메뉴 건너뛰기




Volumn 162, Issue , 2018, Pages 239-250

Short-term wind speed prediction using an extreme learning machine model with error correction

Author keywords

Autoregressive integrated moving average; Empirical mode decomposition; Error revision; Extreme learning machine; Wind speed forecasting

Indexed keywords

AUTOREGRESSIVE MOVING AVERAGE MODEL; ERROR CORRECTION; FORECASTING; KNOWLEDGE ACQUISITION; MACHINE LEARNING; SPEED; TIME SERIES; WIND POWER;

EID: 85044624738     PISSN: 01968904     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enconman.2018.02.015     Document Type: Article
Times cited : (130)

References (43)
  • 1
    • 85041567157 scopus 로고    scopus 로고
    • Energy and economic analysis of the wind turbine plant's draft for the Aksaray City
    • Taner, T., Kürşat, Demirci O., Energy and economic analysis of the wind turbine plant's draft for the Aksaray City. AEES 2 (2014), 82–85, 10.12691/aees-2-3-2.
    • (2014) AEES , vol.2 , pp. 82-85
    • Taner, T.1    Kürşat, D.O.2
  • 2
    • 84864352511 scopus 로고    scopus 로고
    • Control of a wind energy conversion system equipped by a DFIG for active power generation and power quality improvement
    • Boutoubat, M., Mokrani, L., Machmoum, M., Control of a wind energy conversion system equipped by a DFIG for active power generation and power quality improvement. Renew Energy 50 (2013), 378–386, 10.1016/j.renene.2012.06.058.
    • (2013) Renew Energy , vol.50 , pp. 378-386
    • Boutoubat, M.1    Mokrani, L.2    Machmoum, M.3
  • 3
    • 79960600274 scopus 로고    scopus 로고
    • Wind energy-present scenario
    • Tiwari, H., Gidwani, L., Wind energy-present scenario. Electr India Mag 50 (2010), 68–77.
    • (2010) Electr India Mag , vol.50 , pp. 68-77
    • Tiwari, H.1    Gidwani, L.2
  • 4
    • 67649644694 scopus 로고    scopus 로고
    • Optimal control of wind energy systems: towards a global approach
    • Springer London, UK
    • Munteanu, I., Bratcu, A.I., Cutululis, N.A., Ceanga, E., Optimal control of wind energy systems: towards a global approach. 2008, Springer, London, UK.
    • (2008)
    • Munteanu, I.1    Bratcu, A.I.2    Cutululis, N.A.3    Ceanga, E.4
  • 5
    • 84946021085 scopus 로고    scopus 로고
    • A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: a case study of wind farms in northwest China
    • Wang, Y., Wang, J., Wei, X., A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: a case study of wind farms in northwest China. Energy 91 (2015), 556–572, 10.1016/j.energy.2015.08.039.
    • (2015) Energy , vol.91 , pp. 556-572
    • Wang, Y.1    Wang, J.2    Wei, X.3
  • 6
    • 84899903501 scopus 로고    scopus 로고
    • A novel hybrid approach for wind speed prediction
    • Wang, J., Zhang, W., Wang, J., Han, T., Kong, L., A novel hybrid approach for wind speed prediction. Inf Sci 273 (2014), 304–318, 10.1016/j.ins.2014.02.159.
    • (2014) Inf Sci , vol.273 , pp. 304-318
    • Wang, J.1    Zhang, W.2    Wang, J.3    Han, T.4    Kong, L.5
  • 7
    • 84905494402 scopus 로고    scopus 로고
    • Forecasting wind speed using empirical mode decomposition and Elman neural network
    • Wang, J., Zhang, W., Li, Y., Wang, J., Dang, Z., Forecasting wind speed using empirical mode decomposition and Elman neural network. Appl Soft Comput 23 (2014), 452–459, 10.1016/j.asoc.2014.06.027.
    • (2014) Appl Soft Comput , vol.23 , pp. 452-459
    • Wang, J.1    Zhang, W.2    Li, Y.3    Wang, J.4    Dang, Z.5
  • 8
    • 84912004737 scopus 로고    scopus 로고
    • Wind speed forecast model for wind farm based on a hybrid machine learning algorithm
    • Haque, A.U., Mandal, P., Meng, J., Negnevitsky, M., Wind speed forecast model for wind farm based on a hybrid machine learning algorithm. Int J Sustain Energy 34 (2015), 38–51, 10.1080/14786451.2013.826224.
