메뉴 건너뛰기




Volumn 23, Issue 4, 2018, Pages 331-345

Recent advances in starch–clay nanocomposites

Author keywords

Applications; clay; nanocomposites; preparation; properties; starch

Indexed keywords

APPLICATIONS; BIODEGRADABILITY; BIOPOLYMERS; CLAY; COMPOSITE MATERIALS; DISPERSIONS; STARCH;

EID: 85044440559     PISSN: 1023666X     EISSN: 15635341     Source Type: Journal    
DOI: 10.1080/1023666X.2018.1447260     Document Type: Article
Times cited : (90)

References (101)
  • 1
    • 84858025824 scopus 로고    scopus 로고
    • Green aqueous modification of fluoropolymers for energy storage applications
    • Thakur, V. K., M.-F., Lin, E. J., Tan, and P. S., Lee. 2012. Green aqueous modification of fluoropolymers for energy storage applications. J. Mater. Chem. 22:5951–5959. doi:10.1039/c2jm15665b
    • (2012) J. Mater. Chem. , vol.22 , pp. 5951-5959
    • Thakur, V.K.1    Lin, M.-F.2    Tan, E.J.3    Lee, P.S.4
  • 2
    • 84858049829 scopus 로고    scopus 로고
    • Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs
    • Thakur, V. K., J., Yan, M.-F., Lin, C., Zhi, D., Golberg, Y., Bando, R., Sim, and P. S., Lee. 2012. Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym. Chem. 3:962–969. doi:10.1039/c2py00612j
    • (2012) Polym. Chem. , vol.3 , pp. 962-969
    • Thakur, V.K.1    Yan, J.2    Lin, M.-F.3    Zhi, C.4    Golberg, D.5    Bando, Y.6    Sim, R.7    Lee, P.S.8
  • 3
    • 80051626703 scopus 로고    scopus 로고
    • Polystyrene grafted polyvinylidene fluoride copolymers with high capacitive performance
    • Thakur, V. K., E. J., Tan, M.-F., Lin, and P. S., Lee. 2011. Polystyrene grafted polyvinylidene fluoride copolymers with high capacitive performance. Polym. Chem. 2:2000–2009. doi:10.1039/c1py00225b
    • (2011) Polym. Chem. , vol.2 , pp. 2000-2009
    • Thakur, V.K.1    Tan, E.J.2    Lin, M.-F.3    Lee, P.S.4
  • 4
    • 19544373655 scopus 로고    scopus 로고
    • Biodegradable starch/clay nanocomposite films for food packaging applications
    • Avella, M., J. J., de Vlieger, M. E., Errico, S., Fischer, P., Vacca, and M. G., Volpe. 2005. Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem. 93:467–474. doi:10.1016/j.foodchem.2004.10.024
    • (2005) Food Chem. , vol.93 , pp. 467-474
    • Avella, M.1    de Vlieger, J.J.2    Errico, M.E.3    Fischer, S.4    Vacca, P.5    Volpe, M.G.6
  • 5
    • 0037346464 scopus 로고    scopus 로고
    • Environmentally friendly polymer hybrids Part I Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites
    • Park, H.-M., W.-K., Lee, C.-Y., Park, C. Y., Cho, and C. S., Ha. 2003. Environmentally friendly polymer hybrids Part I Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J. Mater. Sci. 38:909–915. doi:10.1023/A:1022308705231
    • (2003) J. Mater. Sci. , vol.38 , pp. 909-915
    • Park, H.-M.1    Lee, W.-K.2    Park, C.-Y.3    Cho, C.Y.4    Ha, C.S.5
  • 6
    • 35848954296 scopus 로고    scopus 로고
    • Preparation and crystalline morphology of biodegradable starch/clay nanocomposites
    • Zhang, Q.-X., Z.-Z., Yu, X.-L., Xie, K., Naito, and Y., Kagawa. 2007. Preparation and crystalline morphology of biodegradable starch/clay nanocomposites. Polymer 48:7193–7200. doi:10.1016/j.polymer.2007.09.051
    • (2007) Polymer , vol.48 , pp. 7193-7200
    • Zhang, Q.-X.1    Yu, Z.-Z.2    Xie, X.-L.3    Naito, K.4    Kagawa, Y.5
  • 7
    • 79953096343 scopus 로고    scopus 로고
    • Synthesis and characterization of pine needles reinforced RF matrix based biocomposites
    • Singha, A. S., and V. K., Thakur. 2008. Synthesis and characterization of pine needles reinforced RF matrix based biocomposites. J. Chem. 5:1055–1062. doi:10.1155/2008/395827
    • (2008) J. Chem. , vol.5 , pp. 1055-1062
    • Singha, A.S.1    Thakur, V.K.2
  • 8
    • 79952254395 scopus 로고    scopus 로고
    • Poly(vinylidene fluoride)-graft-poly(2-hydroxyethyl methacrylate): A novel material for high energy density capacitors
    • Thakur, V. K., E. J., Tan, M.-F., Lin, and P. S., Lee. 2011. Poly(vinylidene fluoride)-graft-poly(2-hydroxyethyl methacrylate): A novel material for high energy density capacitors. J. Mater. Chem. 21:3751–3759. doi:10.1039/c0jm02408b
    • (2011) J. Mater. Chem. , vol.21 , pp. 3751-3759
    • Thakur, V.K.1    Tan, E.J.2    Lin, M.-F.3    Lee, P.S.4
  • 9
    • 84930655040 scopus 로고    scopus 로고
    • Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: A review
    • Pappu, A., V., Patil, S., Jain, et al. 2015. Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: A review. Int. J. Biol. Macromol. 79:449–458. doi:10.1016/j.ijbiomac.2015.05.013
    • (2015) Int. J. Biol. Macromol. , vol.79 , pp. 449-458
    • Pappu, A.1    Patil, V.2    Jain, S.3
  • 10
    • 84908317775 scopus 로고    scopus 로고
    • Recent advances in green hydrogels from lignin: A review
    • Thakur, V. K., and M. K., Thakur. 2015. Recent advances in green hydrogels from lignin: A review. Int. J. Biol. Macromol. 72:834–847. doi:10.1016/j.ijbiomac.2014.09.044
    • (2015) Int. J. Biol. Macromol. , vol.72 , pp. 834-847
    • Thakur, V.K.1    Thakur, M.K.2
  • 11
    • 84922586357 scopus 로고    scopus 로고
    • Recent advances in graft copolymerization and applications of chitosan: A review
    • Thakur, V. K., and M. K., Thakur. 2014. Recent advances in graft copolymerization and applications of chitosan: A review. ACS Sustain. Chem. Eng. 2:2637–2652. doi:10.1021/sc500634p
    • (2014) ACS Sustain. Chem. Eng. , vol.2 , pp. 2637-2652
    • Thakur, V.K.1    Thakur, M.K.2
  • 12
    • 85027956319 scopus 로고    scopus 로고
    • Recent trends in hydrogels based on psyllium polysaccharide: A review
    • Thakur, V. K., and M. K., Thakur. 2014. Recent trends in hydrogels based on psyllium polysaccharide: A review. J. Clean Prod. 82:1–15. doi:10.1016/j.jclepro.2014.06.066
