-
1
-
-
0002194143
-
Image interpolation and resampling
-
[1] Thévenaz, P., Blu, T., Unser, M., Image interpolation and resampling. Handbook of Medical Imaging, Processing and Analysis, 2000, 393–420.
-
(2000)
Handbook of Medical Imaging, Processing and Analysis
, pp. 393-420
-
-
Thévenaz, P.1
Blu, T.2
Unser, M.3
-
2
-
-
5044219639
-
Super-resolution through neighbor embedding
-
IEEE
-
[2] Chang, H., Yeung, D.-Y., Xiong, Y., Super-resolution through neighbor embedding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1, 2004, IEEE, I.
-
(2004)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, vol.1
, pp. I
-
-
Chang, H.1
Yeung, D.-Y.2
Xiong, Y.3
-
3
-
-
77953187337
-
Super-resolution from a single image
-
IEEE
-
[3] Glasner, D., Bagon, S., Irani, M., Super-resolution from a single image. Proceedings of the IEEE International Conference on Computer Vision, 2009, IEEE, 349–356.
-
(2009)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 349-356
-
-
Glasner, D.1
Bagon, S.2
Irani, M.3
-
4
-
-
58149144703
-
Generalizing the nonlocal-means to super-resolution reconstruction
-
[4] Protter, M., Elad, M., Takeda, H., Milanfar, P., Generalizing the nonlocal-means to super-resolution reconstruction. Image Process. IEEE Trans. 18:1 (2009), 36–51.
-
(2009)
Image Process. IEEE Trans.
, vol.18
, Issue.1
, pp. 36-51
-
-
Protter, M.1
Elad, M.2
Takeda, H.3
Milanfar, P.4
-
5
-
-
78049312324
-
Image super-resolution via sparse representation
-
[5] Yang, J., Wright, J., Huang, T.S., Ma, Y., Image super-resolution via sparse representation. Image Process. IEEE Trans. 19:11 (2010), 2861–2873.
-
(2010)
Image Process. IEEE Trans.
, vol.19
, Issue.11
, pp. 2861-2873
-
-
Yang, J.1
Wright, J.2
Huang, T.S.3
Ma, Y.4
-
6
-
-
79959594311
-
Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization
-
[6] Dong, W., Zhang, L., Shi, G., Wu, X., Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. Image Process. IEEE Trans. 20:7 (2011), 1838–1857.
-
(2011)
Image Process. IEEE Trans.
, vol.20
, Issue.7
, pp. 1838-1857
-
-
Dong, W.1
Zhang, L.2
Shi, G.3
Wu, X.4
-
7
-
-
84898792173
-
Anchored neighborhood regression for fast example-based super-resolution
-
IEEE
-
[7] Timofte, R., Smet, V., Gool, L., Anchored neighborhood regression for fast example-based super-resolution. Proceedings of the IEEE International Conference on Computer Vision, 2013, IEEE, 1920–1927.
-
(2013)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 1920-1927
-
-
Timofte, R.1
Smet, V.2
Gool, L.3
-
8
-
-
84983684720
-
A+: Adjusted anchored neighborhood regression for fast super-resolution
-
Springer
-
[8] Timofte, R., De Smet, V., Van Gool, L., A+: Adjusted anchored neighborhood regression for fast super-resolution. Asian Conference on Computer Vision, 2014, Springer, 111–126.
-
(2014)
Asian Conference on Computer Vision
, pp. 111-126
-
-
Timofte, R.1
De Smet, V.2
Van Gool, L.3
-
9
-
-
84973897612
-
Deep networks for image super-resolution with sparse prior
-
IEEE
-
[9] Wang, Z., Liu, D., Yang, J., Han, W., Huang, T., Deep networks for image super-resolution with sparse prior. Proceedings of the IEEE International Conference on Computer Vision, 2015, IEEE, 370–378.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 370-378
-
-
Wang, Z.1
Liu, D.2
Yang, J.3
Han, W.4
Huang, T.5
-
10
-
-
84971529522
-
Robust single image super-resolution via deep networks with sparse prior
-
[10] Liu, D., Wang, Z., Wen, B., Yang, J., Han, W., Huang, T.S., Robust single image super-resolution via deep networks with sparse prior. IEEE Trans. Image Process. 25:7 (2016), 3194–3207.
-
(2016)
IEEE Trans. Image Process.
, vol.25
, Issue.7
, pp. 3194-3207
-
-
Liu, D.1
Wang, Z.2
Wen, B.3
Yang, J.4
Han, W.5
Huang, T.S.6
-
11
-
-
84986325587
-
Accurate image super-resolution using very deep convolutional networks
-
[11] Kim, J., Lee, J.K., Lee, K.M., Accurate image super-resolution using very deep convolutional networks. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR Oral), 2016.
