Williams, R.J.1
  • 36
    • 84999008900 scopus 로고    scopus 로고
    • Dynamic memory networks for visual and textual question answering
    • C. Xiong, S. Merity, and R. Socher. Dynamic memory networks for visual and textual question answering. ICML, 2016.
    • (2016) ICML
    • Xiong, C.1    Merity, S.2    Socher, R.3
  • 37
    • 84899453582 scopus 로고    scopus 로고
    • Coordinating multi-agent reinforcement learning with limited communication
    • C. Zhang and V. Lesser. Coordinating multi-agent reinforcement learning with limited communication. In Proc. AAMAS, pages 1101-1108, 2013.
    • (2013) Proc. AAMAS , pp. 1101-1108
    • Zhang, C.1    Lesser, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.