    • (2014) J. Clean Prod. , vol.82 , pp. 1-15
    • Thakur, V.K.1    Thakur, M.K.2
  • 13
    • 25444472073 scopus 로고    scopus 로고
    • Novel thermoplastic starch–clay nanocomposite foams
    • Chen, M., B., Chen, J. R. G., Evans. 2005. Novel thermoplastic starch–clay nanocomposite foams. Nanotechnology 16:2334. doi:10.1088/0957-4484/16/10/056
    • (2005) Nanotechnology , vol.16 , pp. 2334
    • Chen, M.1    Chen, B.2    Evans, J.R.G.3
  • 14
  • 15
    • 84903514444 scopus 로고    scopus 로고
    • Green aqueous surface modification of polypropylene for novel polymer nanocomposites
    • Thakur, V. K., D., Vennerberg, and M. R., Kessler. 2014. Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Appl. Mater. Interfaces 6:9349–9356. doi:10.1021/am501726d
    • (2014) ACS Appl. Mater. Interfaces , vol.6 , pp. 9349-9356
    • Thakur, V.K.1    Vennerberg, D.2    Kessler, M.R.3
  • 16
    • 77954427944 scopus 로고    scopus 로고
    • Improving the mechanical properties of thermoplastic starch/poly(vinyl alcohol)/clay nanocomposites
    • Majdzadeh-Ardakani, K., and B., Nazari. 2010. Improving the mechanical properties of thermoplastic starch/poly(vinyl alcohol)/clay nanocomposites. Compos. Sci. Technol. 70:1557–1563. doi:10.1016/j.compscitech.2010.05.022
    • (2010) Compos. Sci. Technol. , vol.70 , pp. 1557-1563
    • Majdzadeh-Ardakani, K.1    Nazari, B.2
  • 17
    • 40849124115 scopus 로고    scopus 로고
    • Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films
    • Cyras, V. P., L. B., Manfredi, M.-T., Ton-That, and A., Vázquez. 2008. Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydr. Polym. 73:55–63. doi:10.1016/j.carbpol.2007.11.014
    • (2008) Carbohydr. Polym. , vol.73 , pp. 55-63
    • Cyras, V.P.1    Manfredi, L.B.2    Ton-That, M.-T.3    Vázquez, A.4
  • 18
    • 84907841922 scopus 로고    scopus 로고
    • Synthesis and characterization of AN-g-SOY for sustainable polymer composites
    • Thakur, V. K., and M. R., Kessler. 2014. Synthesis and characterization of AN-g-SOY for sustainable polymer composites. ACS Sustain. Chem. Eng. 2:2454–2460. doi:10.1021/sc500473a
    • (2014) ACS Sustain. Chem. Eng. , vol.2 , pp. 2454-2460
    • Thakur, V.K.1    Kessler, M.R.2
  • 19
    • 84893416506 scopus 로고    scopus 로고
    • Graft copolymers of natural fibers for green composites
    • Thakur, V. K., M. K., Thakur, and R. K., Gupta. 2014. Graft copolymers of natural fibers for green composites. Carbohydr. Polym. 104:87–93. doi:10.1016/j.carbpol.2014.01.016
    • (2014) Carbohydr. Polym. , vol.104 , pp. 87-93
    • Thakur, V.K.1    Thakur, M.K.2    Gupta, R.K.3
  • 20
    • 54949104533 scopus 로고    scopus 로고
    • Saccharum cilliare fiber reinforced polymer composites
    • Singha, A. S., and V. K., Thakur. 2008. Saccharum cilliare fiber reinforced polymer composites. E-J Chem. 5:782–791.
    • (2008) E-J Chem. , vol.5 , pp. 782-791
    • Singha, A.S.1    Thakur, V.K.2
  • 21
    • 65249126741 scopus 로고    scopus 로고
    • Fabrication and characterization of S. cilliare fibre reinforced polymer composites
    • Singha, A. S., and V. K., Thakur. 2009. Fabrication and characterization of S. cilliare fibre reinforced polymer composites. Bull. Mater. Sci. 32:49–58. doi:10.1007/s12034-009-0008-x
    • (2009) Bull. Mater. Sci. , vol.32 , pp. 49-58
    • Singha, A.S.1    Thakur, V.K.2
  • 22
    • 57749204986 scopus 로고    scopus 로고
    • Thermoplastic corn starch/clay hybrids: Effect of clay type and content on physical properties
    • Magalhães, N. F., and Andrade, C. T., 2009. Thermoplastic corn starch/clay hybrids: Effect of clay type and content on physical properties. Carbohydr. Polym. 75:712–718. doi:10.1016/j.carbpol.2008.09.020
    • (2009) Carbohydr. Polym. , vol.75 , pp. 712-718
    • Magalhães, N.F.1    Andrade, C.T.2
  • 23
    • 80053941198 scopus 로고    scopus 로고
    • 3 nanostructures for application in high performance capacitors
    • 3 nanostructures for application in high performance capacitors. J. Mater. Chem. 21:16500–16504. doi:10.1039/c1jm12429c
    • (2011) J. Mater. Chem. , vol.21 , pp. 16500-16504
    • Lin, M.-F.1    Thakur, V.K.2    Tan, E.J.3    Lee, P.S.4
  • 25
    • 84877285383 scopus 로고    scopus 로고
    • Conductivity of microfibrillar polymer–polymer composites with CNT-loaded microfibrils or compatibilizer: A comparative study
    • Panamoottil, S. M., P., Poetschke, R. J. T., Lin, D., Bhattacharyya, and S., Fakirov. 2013. Conductivity of microfibrillar polymer–polymer composites with CNT-loaded microfibrils or compatibilizer: A comparative study. Express Polym. Lett. 7:607–620. doi:10.3144/expresspolymlett.2013.58
    • (2013) Express Polym. Lett. , vol.7 , pp. 607-620
    • Panamoottil, S.M.1    Poetschke, P.2    Lin, R.J.T.3    Bhattacharyya, D.4    Fakirov, S.5
  • 26
    • 84866538882 scopus 로고    scopus 로고
    • Experimental study of machinability of GFRP composites by end milling
    • Azmi, A. I., R. J. T., Lin, and D., Bhattacharyya. 2012. Experimental study of machinability of GFRP composites by end milling. Mater. Manuf. Process. 27:1045–1050. doi:10.1080/10426914.2012.677917
    • (2012) Mater. Manuf. Process. , vol.27 , pp. 1045-1050
    • Azmi, A.I.1    Lin, R.J.T.2    Bhattacharyya, D.3
  • 27
    • 85027932395 scopus 로고    scopus 로고
    • Effect of external loads on damage detection of rubber-toughened nanocomposites using carbon nanotubes sensory network., and
    • Cardoso, S. M., C. D., O’Connell, R., Pivonka, C., Mooney, V. B., Chalivendra, A., Shukla, and S., Yang. 2014. Effect of external loads on damage detection of rubber-toughened nanocomposites using carbon nanotubes sensory network. Polym. Compos. doi:10.1002/pc.23188
    • (2014) Polym. Compos.
