메뉴 건너뛰기




Volumn 34, Issue , 2016, Pages 78-83

Extreme learning machine approach for sensorless wind speed estimation

Author keywords

Estimation; Extreme learning machine; Sensorless; Soft computing; Wind speed

Indexed keywords

CORRELATION METHODS; ESTIMATION; FORECASTING; GENETIC ALGORITHMS; GENETIC PROGRAMMING; KNOWLEDGE ACQUISITION; MACHINE LEARNING; MEAN SQUARE ERROR; RADIAL BASIS FUNCTION NETWORKS; SOFT COMPUTING; SPEED; STATISTICAL TESTS; SUPPORT VECTOR MACHINES; SURVEYS; WIND POWER; WIND TURBINES;

EID: 84929448964     PISSN: 09574158     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.mechatronics.2015.04.007     Document Type: Article
Times cited : (58)

References (51)
  • 1
    • 0037376498 scopus 로고    scopus 로고
    • Energy output estimation for small-scale wind power generators using Weibull-representative wind data
    • [1] Celik, A.N., Energy output estimation for small-scale wind power generators using Weibull-representative wind data. J Wind Eng Ind Aerodyn 91 (2003), 693–707.
    • (2003) J Wind Eng Ind Aerodyn , vol.91 , pp. 693-707
    • Celik, A.N.1
  • 4
    • 77951674712 scopus 로고    scopus 로고
    • Assessment of extreme wind speeds from regional climate models – Part 1: estimation of return values and their evaluation
    • [4] Kunz, M., Mohr, S., Rauthe, M., Lux, R., Kottmeier, Ch., Assessment of extreme wind speeds from regional climate models – Part 1: estimation of return values and their evaluation. Nat Hazards Earth Syst Sci(10), 2010, 907–922.
    • (2010) Nat Hazards Earth Syst Sci , Issue.10 , pp. 907-922
    • Kunz, M.1    Mohr, S.2    Rauthe, M.3    Lux, R.4    Kottmeier, C.5
  • 5
    • 84858741265 scopus 로고    scopus 로고
    • Short-term wind speed estimation based on weather data
    • [5] Ozgonenel, O., Thomas, D.W.P., Short-term wind speed estimation based on weather data. Turk J Electr Eng Comput Sci 20:3 (2012), 335–346, 10.3906/elk-1012-1.
    • (2012) Turk J Electr Eng Comput Sci , vol.20 , Issue.3 , pp. 335-346
    • Ozgonenel, O.1    Thomas, D.W.P.2
  • 6
    • 0034709193 scopus 로고    scopus 로고
    • Variable speed control of wind turbines using nonlinear and adaptive algorithms
    • [6] Song, Y.D., Dhinakaran, B., Bao, X.Y., Variable speed control of wind turbines using nonlinear and adaptive algorithms. J Wind Eng Ind Aerodyn 85 (2000), 293–308.
    • (2000) J Wind Eng Ind Aerodyn , vol.85 , pp. 293-308
    • Song, Y.D.1    Dhinakaran, B.2    Bao, X.Y.3
  • 7
    • 61649119609 scopus 로고    scopus 로고
    • Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization
    • [7] Boukhezzar, B., Siguerdidjane, H., Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization. Energy Convers Manage 50 (2009), 885–892.
    • (2009) Energy Convers Manage , vol.50 , pp. 885-892
    • Boukhezzar, B.1    Siguerdidjane, H.2
  • 8
    • 84555204306 scopus 로고    scopus 로고
    • A Gaussian RBF network based wind speed estimation algorithm for maximum power point tracking
    • [8] Tian, L., Lu, Q., Wang, W.-Z., A Gaussian RBF network based wind speed estimation algorithm for maximum power point tracking. Energy Procedia 12 (2011), 828–836.
    • (2011) Energy Procedia , vol.12 , pp. 828-836
    • Tian, L.1    Lu, Q.2    Wang, W.-Z.3
  • 9
    • 34548177974 scopus 로고    scopus 로고
    • Estimation of effective wind speed
    • [1-9]
    • [9] Østergaard, K.Z., Brath, P., Stoustrup, J., Estimation of effective wind speed. J. Phys: Conf. Ser., 75, 2007, 012082, 10.1088/1742-6596/75/1/012082 [1-9].
    • (2007) J. Phys: Conf. Ser. , vol.75 , pp. 012082
    • Østergaard, K.Z.1    Brath, P.2    Stoustrup, J.3
  • 10
    • 77955605084 scopus 로고    scopus 로고
    • A statistical approach to estimate the wind speed distribution: the case of Gelibolu region