    • (2015) Int J Sustain Energy , vol.34 , pp. 38-51
    • Haque, A.U.1    Mandal, P.2    Meng, J.3    Negnevitsky, M.4
  • 9
    • 84939789758 scopus 로고    scopus 로고
    • Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks
    • Liu, H., Tian, H.-Q., Liang, X.-F., Li, Y.-F., Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks. Appl Energy 157 (2015), 183–194, 10.1016/j.apenergy.2015.08.014.
    • (2015) Appl Energy , vol.157 , pp. 183-194
    • Liu, H.1    Tian, H.-Q.2    Liang, X.-F.3    Li, Y.-F.4
  • 10
    • 84961654663 scopus 로고    scopus 로고
    • Wind power prediction method based on regime of switching kernel functions
    • Ouyang, T., Zha, X., Qin, L., Xiong, Y., Xia, T., Wind power prediction method based on regime of switching kernel functions. J Wind Eng Ind Aerodyn 153 (2016), 26–33, 10.1016/j.jweia.2016.03.005.
    • (2016) J Wind Eng Ind Aerodyn , vol.153 , pp. 26-33
    • Ouyang, T.1    Zha, X.2    Qin, L.3    Xiong, Y.4    Xia, T.5
  • 11
    • 84987942280 scopus 로고    scopus 로고
    • Long-term electric energy consumption forecasting via artificial cooperative search algorithm
    • Kaboli, S.H.A., Selvaraj, J., Rahim, N.A., Long-term electric energy consumption forecasting via artificial cooperative search algorithm. Energy 115 (2016), 857–871, 10.1016/j.energy.2016.09.015.
    • (2016) Energy , vol.115 , pp. 857-871
    • Kaboli, S.H.A.1    Selvaraj, J.2    Rahim, N.A.3
  • 12
    • 84891696241 scopus 로고    scopus 로고
    • A 5-day wind speed & power forecasts using a layer recurrent neural network (LRNN)
    • Olaofe, Z.O., A 5-day wind speed & power forecasts using a layer recurrent neural network (LRNN). Sustain Energy Technol Assess 6 (2014), 1–24, 10.1016/j.seta.2013.12.001.
    • (2014) Sustain Energy Technol Assess , vol.6 , pp. 1-24
    • Olaofe, Z.O.1
  • 13
    • 84929448964 scopus 로고    scopus 로고
    • Extreme learning machine approach for sensorless wind speed estimation
    • Nikolić, V., Motamedi, S., Shamshirband, S., Petković, D., Ch, S., Arif, M., Extreme learning machine approach for sensorless wind speed estimation. Mechatronics 34 (2016), 78–83, 10.1016/j.mechatronics.2015.04.007.
    • (2016) Mechatronics , vol.34 , pp. 78-83
    • Nikolić, V.1    Motamedi, S.2    Shamshirband, S.3    Petković, D.4    Ch, S.5    Arif, M.6
  • 14
    • 84959098801 scopus 로고    scopus 로고
    • Application of extreme learning machine for estimation of wind speed distribution
    • Shamshirband, S., Mohammadi, K., Tong, C.W., Petković, D., Porcu, E., Mostafaeipour, A., et al. Application of extreme learning machine for estimation of wind speed distribution. Clim Dyn 46 (2016), 1893–1907, 10.1007/s00382-015-2682-2.
    • (2016) Clim Dyn , vol.46 , pp. 1893-1907
    • Shamshirband, S.1    Mohammadi, K.2    Tong, C.W.3    Petković, D.4    Porcu, E.5    Mostafaeipour, A.6
  • 15
    • 84904741064 scopus 로고    scopus 로고
    • Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization – extreme learning machine approach
    • Salcedo-Sanz, S., Pastor-Sánchez, A., Prieto, L., Blanco-Aguilera, A., García-Herrera, R., Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization – extreme learning machine approach. Energy Convers Manage 87 (2014), 10–18, 10.1016/j.enconman.2014.06.041.
    • (2014) Energy Convers Manage , vol.87 , pp. 10-18
    • Salcedo-Sanz, S.1    Pastor-Sánchez, A.2    Prieto, L.3    Blanco-Aguilera, A.4    García-Herrera, R.5
  • 16
    • 84929146225 scopus 로고    scopus 로고
    • Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms
    • Liu, H., Tian, H.-Q., Li, Y.-F., Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms. Energy Convers Manage 100 (2015), 16–22, 10.1016/j.enconman.2015.04.057.