    • Cardoso, S.M.1    O’Connell, C.D.2    Pivonka, R.3    Mooney, C.4    Chalivendra, V.B.5    Shukla, A.6    Yang, S.7
  • 28
    • 78651374327 scopus 로고    scopus 로고
    • Role of surface roughness on wettability and coefficient of restitution in butterfly wings
    • Wanasekara, N. D., and V. B., Chalivendra. 2011. Role of surface roughness on wettability and coefficient of restitution in butterfly wings. Soft Matter 7:373–379. doi:10.1039/c0sm00548g
    • (2011) Soft Matter , vol.7 , pp. 373-379
    • Wanasekara, N.D.1    Chalivendra, V.B.2
  • 29
    • 84920512568 scopus 로고    scopus 로고
    • Nano-mechanical studies on polyglactin sutures subjected to in vitro hydrolytic and enzymatic degradation
    • Sun, L., N., Wanasekara, V., Chalivendra, and P., Calvert. 2015. Nano-mechanical studies on polyglactin sutures subjected to in vitro hydrolytic and enzymatic degradation. J. Nanosci. Nanotechnol. 15:93–99. doi:10.1166/jnn.2015.9073
    • (2015) J. Nanosci. Nanotechnol. , vol.15 , pp. 93-99
    • Sun, L.1    Wanasekara, N.2    Chalivendra, V.3    Calvert, P.4
  • 30
    • 84937976674 scopus 로고    scopus 로고
    • Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods
    • Amiralian, N., P. K., Annamalai, P., Memmott, and D. J., Martin. 2015. Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods. Cellulose 22:2483–2498. doi:10.1007/s10570-015-0688-x
    • (2015) Cellulose , vol.22 , pp. 2483-2498
    • Amiralian, N.1    Annamalai, P.K.2    Memmott, P.3    Martin, D.J.4
  • 31
    • 84910052066 scopus 로고    scopus 로고
    • Water transport properties through starch-based hydrogel nanocomposites responding to both pH and a remote magnetic field
    • Lima-Tenório, M. K., E. T., Tenório-Neto, M. R., Guilherme, F. P., Garcia, C. V., Nakamura, E. A., Pineda, and A. F., Rubira. 2015. Water transport properties through starch-based hydrogel nanocomposites responding to both pH and a remote magnetic field. Chem. Eng. J. 259:620–629. doi:10.1016/j.cej.2014.08.045
    • (2015) Chem. Eng. J. , vol.259 , pp. 620-629
    • Lima-Tenório, M.K.1    Tenório-Neto, E.T.2    Guilherme, M.R.3    Garcia, F.P.4    Nakamura, C.V.5    Pineda, E.A.6    Rubira, A.F.7
  • 32
    • 84932192334 scopus 로고    scopus 로고
    • Self-healing polymer nanocomposite materials: A review
    • Thakur, V. K., and M. R., Kessler. 2015. Self-healing polymer nanocomposite materials: A review. Polymer 69:369–383. doi:10.1016/j.polymer.2015.04.086
    • (2015) Polymer , vol.69 , pp. 369-383
    • Thakur, V.K.1    Kessler, M.R.2
  • 33
    • 0032709129 scopus 로고    scopus 로고
    • Polymer-layered silicate nanocomposites: An overview
    • LeBaron, P. C., Z., Wang, and T. J., Pinnavaia. 1999. Polymer-layered silicate nanocomposites: An overview. Appl. Clay Sci. 15:11–29. doi:10.1016/S0169-1317(99)00017-4
    • (1999) Appl. Clay Sci. , vol.15 , pp. 11-29
    • LeBaron, P.C.1    Wang, Z.2    Pinnavaia, T.J.3
  • 34
    • 47749137724 scopus 로고    scopus 로고
    • Nanocomposites from plasticized high-amylopectin, normal and high-amylose maize starches
    • Mondragón, M., J. E., Mancilla, and F. J., Rodríguez-González. 2008. Nanocomposites from plasticized high-amylopectin, normal and high-amylose maize starches. Polym. Eng. Sci. 48:1261–1267. doi:10.1002/pen.21084
    • (2008) Polym. Eng. Sci. , vol.48 , pp. 1261-1267
    • Mondragón, M.1    Mancilla, J.E.2    Rodríguez-González, F.J.3
  • 35
    • 23044522562 scopus 로고    scopus 로고
    • Synthesis and properties of starch-graft-polyacrylamide/clay superabsorbent composite
    • Wu, J., J., Lin, M., Zhou, and C., Wei. 2000. Synthesis and properties of starch-graft-polyacrylamide/clay superabsorbent composite. Macromol. Rapid Commun. 21:1032–1034. doi:10.1002/1521-3927(20001001)21:15<1032::AID-MARC1032>3.0.CO;2-N
    • (2000) Macromol. Rapid Commun. , vol.21 , pp. 1032-1034
    • Wu, J.1    Lin, J.2    Zhou, M.3    Wei, C.4
  • 36
    • 84945941880 scopus 로고    scopus 로고
    • Fabrication and characterization of novel starch-grafted poly l-lactic acid/montmorillonite organoclay nanocomposites
    • Eğri, Ö., K., Salimi, S., Eğri, E., Pişkin, and Z. M. O., Rzayev. 2016. Fabrication and characterization of novel starch-grafted poly l-lactic acid/montmorillonite organoclay nanocomposites. Carbohydr. Polym. 137:111–118. doi:10.1016/j.carbpol.2015.10.043
    • (2016) Carbohydr. Polym. , vol.137 , pp. 111-118
    • Eğri, Ö.1    Salimi, K.2    Eğri, S.3    Pişkin, E.4    Rzayev, Z.M.O.5
  • 37
    • 84933516489 scopus 로고    scopus 로고
    • Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers
    • Babaee, M., M., Jonoobi, Y., Hamzeh, and A., Ashori. 2015. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydr. Polym. 132:1–8. doi:10.1016/j.carbpol.2015.06.043
    • (2015) Carbohydr. Polym. , vol.132 , pp. 1-8
    • Babaee, M.1    Jonoobi, M.2    Hamzeh, Y.3    Ashori, A.4
  • 38
    • 84940209419 scopus 로고    scopus 로고
    • Starch/silver nanocomposite: Effect of thermal treatment temperature on the morphology, oxygen and water transport properties
    • Cheviron, P., F., Gouanvé, and E., Espuche. 2015. Starch/silver nanocomposite: Effect of thermal treatment temperature on the morphology, oxygen and water transport properties. Carbohydr. Polym. 134:635–645. doi:10.1016/j.carbpol.2015.07.067
    • (2015) Carbohydr. Polym. , vol.134 , pp. 635-645