    • [10] Hizi, R., Dagiliminin, D., Edilmesim, T., Istatistiksel, I., A statistical approach to estimate the wind speed distribution: the case of Gelibolu region. Doğuş Üniversitesi Dergisi 9:1 (2008), 122–132.
    • (2008) Doğuş Üniversitesi Dergisi , vol.9 , Issue.1 , pp. 122-132
    • Hizi, R.1    Dagiliminin, D.2    Edilmesim, T.3    Istatistiksel, I.4
  • 11
    • 80053332186 scopus 로고    scopus 로고
    • Analysis of some flexible families of distributions for estimation of wind speed distributions
    • [11] Usta, I., Kantar, Y.M., Analysis of some flexible families of distributions for estimation of wind speed distributions. Appl Energy 89 (2012), 355–367.
    • (2012) Appl Energy , vol.89 , pp. 355-367
    • Usta, I.1    Kantar, Y.M.2
  • 12
    • 84855533128 scopus 로고    scopus 로고
    • An estimation of the extreme wind speed using the Korea wind map
    • [12] Leea, B.-H., Ahna, D.-J., Kimb, H.-G., Ha, Y.-C., An estimation of the extreme wind speed using the Korea wind map. Renew Energy 42 (2012), 4–10.
    • (2012) Renew Energy , vol.42 , pp. 4-10
    • Leea, B.-H.1    Ahna, D.-J.2    Kimb, H.-G.3    Ha, Y.-C.4
  • 13
    • 0035141569 scopus 로고    scopus 로고
    • Parameter estimation of surface layer turbulence from wind speed vertical profile
    • [13] Sozzi, R., Rossi, F., Georgiadis, T., Parameter estimation of surface layer turbulence from wind speed vertical profile. Environ Modell Softw 16 (2001), 73–85.
    • (2001) Environ Modell Softw , vol.16 , pp. 73-85
    • Sozzi, R.1    Rossi, F.2    Georgiadis, T.3
  • 14
    • 0036647535 scopus 로고    scopus 로고
    • An adaptive exponential model for extreme wind speed estimation
    • [14] Pandey, M.D., An adaptive exponential model for extreme wind speed estimation. J Wind Eng Ind Aerodyn 90 (2002), 839–866.
    • (2002) J Wind Eng Ind Aerodyn , vol.90 , pp. 839-866
    • Pandey, M.D.1
  • 15
    • 4644362685 scopus 로고    scopus 로고
    • Wind speed estimation uncertainties: effects of climatological and micrometeorological parameters
    • [15] Diniz, S.M.C., m Sadek, F., Simiu, E., Wind speed estimation uncertainties: effects of climatological and micrometeorological parameters. Probab Eng Mech 19 (2004), 361–371.
    • (2004) Probab Eng Mech , vol.19 , pp. 361-371
    • Diniz, S.M.C.1    m Sadek, F.2    Simiu, E.3
  • 16
    • 77954957295 scopus 로고    scopus 로고
    • Estimation of wind speed: a data-driven approach
    • [16] Kusiak, A., Li, W., Estimation of wind speed: a data-driven approach. J Wind Eng Ind Aerodyn 98 (2010), 559–567.
    • (2010) J Wind Eng Ind Aerodyn , vol.98 , pp. 559-567
    • Kusiak, A.1    Li, W.2
  • 17
    • 41349094204 scopus 로고    scopus 로고
    • MPPT control of wind generation systems based on estimated wind speed using SVR
    • [17] Abo-Khalil, A.G., Lee, D.-C., MPPT control of wind generation systems based on estimated wind speed using SVR. IEEE Trans Ind Electron 55:3 (2008), 1489–1490.
    • (2008) IEEE Trans Ind Electron , vol.55 , Issue.3 , pp. 1489-1490
    • Abo-Khalil, A.G.1    Lee, D.-C.2
  • 18
    • 42749083566 scopus 로고    scopus 로고
    • Effect of direction on wind speed estimation in complex terrain using neural networks
    • [18] Lopez, P., Velo, R., Maseda, F., Effect of direction on wind speed estimation in complex terrain using neural networks. Renew Energy 33 (2008), 2266–2272.
    • (2008) Renew Energy , vol.33 , pp. 2266-2272
    • Lopez, P.1    Velo, R.2    Maseda, F.3
  • 19
    • 80052523055 scopus 로고    scopus 로고
    • Estimating wind speed probability distribution using kernel density method
    • [19] Qin, Z., Li, W., Xiong, X., Estimating wind speed probability distribution using kernel density method. Electr Power Syst Res 81 (2011), 2139–2146.