    • (2015) Energy Convers Manage , vol.100 , pp. 16-22
    • Liu, H.1    Tian, H.-Q.2    Li, Y.-F.3
  • 17
    • 84907974670 scopus 로고    scopus 로고
    • Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions
    • Liu, H., Tian, H.-Q., Li, Y.-F, Comparison of new hybrid FEEMD-MLP, FEEMD-ANFIS, Wavelet Packet-MLP and Wavelet Packet-ANFIS for wind speed predictions. Energy Convers Manage 89 (2015), 1–11, 10.1016/j.enconman.2014.09.060.
    • (2015) Energy Convers Manage , vol.89 , pp. 1-11
    • Liu, H.1    Tian, H.-Q.2    Li, Y.-F.3
  • 18
    • 84878854403 scopus 로고    scopus 로고
    • A hybrid forecasting approach applied to wind speed time series
    • Hu, J., Wang, J., Zeng, G., A hybrid forecasting approach applied to wind speed time series. Renew Energy 60 (2013), 185–194, 10.1016/j.renene.2013.05.012.
    • (2013) Renew Energy , vol.60 , pp. 185-194
    • Hu, J.1    Wang, J.2    Zeng, G.3
  • 19
    • 84925012310 scopus 로고    scopus 로고
    • An EMD-recursive Arima method to predict wind speed for railway strong wind warning system
    • Liu, H., Tian, H.-Q., Li, Y.-F., An EMD-recursive Arima method to predict wind speed for railway strong wind warning system. J Wind Eng Ind Aerodyn 141 (2015), 27–38, 10.1016/j.jweia.2015.02.004.
    • (2015) J Wind Eng Ind Aerodyn , vol.141 , pp. 27-38
    • Liu, H.1    Tian, H.-Q.2    Li, Y.-F.3
  • 20
    • 84881144025 scopus 로고    scopus 로고
    • Heihe watershed allied telemetry experimental research (HiWATER): scientific objectives and experimental design
    • Li, X., Cheng, G., Liu, S., Xiao, Q., Ma, M., Jin, R., et al. Heihe watershed allied telemetry experimental research (HiWATER): scientific objectives and experimental design. Bull Am Meteor Soc 94 (2013), 1145–1160, 10.1175/BAMS-D-12-00154.1.
    • (2013) Bull Am Meteor Soc , vol.94 , pp. 1145-1160
    • Li, X.1    Cheng, G.2    Liu, S.3    Xiao, Q.4    Ma, M.5    Jin, R.6
  • 21
    • 79955427323 scopus 로고    scopus 로고
    • A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem
    • Liu, S.M., Xu, Z.W., Wang, W.Z., Jia, Z.Z., Zhu, M.J., Bai, J., et al. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol Earth Syst Sci 15 (2011), 1291–1306, 10.5194/hess-15-1291-2011.
    • (2011) Hydrol Earth Syst Sci , vol.15 , pp. 1291-1306
    • Liu, S.M.1    Xu, Z.W.2    Wang, W.Z.3    Jia, Z.Z.4    Zhu, M.J.5    Bai, J.6
  • 22
    • 84964395396 scopus 로고    scopus 로고
    • Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces
    • Liu, S., Xu, Z., Song, L., Zhao, Q., Ge, Y., Xu, T., et al. Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agric For Meteorol 230–231 (2016), 97–113, 10.1016/j.agrformet.2016.04.008.
    • (2016) Agric For Meteorol , vol.230-231 , pp. 97-113
    • Liu, S.1    Xu, Z.2    Song, L.3    Zhao, Q.4    Ge, Y.5    Xu, T.6
  • 23
    • 84933679461 scopus 로고    scopus 로고
    • Integrated research methods in watershed science
    • Cheng, G.D., Li, X., Integrated research methods in watershed science. Sci China Earth Sci 58 (2015), 1159–1168, 10.1007/s11430-015-5074-x.
    • (2015) Sci China Earth Sci , vol.58 , pp. 1159-1168
    • Cheng, G.D.1    Li, X.2
  • 24
    • 84890278290 scopus 로고    scopus 로고
    • Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE
    • Xu, Z., Liu, S., Li, X., Shi, S., Wang, J., Zhu, Z., et al. Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE. J Geophys Res Atmos 118:13 (2013), 140–157, 10.1002/2013JD020260.