    • Cheviron, P.1    Gouanvé, F.2    Espuche, E.3
  • 39
    • 4544342998 scopus 로고    scopus 로고
    • Starch-based nanocomposites by reactive extrusion processing
    • Kalambur, S. B., and S. S., Rizvi. 2004. Starch-based nanocomposites by reactive extrusion processing. Polym. Int. 53:1413–1416. doi:10.1002/pi.1478
    • (2004) Polym. Int. , vol.53 , pp. 1413-1416
    • Kalambur, S.B.1    Rizvi, S.S.2
  • 40
    • 51749119662 scopus 로고    scopus 로고
    • Nano clay reinforced PCL/starch blends obtained by high energy ball milling
    • Vertuccio, L., G., Gorrasi, A., Sorrentino, and V., Vittoria. 2009. Nano clay reinforced PCL/starch blends obtained by high energy ball milling. Carbohydr. Polym. 75:172–179. doi:10.1016/j.carbpol.2008.07.020
    • (2009) Carbohydr. Polym. , vol.75 , pp. 172-179
    • Vertuccio, L.1    Gorrasi, G.2    Sorrentino, A.3    Vittoria, V.4
  • 41
    • 72149127643 scopus 로고    scopus 로고
    • Physicochemical properties of starch–CMC–nanoclay biodegradable films
    • Almasi, H., B., Ghanbarzadeh, and A. A., Entezami. 2010. Physicochemical properties of starch–CMC–nanoclay biodegradable films. Int. J. Biol. Macromol. 46:1–5. doi:10.1016/j.ijbiomac.2009.10.001
    • (2010) Int. J. Biol. Macromol. , vol.46 , pp. 1-5
    • Almasi, H.1    Ghanbarzadeh, B.2    Entezami, A.A.3
  • 42
    • 79960461398 scopus 로고    scopus 로고
    • New strategies in the preparation of exfoliated thermoplastic starch–montmorillonite nanocomposites
    • Aouada, F. A., L. H. C., Mattoso, and E., Longo. 2011. New strategies in the preparation of exfoliated thermoplastic starch–montmorillonite nanocomposites. Ind. Crops Prod. 34:1502–1508. doi:10.1016/j.indcrop.2011.05.003
    • (2011) Ind. Crops Prod. , vol.34 , pp. 1502-1508
    • Aouada, F.A.1    Mattoso, L.H.C.2    Longo, E.3
  • 43
    • 41949123744 scopus 로고    scopus 로고
    • New approach to elaborate exfoliated starch-based nanobiocomposites
    • Chivrac, F., E., Pollet, M., Schmutz, and L., Avérous. 2008. New approach to elaborate exfoliated starch-based nanobiocomposites. Biomacromolecules 9:896–900. doi:10.1021/bm7012668
    • (2008) Biomacromolecules , vol.9 , pp. 896-900
    • Chivrac, F.1    Pollet, E.2    Schmutz, M.3    Avérous, L.4
  • 45
    • 79953091026 scopus 로고    scopus 로고
    • Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films
    • Müller, C. M. O., J. B., Laurindo, and F., Yamashita. 2011. Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Ind. Crops Prod. 33:605–610. doi:10.1016/j.indcrop.2010.12.021
    • (2011) Ind. Crops Prod. , vol.33 , pp. 605-610
    • Müller, C.M.O.1    Laurindo, J.B.2    Yamashita, F.3
  • 46
    • 84856011823 scopus 로고    scopus 로고
    • Cassava starch–kaolinite composite film. Effect of clay content and clay modification on film properties
    • Mbey, J. A., S., Hoppe, and F., Thomas. 2012. Cassava starch–kaolinite composite film. Effect of clay content and clay modification on film properties. Carbohydr. Polym. 88:213–222. doi:10.1016/j.carbpol.2011.11.091
    • (2012) Carbohydr. Polym. , vol.88 , pp. 213-222
    • Mbey, J.A.1    Hoppe, S.2    Thomas, F.3
  • 47
    • 84937906335 scopus 로고    scopus 로고
    • Estimation of material and interfacial/interphase properties in clay/polymer nanocomposites by yield strength data
    • Zare, Y., 2015. Estimation of material and interfacial/interphase properties in clay/polymer nanocomposites by yield strength data. Appl. Clay Sci. 115:61–66. doi:10.1016/j.clay.2015.07.021
    • (2015) Appl. Clay Sci. , vol.115 , pp. 61-66
    • Zare, Y.1
  • 48
    • 84933073968 scopus 로고    scopus 로고
    • A benzimidazole-based conducting polymer and a PMMA–clay nanocomposite containing biosensor platform for glucose sensing
    • Emre, F. B., M., Kesik, F. E., Kanik, H., Zekiye Akpinar, E., Aslan-Gurel, R. M., Rossi, and L., Toppare. 2015. A benzimidazole-based conducting polymer and a PMMA–clay nanocomposite containing biosensor platform for glucose sensing. Synth. Met. 207:102–109. doi:10.1016/j.synthmet.2015.06.015
    • (2015) Synth. Met. , vol.207 , pp. 102-109
    • Emre, F.B.1    Kesik, M.2    Kanik, F.E.3    Zekiye Akpinar, H.4    Aslan-Gurel, E.5    Rossi, R.M.6    Toppare, L.7
  • 49
    • 4444268820 scopus 로고    scopus 로고
    • Studies on the properties of montmorillonite-reinforced thermoplastic starch composites
    • Huang, M.-F., J.-G., Yu, and X.-F., Ma. 2004. Studies on the properties of montmorillonite-reinforced thermoplastic starch composites. Polymer 45:7017–7023. doi:10.1016/j.polymer.2004.07.068
    • (2004) Polymer , vol.45 , pp. 7017-7023
    • Huang, M.-F.1    Yu, J.-G.2    Ma, X.-F.3
  • 50
    • 34250900276 scopus 로고    scopus 로고
    • Production of thermoplastic starch/MMT-sorbitol nanocomposites by dual-melt extrusion processing
    • Ma, X., J., Yu, and N., Wang. 2007. Production of thermoplastic starch/MMT-sorbitol nanocomposites by dual-melt extrusion processing. Macromol. Mater. Eng. 292:723–728. doi:10.1002/mame.200700026
    • (2007) Macromol. Mater. Eng. , vol.292 , pp. 723-728
    • Ma, X.1    Yu, J.2    Wang, N.3
  • 51
    • 84883891805 scopus 로고    scopus 로고
    • Polymer/clay nanocomposites: Concepts, researches, applications and trends for the future. In
    • Anadao, P., 2012. Polymer/clay nanocomposites: Concepts, researches, applications and trends for the future. In Nanocomposites: New Trends and Developments.