    • (2011) Electr Power Syst Res , vol.81 , pp. 2139-2146
    • Qin, Z.1    Li, W.2    Xiong, X.3
  • 20
    • 79952187703 scopus 로고    scopus 로고
    • Extraction of synoptic pressure patterns for long-term wind speed estimation in wind farms using evolutionary computing
    • [20] Carro-Calvo, L., Salcedo-Sanz, S., Kirchner-Bossi, N., Portilla-Figueras, A., Prieto, L., Garcia-Herrera, R., et al. Extraction of synoptic pressure patterns for long-term wind speed estimation in wind farms using evolutionary computing. Energy 36 (2011), 1571–1581.
    • (2011) Energy , vol.36 , pp. 1571-1581
    • Carro-Calvo, L.1    Salcedo-Sanz, S.2    Kirchner-Bossi, N.3    Portilla-Figueras, A.4    Prieto, L.5    Garcia-Herrera, R.6
  • 21
    • 79959826777 scopus 로고    scopus 로고
    • Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)
    • [21] Mohandes, M., Rehman, S., Rahman, S.M., Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS). Appl Energy 88 (2011), 4024–4032.
    • (2011) Appl Energy , vol.88 , pp. 4024-4032
    • Mohandes, M.1    Rehman, S.2    Rahman, S.M.3
  • 22
    • 23944521536 scopus 로고    scopus 로고
    • A comparison of methods of extreme wind speed estimation
    • [22] An, Y., Pandey, M.D., A comparison of methods of extreme wind speed estimation. J Wind Eng Ind Aerodyn 93 (2005), 535–545.
    • (2005) J Wind Eng Ind Aerodyn , vol.93 , pp. 535-545
    • An, Y.1    Pandey, M.D.2
  • 23
    • 84862163072 scopus 로고    scopus 로고
    • Improved extreme wind speed estimation for wind engineering applications
    • [23] Lombardo, F.T., Improved extreme wind speed estimation for wind engineering applications. J Wind Eng Ind Aerodyn 104–106 (2012), 278–284.
    • (2012) J Wind Eng Ind Aerodyn , vol.104-106 , pp. 278-284
    • Lombardo, F.T.1
  • 24
    • 77951174262 scopus 로고    scopus 로고
    • Soft computing: techniques and its applications in electrical engineering
    • Springer
    • [24] Chaturvedi, D.K., Soft computing: techniques and its applications in electrical engineering. 2008, Springer.
    • (2008)
    • Chaturvedi, D.K.1
  • 25
    • 0007314720 scopus 로고
    • Fuzzy logic, neural networks and soft computing
    • One-page course announcement of CS 294-4. University of California at Berkley;
    • [25] Zadeh LA. Fuzzy logic, neural networks and soft computing. One-page course announcement of CS 294-4. University of California at Berkley; 1992.
    • (1992)
    • Zadeh, L.A.1
  • 26
    • 27744492112 scopus 로고    scopus 로고
    • Application of neural network controller for maximum power extraction of a grid-connected wind turbine system
    • [26] Barlas, T.K., van Kuik, G.A.M., Application of neural network controller for maximum power extraction of a grid-connected wind turbine system. Electr Eng 88 (2005), 45–53.
    • (2005) Electr Eng , vol.88 , pp. 45-53
    • Barlas, T.K.1    van Kuik, G.A.M.2
  • 27
    • 84866984628 scopus 로고    scopus 로고
    • Neural control design for isolated wind generation system based on SVC and nonlinear autoregressive moving average approach
    • [27] Kassem, A.M., Neural control design for isolated wind generation system based on SVC and nonlinear autoregressive moving average approach. WSEAS Trans Syst 11:2 (2012), 39–49.
    • (2012) WSEAS Trans Syst , vol.11 , Issue.2 , pp. 39-49
    • Kassem, A.M.1
  • 28
    • 29244466901 scopus 로고    scopus 로고
    • Neural network based sensorless maximum wind energy capture with compensated power coefficient
    • [28] Li, H., Shi, K.L., McLaren, P., Neural network based sensorless maximum wind energy capture with compensated power coefficient. IEEE Trans Ind Appl 41:6 (2005), 1548–1556.
    • (2005) IEEE Trans Ind Appl , vol.41 , Issue.6 , pp. 1548-1556