-
(2016)
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR Oral)
-
-
Kim, J.1
Lee, J.K.2
Lee, K.M.3
-
12
-
-
84906484697
-
Learning a deep convolutional network for image super-resolution
-
Springer
-
[12] Dong, C., Loy, C.C., He, K., Tang, X., Learning a deep convolutional network for image super-resolution. European Conference on Computer Vision, 2014, Springer, 184–199.
-
(2014)
European Conference on Computer Vision
, pp. 184-199
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
13
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
[13] Krizhevsky, A., Sutskever, I., Hinton, G.E., Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 2012, 1097–1105.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
15
-
-
85017584637
-
-
Batch normalization: accelerating deep network training by reducing internal covariate shift, ().arXiv preprint arXiv:1502.03167
-
[15] S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, arXiv preprint arXiv:1502.03167(2015).
-
(2015)
-
-
Ioffe, S.1
Szegedy, C.2
-
16
-
-
84864128043
-
Coupled dictionary training for image super-resolution
-
[16] Yang, J., Wang, Z., Lin, Z., Cohen, S., Huang, T., Coupled dictionary training for image super-resolution. Image Process. IEEE Trans. 21:8 (2012), 3467–3478.
-
(2012)
Image Process. IEEE Trans.
, vol.21
, Issue.8
, pp. 3467-3478
-
-
Yang, J.1
Wang, Z.2
Lin, Z.3
Cohen, S.4
Huang, T.5
-
17
-
-
84962128851
-
Image super-resolution using deep convolutional networks
-
[17] Dong, C., Loy, C.C., He, K., Tang, X., Image super-resolution using deep convolutional networks. Pattern Anal. Mach. Intell. IEEE Trans. 38:2 (2016), 295–307.
-
(2016)
Pattern Anal. Mach. Intell. IEEE Trans.
, vol.38
, Issue.2
, pp. 295-307
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
19
-
-
0030211964
-
Bagging predictors
-
[19] Breiman, L., Bagging predictors. Mach. Learn. 24:2 (1996), 123–140.
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
20
-
-
0037806811
-
The boosting approach to machine learning: An overview
-
Springer
-
[20] Schapire, R.E., The boosting approach to machine learning: An overview. Nonlinear Estimation and Classification, 2003, Springer, 149–171.
-
(2003)
Nonlinear Estimation and Classification
, pp. 149-171
-
-
Schapire, R.E.1
-
21
-
-
0035478854
-
Random forests
-
[21] Breiman, L., Random forests. Mach. Learn. 45:1 (2001), 5–32.
-
(2001)
Mach. Learn.
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
22
-
-
85006822676
-
Seven ways to improve example-based single image super resolution
-
arXiv preprint arXiv:1511.02228
-
[22] R. Timofte, R. Rothe, L. Van Gool, Seven ways to improve example-based single image super resolution, arXiv preprint arXiv:1511.02228 (2015).
-
(2015)
-
-
Timofte, R.1
Rothe, R.2
Van Gool, L.3
-
23
-
-
84888880337
-
Low-complexity single-image super-resolution based on nonnegative neighbor embedding
-
[23] M. Bevilacqua, A. Roumy, C. Guillemot, M.L. Alberi-Morel, Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012).
-
(2012)
-
-
Bevilacqua, M.1
Roumy, A.2
Guillemot, C.3
Alberi-Morel, M.L.4
-
24
-
-
80052803206
-
On single image scale-up using sparse-representations
-
Springer
-
[24] Zeyde, R., Elad, M., Protter, M., On single image scale-up using sparse-representations. Proceedings of the International Conference on Curves and Surfaces, 2010, Springer, 711–730.
-
(2010)
Proceedings of the International Conference on Curves and Surfaces
, pp. 711-730
-
-
Zeyde, R.1
Elad, M.2
Protter, M.3
-
25
-
-
0034850577
-
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
-
IEEE
-
[25] Martin, D., Fowlkes, C., Tal, D., Malik, J., A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. Proceedings of the IEEE International Conference on Computer Vision, 2, 2001, IEEE, 416–423.
-
(2001)
Proceedings of the IEEE International Conference on Computer Vision
, vol.2
, pp. 416-423
-
-
Martin, D.1
Fowlkes, C.2
Tal, D.3
Malik, J.4
-
26
-
-
84913555165
-
Caffe: Convolutional architecture for fast feature embedding
-
arXiv preprint arXiv:1408.5093
-
[26] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell, Caffe: Convolutional architecture for fast feature embedding, arXiv preprint arXiv:1408.5093 (2014).
-
(2014)
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
27
-
-
84959188745
-
Single image super-resolution from transformed self-exemplars
-
IEEE
-
[27] Huang, J.-B., Singh, A., Ahuja, N., Single image super-resolution from transformed self-exemplars. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, IEEE, 5197–5206.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 5197-5206
-
-
Huang, J.-B.1
Singh, A.2
Ahuja, N.3
|