    • (2012) Nanocomposites: New Trends and Developments.
    • Anadao, P.1
  • 52
    • 41149168313 scopus 로고    scopus 로고
    • Creep behaviour of layered silicate/starch–polycaprolactone blends nanocomposites
    • Pérez, C. J., V. A., Alvarez, and A., Vázquez. 2008. Creep behaviour of layered silicate/starch–polycaprolactone blends nanocomposites. Mater. Sci. Eng. A 480:259–265. doi:10.1016/j.msea.2007.07.031
    • (2008) Mater. Sci. Eng. A , vol.480 , pp. 259-265
    • Pérez, C.J.1    Alvarez, V.A.2    Vázquez, A.3
  • 53
    • 53649110445 scopus 로고    scopus 로고
    • Micromechanical modeling and characterization of the effective properties in starch-based nano-biocomposites
    • Chivrac, F., O., Gueguen, E., Pollet, S., Ahzi, A., Makradi, and L., Avérous. 2008. Micromechanical modeling and characterization of the effective properties in starch-based nano-biocomposites. Acta Biomater. 4:1707–1714. doi:10.1016/j.actbio.2008.05.002
    • (2008) Acta Biomater. , vol.4 , pp. 1707-1714
    • Chivrac, F.1    Gueguen, O.2    Pollet, E.3    Ahzi, S.4    Makradi, A.5    Avérous, L.6
  • 54
    • 20544437480 scopus 로고    scopus 로고
    • Synthesis and characterization of polyethylene–octene elastomer/clay/biodegradable starch nanocomposites
    • Liao, H.-T., and C.-S., Wu. 2005. Synthesis and characterization of polyethylene–octene elastomer/clay/biodegradable starch nanocomposites. J. Appl. Polym. Sci. 97:397–404. doi:10.1002/app.21763
    • (2005) J. Appl. Polym. Sci. , vol.97 , pp. 397-404
    • Liao, H.-T.1    Wu, C.-S.2
  • 55
    • 33244494419 scopus 로고    scopus 로고
    • High mechanical performance MMT-urea and formamide-plasticized thermoplastic cornstarch biodegradable nanocomposites
    • Huang, M., J., Yu, and X., Ma. 2006. High mechanical performance MMT-urea and formamide-plasticized thermoplastic cornstarch biodegradable nanocomposites. Carbohydr. Polym. 63:393–399. doi:10.1016/j.carbpol.2005.09.006
    • (2006) Carbohydr. Polym. , vol.63 , pp. 393-399
    • Huang, M.1    Yu, J.2    Ma, X.3
  • 56
    • 33846375507 scopus 로고    scopus 로고
    • Nano clay reinforced biodegradable plastics of PCL starch blends
    • Ikeo, Y., K., Aoki, H., Kishi, S., Matsuda, and A., Murakami. 2006. Nano clay reinforced biodegradable plastics of PCL starch blends. Polym. Adv. Technol. 17:940–944. doi:10.1002/pat.816
    • (2006) Polym. Adv. Technol. , vol.17 , pp. 940-944
    • Ikeo, Y.1    Aoki, K.2    Kishi, H.3    Matsuda, S.4    Murakami, A.5
  • 57
    • 57749176400 scopus 로고    scopus 로고
    • New intercalated layer silicate nanocomposites based on synthesized starch-g-PCL prepared via solution intercalation and in situ polymerization methods: As a comparative study
    • Namazi, H., M., Mosadegh, and A., Dadkhah. 2009. New intercalated layer silicate nanocomposites based on synthesized starch-g-PCL prepared via solution intercalation and in situ polymerization methods: As a comparative study. Carbohydr. Polym. 75:665–669. doi:10.1016/j.carbpol.2008.09.006
    • (2009) Carbohydr. Polym. , vol.75 , pp. 665-669
    • Namazi, H.1    Mosadegh, M.2    Dadkhah, A.3
  • 58
    • 17644378392 scopus 로고    scopus 로고
    • Biodegradable and functionally superior starch–polyester nanocomposites from reactive extrusion
    • Kalambur, S., and S. S. H., Rizvi. 2005. Biodegradable and functionally superior starch–polyester nanocomposites from reactive extrusion. J. Appl. Polym. Sci. 96:1072–1082. doi:10.1002/app.21504
    • (2005) J. Appl. Polym. Sci. , vol.96 , pp. 1072-1082
    • Kalambur, S.1    Rizvi, S.S.H.2
  • 59
    • 84893185185 scopus 로고    scopus 로고
    • Biopolymer–clay nanocomposites: Cassava starch and synthetic clay cast films
    • Perotti, G. F., J., Tronto, M. A., Bizeto, et al. 2014. Biopolymer–clay nanocomposites: Cassava starch and synthetic clay cast films. J. Braz. Chem. Soc. 25:320–330. doi:10.5935/0103-5053.20130300
    • (2014) J. Braz. Chem. Soc. , vol.25 , pp. 320-330
    • Perotti, G.F.1    Tronto, J.2    Bizeto, M.A.3
  • 60
    • 84923384756 scopus 로고    scopus 로고
    • Toxicological evaluation of clay minerals and derived nanocomposites: A review
    • Maisanaba, S., S., Pichardo, M., Puerto, et al. 2015. Toxicological evaluation of clay minerals and derived nanocomposites: A review. Environ. Res. 138:233–254. doi:10.1016/j.envres.2014.12.024
    • (2015) Environ. Res. , vol.138 , pp. 233-254
    • Maisanaba, S.1    Pichardo, S.2    Puerto, M.3
  • 61
    • 84948748643 scopus 로고    scopus 로고
    • Recent progress in dispersion of palygorskite crystal bundles for nanocomposites
    • Wang, W., and A., Wang. 2016. Recent progress in dispersion of palygorskite crystal bundles for nanocomposites. Appl. Clay Sci. 119:18–30. doi:10.1016/j.clay.2015.06.030
    • (2016) Appl. Clay Sci. , vol.119 , pp. 18-30
    • Wang, W.1    Wang, A.2
  • 62
    • 77955661856 scopus 로고    scopus 로고
    • Poly(butylensuccinate-co-adipate)-thermoplastic starch nanocomposite blends
    • Bocchini, S., D., Battegazzore, and A., Frache. 2010. Poly(butylensuccinate-co-adipate)-thermoplastic starch nanocomposite blends. Carbohydr. Polym. 82:802–808. doi:10.1016/j.carbpol.2010.05.056
    • (2010) Carbohydr. Polym. , vol.82 , pp. 802-808
    • Bocchini, S.1    Battegazzore, D.2    Frache, A.3
  • 63
    • 84900019649 scopus 로고    scopus 로고
    • Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly(lactic acid) (PLA)/clay nanocomposites using unmodified nanoclay
    • B. A., and
    • B. A., S., Suin, and B. B., Khatua. 2014. Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly(lactic acid) (PLA)/clay nanocomposites using unmodified nanoclay. Carbohydr. Polym. 110:430–439. doi:10.1016/j.carbpol.2014.04.024