    • Li, H.1    Shi, K.L.2    McLaren, P.3
  • 31
    • 10944242408 scopus 로고    scopus 로고
    • Technical report ICIS/45/2003. Singapore: School of Electrical and Electronic Engineering, Nanyang Technological University; April
    • [31] Huang GB, Zhu QY, Siew CK. Real-time learning capability of neural networks. Technical report ICIS/45/2003. Singapore: School of Electrical and Electronic Engineering, Nanyang Technological University; April 2003.
    • (2003) Real-time learning capability of neural networks
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 32
    • 84893091209 scopus 로고    scopus 로고
    • Bankruptcy prediction using extreme learning machine and financial expertise
    • [32] Yu, Q., Miche, Y., Séverin, E., Lendasse, A., Bankruptcy prediction using extreme learning machine and financial expertise. Neurocomputing 128 (2014), 296–302.
    • (2014) Neurocomputing , vol.128 , pp. 296-302
    • Yu, Q.1    Miche, Y.2    Séverin, E.3    Lendasse, A.4
  • 33
    • 84906938183 scopus 로고    scopus 로고
    • Online sequential extreme learning machine with kernels for nonstationary time series prediction
    • [33] Wang, X., Han, M., Online sequential extreme learning machine with kernels for nonstationary time series prediction. Neurocomputing 145 (2014), 90–97.
    • (2014) Neurocomputing , vol.145 , pp. 90-97
    • Wang, X.1    Han, M.2
  • 34
    • 84896908699 scopus 로고    scopus 로고
    • Mobility prediction in mobile ad hoc networks using extreme learning machines
    • [34] Ghouti, L., Sheltami, T.R., Alutaibi, K.S., Mobility prediction in mobile ad hoc networks using extreme learning machines. Procedia Comput Sci 19 (2013), 305–312.
    • (2013) Procedia Comput Sci , vol.19 , pp. 305-312
    • Ghouti, L.1    Sheltami, T.R.2    Alutaibi, K.S.3
  • 35
    • 84893651255 scopus 로고    scopus 로고
    • Fast prediction of protein–protein interaction sites based on extreme learning machines
    • [35] Wang, D.D., Wang, R., Yan, H., Fast prediction of protein–protein interaction sites based on extreme learning machines. Neurocomputing 128 (2014), 258–266.
    • (2014) Neurocomputing , vol.128 , pp. 258-266
    • Wang, D.D.1    Wang, R.2    Yan, H.3
  • 36
    • 84893147895 scopus 로고    scopus 로고
    • Extreme learning machine towards dynamic model hypothesis in fish ethology research
    • [36] Nian, R., He, B., Zheng, B., Heeswijk, M.V., Yu, Q., Miche, Y., et al. Extreme learning machine towards dynamic model hypothesis in fish ethology research. Neurocomputing 128 (2014), 273–284.
    • (2014) Neurocomputing , vol.128 , pp. 273-284
    • Nian, R.1    He, B.2    Zheng, B.3    Heeswijk, M.V.4    Yu, Q.5    Miche, Y.6
  • 37
    • 84907483639 scopus 로고    scopus 로고
    • Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search
    • [37] Wong, P.K., Wong, K.I., Vong, C.M., Cheung, C.S., Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search. Renew Energy 74 (2015), 640–647.
    • (2015) Renew Energy , vol.74 , pp. 640-647
    • Wong, P.K.1    Wong, K.I.2    Vong, C.M.3    Cheung, C.S.4
  • 38
    • 84870254661 scopus 로고    scopus 로고
    • Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system
    • [38] Wu, S., Wang, Y., Cheng, S., Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system. Neurocomputing 102 (2013), 163–175.
    • (2013) Neurocomputing , vol.102 , pp. 163-175
    • Wu, S.1    Wang, Y.2    Cheng, S.3
  • 39
    • 84904741064 scopus 로고    scopus 로고
    • Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization–extreme learning machine approach
    • [39] Salcedo-Sanz, S., Pastor-Sánchez, A., Prieto, L., Blanco-Aguilera, A., García-Herrera, R., Feature selection in wind speed prediction systems based on a hybrid coral reefs optimization–extreme learning machine approach. Energy Convers Manage 87 (2014), 10–18.