    • (2013) J Geophys Res Atmos , vol.118 , Issue.13 , pp. 140-157
    • Xu, Z.1    Liu, S.2    Li, X.3    Shi, S.4    Wang, J.5    Zhu, Z.6
  • 25
    • 85021674235 scopus 로고    scopus 로고
    • A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system
    • 170083
    • Li, X., Liu, S., Xiao, Q., Ma, M., Jin, R., Che, T., et al. A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system. Sci Data 4 (2017), 413–428, 10.1038/sdata.2017.83 170083.
    • (2017) Sci Data , vol.4 , pp. 413-428
    • Li, X.1    Liu, S.2    Xiao, Q.3    Ma, M.4    Jin, R.5    Che, T.6
  • 26
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of IEEE international joint conference on neural networks:
    • Huang GB, Zhu QY, Siew CK. Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of IEEE international joint conference on neural networks: 2004. p. 985–990. http://doi.org/10.1109/IJCNN.2004.1380068.
    • (2004) , pp. 985-990
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 27
    • 85017562291 scopus 로고    scopus 로고
    • A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting
    • Zhang, C., Zhou, J., Li, C., et al. A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting. Energy Convers Manage 143 (2017), 360–376, 10.1016/j.enconman.2017.04.007.
    • (2017) Energy Convers Manage , vol.143 , pp. 360-376
    • Zhang, C.1    Zhou, J.2    Li, C.3
  • 28
    • 56049098499 scopus 로고    scopus 로고
    • Sales forecasting using extreme learning machine with applications in fashion retailing
    • Sun, Z.L., Choi, T.M., Au, K.F., Yu, Y., Sales forecasting using extreme learning machine with applications in fashion retailing. Decis Support Syst 46 (2008), 411–419, 10.1016/j.dss.2008.07.009.
    • (2008) Decis Support Syst , vol.46 , pp. 411-419
    • Sun, Z.L.1    Choi, T.M.2    Au, K.F.3    Yu, Y.4
  • 29
    • 84884747809 scopus 로고    scopus 로고
    • A hybrid wavelet-ELM based short term price forecasting for electricity markets
    • Shrivastava, N.A., Panigrahi, B.K., A hybrid wavelet-ELM based short term price forecasting for electricity markets. Int J Electr Power Energ Syst 55 (2014), 41–50, 10.1016/j.ijepes.2013.08.023.
    • (2014) Int J Electr Power Energ Syst , vol.55 , pp. 41-50
    • Shrivastava, N.A.1    Panigrahi, B.K.2
  • 30
    • 0036072942 scopus 로고    scopus 로고
    • A comparative study of statistical ensemble methods on mismatch conditions. In: Proceedings of IEEE international joint conference on neural networks;
    • Luo D, Chen K. A comparative study of statistical ensemble methods on mismatch conditions. In: Proceedings of IEEE international joint conference on neural networks; 2002. p. 59–64. http://doi.org/10.1109/IJCNN.2002.1005442.
    • (2002) , pp. 59-64
    • Luo, D.1    Chen, K.2
  • 32
    • 85044664678 scopus 로고    scopus 로고
    • An EPC forecasting method for stock index based on integrating empirical mode decomposition, SVM and cuckoo search algorithm
    • Li, X., Zhang, Z., Huang, C., An EPC forecasting method for stock index based on integrating empirical mode decomposition, SVM and cuckoo search algorithm. J Syst Sci Inf 2 (2014), 481–504.
    • (2014) J Syst Sci Inf , vol.2 , pp. 481-504
    • Li, X.1    Zhang, Z.2    Huang, C.3
  • 33
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    • Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc A Math, Phys Eng Sci 454 (1998), 903–995, 10.1098/rspa.1998.0193.
    • (1998) Proc R Soc A Math, Phys Eng Sci , vol.454 , pp. 903-995
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3    Wu, M.C.4    Shih, H.H.5    Zheng, Q.6
  • 34
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: a noise-assisted data analysis method
    • Wu, Z., Huang, N.E., Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 01 (2009), 1–41, 10.1142/S1793536909000047.
    • (2009) Adv Adapt Data Anal , vol.1 , pp. 1-41
    • Wu, Z.1    Huang, N.E.2
  • 35
    • 79956369785 scopus 로고    scopus 로고
    • Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method
    • Yeh, J.R., Shieh, J.S., Huang, N.E., Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. Adv Adapt Data Anal 02:02 (2010), 135–156, 10.1142/S1793536910000422.