    • (2014) Carbohydr. Polym. , vol.110 , pp. 430-439
    • Suin, S.1    Khatua, B.B.2
  • 64
    • 0031251414 scopus 로고    scopus 로고
    • Poly(vinyl alcohol)–clay and poly(ethylene oxide)–clay blends prepared using water as solvent
    • Ogata, N., S., Kawakage, and T., Ogihara. 1997. Poly(vinyl alcohol)–clay and poly(ethylene oxide)–clay blends prepared using water as solvent. J. Appl. Polym. Sci. 66:573–581. doi:10.1002/(SICI)1097-4628(19971017)66:3<573::AID-APP19>3.0.CO;2-W
    • (1997) J. Appl. Polym. Sci. , vol.66 , pp. 573-581
    • Ogata, N.1    Kawakage, S.2    Ogihara, T.3
  • 65
    • 0345118962 scopus 로고    scopus 로고
    • Polymer nanocomposites: From fundamental research to specific applications
    • Fischer, H., 2003. Polymer nanocomposites: From fundamental research to specific applications. Mater. Sci. Eng. C 23:763–772. doi:10.1016/j.msec.2003.09.148
    • (2003) Mater. Sci. Eng. C , vol.23 , pp. 763-772
    • Fischer, H.1
  • 66
    • 43849093286 scopus 로고    scopus 로고
    • Preparation and characterization of tapioca starch–poly(lactic acid) nanocomposite foams by melt intercalation based on clay type
    • Lee, S. Y., H., Chen, and M. A., Hanna. 2008. Preparation and characterization of tapioca starch–poly(lactic acid) nanocomposite foams by melt intercalation based on clay type. Ind. Crops Prod. 28:95–106. doi:10.1016/j.indcrop.2008.01.009
    • (2008) Ind. Crops Prod. , vol.28 , pp. 95-106
    • Lee, S.Y.1    Chen, H.2    Hanna, M.A.3
  • 67
    • 40649128374 scopus 로고    scopus 로고
    • Key interactions in biodegradable thermoplastic starch/poly(vinyl alcohol)/montmorillonite micro- and nanocomposites
    • Dean, K. M., M. D., Do, E., Petinakis, and L., Yu. 2008. Key interactions in biodegradable thermoplastic starch/poly(vinyl alcohol)/montmorillonite micro- and nanocomposites. Compos. Sci. Technol. 68:1453–1462. doi:10.1016/j.compscitech.2007.10.037
    • (2008) Compos. Sci. Technol. , vol.68 , pp. 1453-1462
    • Dean, K.M.1    Do, M.D.2    Petinakis, E.3    Yu, L.4
  • 68
    • 0344531012 scopus 로고    scopus 로고
    • Preparation and characterisation of biodegradable starch-based nanocomposite materials
    • McGlashan, S. A., and P. J., Halley. 2003. Preparation and characterisation of biodegradable starch-based nanocomposite materials. Polym. Int. 52:1767–1773. doi:10.1002/pi.1287
    • (2003) Polym. Int. , vol.52 , pp. 1767-1773
    • McGlashan, S.A.1    Halley, P.J.2
  • 69
    • 33750967326 scopus 로고    scopus 로고
    • Preparation of cassava starch/montmorillonite composite film
    • Kampeerapappun, P., D., Aht-ong, D., Pentrakoon, and K., Srikulkit. 2007. Preparation of cassava starch/montmorillonite composite film. Carbohydr. Polym. 67:155–163. doi:10.1016/j.carbpol.2006.05.012
    • (2007) Carbohydr. Polym. , vol.67 , pp. 155-163
    • Kampeerapappun, P.1    Aht-ong, D.2    Pentrakoon, D.3    Srikulkit, K.4
  • 70
    • 77950860158 scopus 로고    scopus 로고
    • Morphological and thermomechanical characterization of thermoplastic starch/montmorillonite nanocomposites
    • Schlemmer, D., R. S., Angélica, and M. J. A., Sales. 2010. Morphological and thermomechanical characterization of thermoplastic starch/montmorillonite nanocomposites. Compos. Struct. 92:2066–2070. doi:10.1016/j.compstruct.2009.10.034
    • (2010) Compos. Struct. , vol.92 , pp. 2066-2070
    • Schlemmer, D.1    Angélica, R.S.2    Sales, M.J.A.3
  • 71
    • 84898953224 scopus 로고    scopus 로고
    • Effect of potassium sorbate on antimicrobial and physical properties of starch–clay nanocomposite films
    • Barzegar, H., M. H., Azizi, M., Barzegar, and Z., Hamidi-Esfahani. 2014. Effect of potassium sorbate on antimicrobial and physical properties of starch–clay nanocomposite films. Carbohydr. Polym. 110:26–31. doi:10.1016/j.carbpol.2014.03.092
    • (2014) Carbohydr. Polym. , vol.110 , pp. 26-31
    • Barzegar, H.1    Azizi, M.H.2    Barzegar, M.3    Hamidi-Esfahani, Z.4
  • 72
    • 41349096212 scopus 로고    scopus 로고
    • Preparation and anticorrosive properties of PANI/Na-MMT and PANI/O-MMT nanocomposites
    • Olad, A., and A., Rashidzadeh. 2008. Preparation and anticorrosive properties of PANI/Na-MMT and PANI/O-MMT nanocomposites. Prog. Org. Coat. 62:293–298. doi:10.1016/j.porgcoat.2008.01.007
    • (2008) Prog. Org. Coat. , vol.62 , pp. 293-298
    • Olad, A.1    Rashidzadeh, A.2
  • 73
    • 84940650480 scopus 로고    scopus 로고
    • Starch based polyurethanes: A critical review updating recent literature
    • Zia, F., K. M., Zia, M., Zuber, et al. 2015. Starch based polyurethanes: A critical review updating recent literature. Carbohydr. Polym. 134:784–798. doi:10.1016/j.carbpol.2015.08.034
    • (2015) Carbohydr. Polym. , vol.134 , pp. 784-798
    • Zia, F.1    Zia, K.M.2    Zuber, M.3
  • 74
    • 84868238031 scopus 로고    scopus 로고
    • Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review
    • Sweedman, M. C., M. J., Tizzotti, C., Schäfer, and R. G., Gilbert. 2013. Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydr. Polym. 92:905–920. doi:10.1016/j.carbpol.2012.09.040
    • (2013) Carbohydr. Polym. , vol.92 , pp. 905-920
    • Sweedman, M.C.1    Tizzotti, M.J.2    Schäfer, C.3    Gilbert, R.G.4
  • 75
    • 84986846035 scopus 로고
    • Microbial synthesis, physical properties, and biodegradability of polyhydroxyalkanoates
    • Doi, Y., 1995. Microbial synthesis, physical properties, and biodegradability of polyhydroxyalkanoates. Macromol. Symp. 98:585–599. doi:10.1002/masy.19950980150
    • (1995) Macromol. Symp. , vol.98 , pp. 585-599
    • Doi, Y.1
  • 76