    • (2014) Energy Convers Manage , vol.87 , pp. 10-18
    • Salcedo-Sanz, S.1    Pastor-Sánchez, A.2    Prieto, L.3    Blanco-Aguilera, A.4    García-Herrera, R.5
  • 40
    • 84899566603 scopus 로고    scopus 로고
    • Probabilistic forecasting of wind power generation using extreme learning machine
    • [40] Wan, C., Xu, Z., Pinson, P., Yang Dong, Z., Po Wong, K., Probabilistic forecasting of wind power generation using extreme learning machine. IEEE Trans Power Syst 29 (2014), 1033–1044.
    • (2014) IEEE Trans Power Syst , vol.29 , pp. 1033-1044
    • Wan, C.1    Xu, Z.2    Pinson, P.3    Yang Dong, Z.4    Po Wong, K.5
  • 41
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • [41] Huang, G.B., Zhu, Q.Y., Siew, C.K., Extreme learning machine: theory and applications. Neurocomputing 70 (2006), 489–501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 43
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • [43] Huang, G.B., Chen, L., Siew, C.K., Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17 (2006), 879–892.
    • (2006) IEEE Trans Neural Netw , vol.17 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 45
    • 77952553337 scopus 로고    scopus 로고
    • Application of extreme learning machine method for time series analysis
    • [45] Singh, R., Balasundaram, S., Application of extreme learning machine method for time series analysis. Int J Intell Technol 2 (2007), 256–262.
    • (2007) Int J Intell Technol , vol.2 , pp. 256-262
    • Singh, R.1    Balasundaram, S.2
  • 46
    • 0003450542 scopus 로고
    • The nature of statistical learning theory
    • Springer-Verlag New York (USA) 314 p.
    • [46] Vapnik, V.N., The nature of statistical learning theory. 1995, Springer-Verlag, New York (USA) 314 p.
    • (1995)
    • Vapnik, V.N.1
  • 47
    • 0003991806 scopus 로고    scopus 로고
    • Statistical learning theory
    • Wiley New York (USA) 736 p.
    • [47] Vapnik, V.N., Statistical learning theory. 1998, Wiley, New York (USA) 736 p.
    • (1998)
    • Vapnik, V.N.1
  • 48
    • 54549091989 scopus 로고    scopus 로고
    • Support vector regression methodology for storm surge predictions
    • [48] Rajasekaran, S., Gayathri, S., Lee, T.-L., Support vector regression methodology for storm surge predictions. Ocean Eng 35:16 (2008), 1578–1587.
    • (2008) Ocean Eng , vol.35 , Issue.16 , pp. 1578-1587
    • Rajasekaran, S.1    Gayathri, S.2    Lee, T.-L.3
  • 49
    • 58249083168 scopus 로고    scopus 로고
    • Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space
    • [49] Wu, K.-P., Wang, S.-D., Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space. Pattern Recogn 42:5 (2009), 710–717.
    • (2009) Pattern Recogn , vol.42 , Issue.5 , pp. 710-717
    • Wu, K.-P.1    Wang, S.-D.2
  • 50
    • 67349170327 scopus 로고    scopus 로고
    • Localized support vector regression for time series prediction
    • [50] Yang, H., Huang, K., King, I., Lyu, M.R., Localized support vector regression for time series prediction. Neurocomputing 72:10–12 (2009), 2659–2669.
    • (2009) Neurocomputing , vol.72 , Issue.10-12 , pp. 2659-2669
    • Yang, H.1    Huang, K.2    King, I.3    Lyu, M.R.4
  • 51
    • 84977569568 scopus 로고    scopus 로고
    • Intergovernment panel on climate change. A review of climate change 2014: impacts, adaptation, and vulnerability and climate change 2014: mitigation of climate change.
    • [51] Intergovernment panel on climate change. A review of climate change 2014: impacts, adaptation, and vulnerability and climate change 2014: mitigation of climate change. J Am Plann Assoc 2014.
    • (2014) J Am Plann Assoc


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.