메뉴 건너뛰기




Volumn 68, Issue , 2017, Pages 191-198

Ensemble based deep networks for image super-resolution

Author keywords

Deep networks; Ensemble; Sparse prior; Super resolution

Indexed keywords

CODES (SYMBOLS); DEEP NEURAL NETWORKS; OPTICAL RESOLVING POWER;

EID: 85017618970     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2017.02.027     Document Type: Article
Times cited : (65)

References (27)
  • 4
    • 58149144703 scopus 로고    scopus 로고
    • Generalizing the nonlocal-means to super-resolution reconstruction
    • [4] Protter, M., Elad, M., Takeda, H., Milanfar, P., Generalizing the nonlocal-means to super-resolution reconstruction. Image Process. IEEE Trans. 18:1 (2009), 36–51.
    • (2009) Image Process. IEEE Trans. , vol.18 , Issue.1 , pp. 36-51
    • Protter, M.1    Elad, M.2    Takeda, H.3    Milanfar, P.4
  • 5
    • 78049312324 scopus 로고    scopus 로고
    • Image super-resolution via sparse representation
    • [5] Yang, J., Wright, J., Huang, T.S., Ma, Y., Image super-resolution via sparse representation. Image Process. IEEE Trans. 19:11 (2010), 2861–2873.
    • (2010) Image Process. IEEE Trans. , vol.19 , Issue.11 , pp. 2861-2873
    • Yang, J.1    Wright, J.2    Huang, T.S.3    Ma, Y.4
  • 6
    • 79959594311 scopus 로고    scopus 로고
    • Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization
    • [6] Dong, W., Zhang, L., Shi, G., Wu, X., Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. Image Process. IEEE Trans. 20:7 (2011), 1838–1857.
    • (2011) Image Process. IEEE Trans. , vol.20 , Issue.7 , pp. 1838-1857
    • Dong, W.1    Zhang, L.2    Shi, G.3    Wu, X.4
  • 8
    • 84983684720 scopus 로고    scopus 로고
    • A+: Adjusted anchored neighborhood regression for fast super-resolution
    • Springer
    • [8] Timofte, R., De Smet, V., Van Gool, L., A+: Adjusted anchored neighborhood regression for fast super-resolution. Asian Conference on Computer Vision, 2014, Springer, 111–126.
    • (2014) Asian Conference on Computer Vision , pp. 111-126
    • Timofte, R.1    De Smet, V.2    Van Gool, L.3
  • 10
    • 84971529522 scopus 로고    scopus 로고
    • Robust single image super-resolution via deep networks with sparse prior
    • [10] Liu, D., Wang, Z., Wen, B., Yang, J., Han, W., Huang, T.S., Robust single image super-resolution via deep networks with sparse prior. IEEE Trans. Image Process. 25:7 (2016), 3194–3207.
    • (2016) IEEE Trans. Image Process. , vol.25 , Issue.7 , pp. 3194-3207
    • Liu, D.1    Wang, Z.2    Wen, B.3    Yang, J.4    Han, W.5    Huang, T.S.6
  • 12
    • 84906484697 scopus 로고    scopus 로고
    • Learning a deep convolutional network for image super-resolution
    • Springer
    • [12] Dong, C., Loy, C.C., He, K., Tang, X., Learning a deep convolutional network for image super-resolution. European Conference on Computer Vision, 2014, Springer, 184–199.
    • (2014) European Conference on Computer Vision , pp. 184-199
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 15
    • 85017584637 scopus 로고    scopus 로고
    • Batch normalization: accelerating deep network training by reducing internal covariate shift, ().arXiv preprint arXiv:1502.03167
    • [15] S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, arXiv preprint arXiv:1502.03167(2015).
    • (2015)
    • Ioffe, S.1    Szegedy, C.2
  • 16
    • 84864128043 scopus 로고    scopus 로고
    • Coupled dictionary training for image super-resolution
    • [16] Yang, J., Wang, Z., Lin, Z., Cohen, S., Huang, T., Coupled dictionary training for image super-resolution. Image Process. IEEE Trans. 21:8 (2012), 3467–3478.
    • (2012) Image Process. IEEE Trans. , vol.21 , Issue.8 , pp. 3467-3478
    • Yang, J.1    Wang, Z.2    Lin, Z.3    Cohen, S.4    Huang, T.5
  • 19
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • [19] Breiman, L., Bagging predictors. Mach. Learn. 24:2 (1996), 123–140.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 20
    • 0037806811 scopus 로고    scopus 로고
    • The boosting approach to machine learning: An overview
    • Springer
    • [20] Schapire, R.E., The boosting approach to machine learning: An overview. Nonlinear Estimation and Classification, 2003, Springer, 149–171.
    • (2003) Nonlinear Estimation and Classification , pp. 149-171
    • Schapire, R.E.1
  • 21
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • [21] Breiman, L., Random forests. Mach. Learn. 45:1 (2001), 5–32.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 22
    • 85006822676 scopus 로고    scopus 로고
    • Seven ways to improve example-based single image super resolution
    • arXiv preprint arXiv:1511.02228
    • [22] R. Timofte, R. Rothe, L. Van Gool, Seven ways to improve example-based single image super resolution, arXiv preprint arXiv:1511.02228 (2015).
    • (2015)
    • Timofte, R.1    Rothe, R.2    Van Gool, L.3
  • 23
    • 84888880337 scopus 로고    scopus 로고
    • Low-complexity single-image super-resolution based on nonnegative neighbor embedding
    • [23] M. Bevilacqua, A. Roumy, C. Guillemot, M.L. Alberi-Morel, Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012).
    • (2012)
    • Bevilacqua, M.1    Roumy, A.2    Guillemot, C.3    Alberi-Morel, M.L.4
  • 25
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • IEEE
    • [25] Martin, D., Fowlkes, C., Tal, D., Malik, J., A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. Proceedings of the IEEE International Conference on Computer Vision, 2, 2001, IEEE, 416–423.
    • (2001) Proceedings of the IEEE International Conference on Computer Vision , vol.2 , pp. 416-423
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.