    • 46849088125 scopus 로고    scopus 로고
    • Sustainable films and coatings from hemicelluloses: A review
    • Hansen, N. M. L., and D., Plackett. 2008. Sustainable films and coatings from hemicelluloses: A review. Biomacromolecules 9:1493–1505. doi:10.1021/bm800053z
    • (2008) Biomacromolecules , vol.9 , pp. 1493-1505
    • Hansen, N.M.L.1    Plackett, D.2
  • 77
    • 31344453293 scopus 로고    scopus 로고
    • Morphological, thermal and mechanical properties of ramie crystallites—Reinforced plasticized starch biocomposites
    • Lu, Y., L., Weng, and X., Cao. 2006. Morphological, thermal and mechanical properties of ramie crystallites—Reinforced plasticized starch biocomposites. Carbohydr. Polym. 63:198–204. doi:10.1016/j.carbpol.2005.08.027
    • (2006) Carbohydr. Polym. , vol.63 , pp. 198-204
    • Lu, Y.1    Weng, L.2    Cao, X.3
  • 78
    • 0034290992 scopus 로고    scopus 로고
    • Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis
    • Anglès, M. N., and A., Dufresne. 2000. Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353. doi:10.1021/ma0008701
    • (2000) Macromolecules , vol.33 , pp. 8344-8353
    • Anglès, M.N.1    Dufresne, A.2
  • 79
    • 0036740480 scopus 로고    scopus 로고
    • Plasticized waxy maize starch: Effect of Polyols and relative humidity on material properties
    • Mathew, A. P., and A., Dufresne. 2002. Plasticized waxy maize starch: Effect of Polyols and relative humidity on material properties. Biomacromolecules 3:1101–1108. doi:10.1021/bm020065p
    • (2002) Biomacromolecules , vol.3 , pp. 1101-1108
    • Mathew, A.P.1    Dufresne, A.2
  • 80
    • 84864282239 scopus 로고    scopus 로고
    • Films of native and modified starch reinforced with fiber: Influence of some extrusion variables using response surface methodology
    • Galicia-García, T., F., Martínez-Bustos, O. A., Jiménez-Arévalo, D., Arencón, J., Gámez-Pérez, and A. B., Martínez. 2012. Films of native and modified starch reinforced with fiber: Influence of some extrusion variables using response surface methodology. J. Appl. Polym. Sci. 126:E327–E336. doi:10.1002/app.36982
    • (2012) J. Appl. Polym. Sci. , vol.126 , pp. E327-E336
    • Galicia-García, T.1    Martínez-Bustos, F.2    Jiménez-Arévalo, O.A.3    Arencón, D.4    Gámez-Pérez, J.5    Martínez, A.B.6
  • 82
    • 84875229726 scopus 로고    scopus 로고
    • Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion
    • Hietala, M., A. P., Mathew, and K., Oksman. 2013. Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur. Polym. J. 49:950–956. doi:10.1016/j.eurpolymj.2012.10.016
    • (2013) Eur. Polym. J. , vol.49 , pp. 950-956
    • Hietala, M.1    Mathew, A.P.2    Oksman, K.3
  • 83
    • 0035372097 scopus 로고    scopus 로고
    • A first insight on composites of thermoplastic starch and kaolin
    • de Carvalho, A. J. F., A. A. S., Curvelo, and J. A. M., Agnelli. 2001. A first insight on composites of thermoplastic starch and kaolin. Carbohydr. Polym. 45:189–194. doi:10.1016/S0144-8617(00)00315-5
    • (2001) Carbohydr. Polym. , vol.45 , pp. 189-194
    • de Carvalho, A.J.F.1    Curvelo, A.A.S.2    Agnelli, J.A.M.3
  • 84
    • 0037199731 scopus 로고    scopus 로고
    • Preparation and properties of biodegradable thermoplastic starch/clay hybrids
    • Park, H.-M., X., Li, C.-Z., Jin, C. Y., Park, W. J., Cho, and C. S., Ha. 2002. Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol. Mater. Eng. 287:553–558. doi:10.1002/1439-2054(20020801)287:8<553::AID-MAME553>3.0.CO;2-3
    • (2002) Macromol. Mater. Eng. , vol.287 , pp. 553-558
    • Park, H.-M.1    Li, X.2    Jin, C.-Z.3    Park, C.Y.4    Cho, W.J.5    Ha, C.S.6
  • 85
    • 13144269635 scopus 로고    scopus 로고
    • Green nanocomposites from renewable resources: Effect of Plasticizer on the structure and material properties of clay-filled starch
    • Pandey, J. K., and R. P., Singh. 2005. Green nanocomposites from renewable resources: Effect of Plasticizer on the structure and material properties of clay-filled starch. Starch/Stärke 57:8–15. doi:10.1002/star.200400313
    • (2005) Starch/Stärke , vol.57 , pp. 8-15
    • Pandey, J.K.1    Singh, R.P.2
  • 86
    • 24644491267 scopus 로고    scopus 로고
    • Thermoplastic starch–clay nanocomposites and their characteristics
    • Chen, B., and J. R. G., Evans. 2005. Thermoplastic starch–clay nanocomposites and their characteristics. Carbohydr. Polym. 61:455–463. doi:10.1016/j.carbpol.2005.06.020
    • (2005) Carbohydr. Polym. , vol.61 , pp. 455-463
    • Chen, B.1    Evans, J.R.G.2
  • 87
    • 14044274229 scopus 로고    scopus 로고
    • Rheology of starch–clay nanocomposites
    • Chiou, B.-S., E., Yee, G. M., Glenn, and W. J., Orts. 2005. Rheology of starch–clay nanocomposites. Carbohydr. Polym. 59:467–475. doi:10.1016/j.carbpol.2004.11.001
    • (2005) Carbohydr. Polym. , vol.59 , pp. 467-475
    • Chiou, B.-S.1    Yee, E.2    Glenn, G.M.3    Orts, W.J.4
  • 88
    • 34247402515 scopus 로고    scopus 로고
    • Mechanical properties of layered silicate/starch polycaprolactone blend nanocomposites
    • Pérez, C. J., V. A., Alvarez, I., Mondragón, and A., Vázquez. 2007. Mechanical properties of layered silicate/starch polycaprolactone blend nanocomposites. Polym. Int. 56:686–693. doi:10.1002/pi.2192
    • (2007) Polym. Int. , vol.56 , pp. 686-693
    • Pérez, C.J.1    Alvarez, V.A.2    Mondragón, I.3    Vázquez, A.4
  • 89
    • 49149128818 scopus 로고    scopus 로고
    • Effects of plasticizers on the structure and properties of starch–clay nanocomposite films
    • Tang, X., S., Alavi, and T. J., Herald. 2008. Effects of plasticizers on the structure and properties of starch–clay nanocomposite films. Carbohydr. Polym. 74:552–558. doi:10.1016/j.carbpol.2008.04.022