    • (2010) Adv Adapt Data Anal , vol.2 , Issue.2 , pp. 135-156
    • Yeh, J.R.1    Shieh, J.S.2    Huang, N.E.3
  • 36
    • 84985931241 scopus 로고    scopus 로고
    • Improved CEEMDAN and PSO-SVR modeling for near-infrared noninvasive glucose detection
    • 8301962
    • Li, X., Li, C., Improved CEEMDAN and PSO-SVR modeling for near-infrared noninvasive glucose detection. Comput Math Methods Med, 2016(8301962), 2016, 8301962, 10.1155/2016/8301962.
    • (2016) Comput Math Methods Med , vol.2016 , pp. 8301962
    • Li, X.1    Li, C.2
  • 37
    • 80051634709 scopus 로고    scopus 로고
    • A complete ensemble empirical mode decomposition with adaptive noise. In: IEEE Publications international conference on acoustics, speech and signal processing;
    • Torres ME, Colominas MA, Schlotthauer G, Flandrin P. A complete ensemble empirical mode decomposition with adaptive noise. In: IEEE Publications international conference on acoustics, speech and signal processing; 2011. p. 4144–4147. http://doi.org/10.1109/ICASSP.2011.5947265.
    • (2011) , pp. 4144-4147
    • Torres, M.E.1    Colominas, M.A.2    Schlotthauer, G.3    Flandrin, P.4
  • 38
    • 84904579720 scopus 로고    scopus 로고
    • Improved complete ensemble EMD: a suitable tool for biomedical signal processing
    • Colominas, M.A., Schlotthauer, G., Torres, M.E., Improved complete ensemble EMD: a suitable tool for biomedical signal processing. Biomed Signal Process Contr 14 (2014), 19–29, 10.1016/j.bspc.2014.06.009.
    • (2014) Biomed Signal Process Contr , vol.14 , pp. 19-29
    • Colominas, M.A.1    Schlotthauer, G.2    Torres, M.E.3
  • 39
    • 85015013097 scopus 로고    scopus 로고
    • Long-term electrical energy consumption formulating and forecasting via optimized gene expression programming
    • Kaboli, S.H.A., Fallahpour, A., Selvaraj, J., Rahim, N.A., Long-term electrical energy consumption formulating and forecasting via optimized gene expression programming. Energy 126 (2017), 144–164, 10.1016/j.energy.2017.03.009.
    • (2017) Energy , vol.126 , pp. 144-164
    • Kaboli, S.H.A.1    Fallahpour, A.2    Selvaraj, J.3    Rahim, N.A.4
  • 40
    • 0041519747 scopus 로고
    • Accuracy measures: theoretical and practical concerns
    • Makridakis, S., Accuracy measures: theoretical and practical concerns. Int J Forecast 9 (1993), 527–529, 10.1016/0169-2070(93)90079-3.
    • (1993) Int J Forecast , vol.9 , pp. 527-529
    • Makridakis, S.1
  • 41
    • 84958759376 scopus 로고    scopus 로고
    • Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China
    • Sun, W., Liu, M., Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China. Energy Convers Manage 114 (2016), 197–208, 10.1016/j.enconman.2016.02.022.
    • (2016) Energy Convers Manage , vol.114 , pp. 197-208
    • Sun, W.1    Liu, M.2
  • 42
    • 84949997743 scopus 로고    scopus 로고
    • Applying the hybrid model of EMD, PSR, and ELM to exchange rates forecasting
    • Yang, H., Lin, H., Applying the hybrid model of EMD, PSR, and ELM to exchange rates forecasting. Comput Econ 49 (2017), 99–116, 10.1007/s10614-015-9549-9.
    • (2017) Comput Econ , vol.49 , pp. 99-116
    • Yang, H.1    Lin, H.2
  • 43
    • 84897786960 scopus 로고    scopus 로고
    • Forecasting uranium resource price prediction by extreme learning machine with empirical mode decomposition and phase space reconstruction
    • Yan, Q., Wang, S., Li, B., Forecasting uranium resource price prediction by extreme learning machine with empirical mode decomposition and phase space reconstruction. Discrete Dyn Nat Soc 2014 (2014), 1–10, 10.1155/2014/390579.
    • (2014) Discrete Dyn Nat Soc , vol.2014 , pp. 1-10
    • Yan, Q.1    Wang, S.2    Li, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.