    • (2008) Carbohydr. Polym. , vol.74 , pp. 552-558
    • Tang, X.1    Alavi, S.2    Herald, T.J.3
  • 90
    • 64249161981 scopus 로고    scopus 로고
    • Effect of a plasticizer on the structure of biodegradable starch/clay nanocomposites: Thermal, water-sorption, and oxygen-barrier properties
    • Zeppa, C., F., Gouanvé, and E., Espuche. 2009. Effect of a plasticizer on the structure of biodegradable starch/clay nanocomposites: Thermal, water-sorption, and oxygen-barrier properties. J. Appl. Polym. Sci. 112:2044–2056. doi:10.1002/app.29588
    • (2009) J. Appl. Polym. Sci. , vol.112 , pp. 2044-2056
    • Zeppa, C.1    Gouanvé, F.2    Espuche, E.3
  • 91
    • 58149503985 scopus 로고    scopus 로고
    • Effect of citric acid and processing on the performance of thermoplastic starch/montmorillonite nanocomposites
    • Wang, N., X., Zhang, N., Han, and S., Bai. 2009. Effect of citric acid and processing on the performance of thermoplastic starch/montmorillonite nanocomposites. Carbohydr. Polym. 76:68–73. doi:10.1016/j.carbpol.2008.09.021
    • (2009) Carbohydr. Polym. , vol.76 , pp. 68-73
    • Wang, N.1    Zhang, X.2    Han, N.3    Bai, S.4
  • 92
    • 70350572300 scopus 로고    scopus 로고
    • Preparation and properties of biodegradable starch–clay nanocomposites
    • Chung, Y.-L., S., Ansari, L., Estevez, et al. 2010. Preparation and properties of biodegradable starch–clay nanocomposites. Carbohydr. Polym. 79:391–396. doi:10.1016/j.carbpol.2009.08.021
    • (2010) Carbohydr. Polym. , vol.79 , pp. 391-396
    • Chung, Y.-L.1    Ansari, S.2    Estevez, L.3
  • 93
    • 77249112657 scopus 로고    scopus 로고
    • Preparation and properties of biodegradable starch-layered double hydroxide nanocomposites
    • Chung, Y.-L., and H.-M., Lai. 2010. Preparation and properties of biodegradable starch-layered double hydroxide nanocomposites. Carbohydr. Polym. 80:525–532. doi:10.1016/j.carbpol.2009.12.020
    • (2010) Carbohydr. Polym. , vol.80 , pp. 525-532
    • Chung, Y.-L.1    Lai, H.-M.2
  • 94
    • 71649098288 scopus 로고    scopus 로고
    • Optimization of mechanical properties of thermoplastic starch/clay nanocomposites
    • Majdzadeh-Ardakani, K., A. H., Navarchian, and F., Sadeghi. 2010. Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohydr. Polym. 79:547–554. doi:10.1016/j.carbpol.2009.09.001
    • (2010) Carbohydr. Polym. , vol.79 , pp. 547-554
    • Majdzadeh-Ardakani, K.1    Navarchian, A.H.2    Sadeghi, F.3
  • 95
    • 80052023860 scopus 로고    scopus 로고
    • Preparation and characterization of clay nanocomposites of plasticized starch and polypropylene polymer blends
    • DeLeo, C., C. A., Pinotti, M. C., Gonçalves, and S., Velankar. 2011. Preparation and characterization of clay nanocomposites of plasticized starch and polypropylene polymer blends. J. Polym. Environ. 19:689–697. doi:10.1007/s10924-011-0311-7
    • (2011) J. Polym. Environ. , vol.19 , pp. 689-697
    • DeLeo, C.1    Pinotti, C.A.2    Gonçalves, M.C.3    Velankar, S.4
  • 96
    • 83955163652 scopus 로고    scopus 로고
    • Cassava starch biodegradable films: Influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature
    • Souza, A. C., R., Benze, E. S., Ferrão, C., Ditchfield, A. C. V., Coelho, and C. C., Tadini. 2012. Cassava starch biodegradable films: Influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT–Food Sci. Technol. 46:110–117. doi:10.1016/j.lwt.2011.10.018
    • (2012) LWT–Food Sci. Technol. , vol.46 , pp. 110-117
    • Souza, A.C.1    Benze, R.2    Ferrão, E.S.3    Ditchfield, C.4    Coelho, A.C.V.5    Tadini, C.C.6
  • 97
    • 84881149623 scopus 로고    scopus 로고
    • Water barrier properties of starch–clay nanocomposite films
    • Slavutsky, A. M., M. A., Bertuzzi, and M., Armada. 2012. Water barrier properties of starch–clay nanocomposite films. Braz. J. Food Technol. 15:208–218. doi:10.1590/S1981-67232012000300004
    • (2012) Braz. J. Food Technol. , vol.15 , pp. 208-218
    • Slavutsky, A.M.1    Bertuzzi, M.A.2    Armada, M.3
  • 98
    • 84856013266 scopus 로고    scopus 로고
    • Effects of clays with various hydrophilicities on properties of starch–clay nanocomposites by film blowing
    • Gao, W., H., Dong, H., Hou, and H., Zhang. 2012. Effects of clays with various hydrophilicities on properties of starch–clay nanocomposites by film blowing. Carbohydr. Polym. 88:321–328. doi:10.1016/j.carbpol.2011.12.011
    • (2012) Carbohydr. Polym. , vol.88 , pp. 321-328
    • Gao, W.1    Dong, H.2    Hou, H.3    Zhang, H.4
  • 99
    • 84890511818 scopus 로고    scopus 로고
    • Preparation and characterization of acetylated corn starch–(PVOH)/clay nanocomposite films
    • Katerinopoulou, K., A., Giannakas, K., Grigoriadi, et al. 2014. Preparation and characterization of acetylated corn starch–(PVOH)/clay nanocomposite films. Carbohydr. Polym. 102:216–222. doi:10.1016/j.carbpol.2013.11.030
    • (2014) Carbohydr. Polym. , vol.102 , pp. 216-222
    • Katerinopoulou, K.1    Giannakas, A.2    Grigoriadi, K.3
  • 100
    • 84931352372 scopus 로고    scopus 로고
    • Characterization of starch/poly(vinyl alcohol)/clay nanocomposite films prepared in twin-screw extruder for food packaging application
    • Navarchian, A. H., M., Jalalian, and M., Pirooz. 2015. Characterization of starch/poly(vinyl alcohol)/clay nanocomposite films prepared in twin-screw extruder for food packaging application. J. Plast. Film Sheeting. doi:10.1177/8756087914568904
    • (2015) J. Plast. Film Sheeting.
    • Navarchian, A.H.1    Jalalian, M.2    Pirooz, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.