메뉴 건너뛰기




Volumn 27, Issue 10, 2018, Pages 2885-2905

Deriving percentage study weights in multi-parameter meta-analysis models: with application to meta-regression, network meta-analysis and one-stage individual participant data models

Author keywords

Fisher s information; individual patient data meta analysis; meta regression; network meta analysis; Percentage study weights

Indexed keywords

ADULT; ARTICLE; DECOMPOSITION; DRUG COMBINATION; ECOLOGICAL FALLACY; FEMALE; HUMAN; MALE; META ANALYSIS; MULTIPLE REGRESSION; NETWORK META-ANALYSIS; PATIENT CODING; REMISSION; RISK ASSESSMENT; VARIANCE; ALGORITHM; MEDICAL RESEARCH; META ANALYSIS (TOPIC); PATIENT; REGRESSION ANALYSIS; STATISTICAL MODEL;

EID: 85043679903     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280216688033     Document Type: Article
Times cited : (16)

References (53)
  • 1
    • 77749306261 scopus 로고    scopus 로고
    • Meta-analysis of individual participant data: rationale, conduct, and reporting
    • Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ 2010; 340: c221–c221
    • (2010) BMJ , vol.340 , pp. c221
    • Riley, R.D.1    Lambert, P.C.2    Abo-Zaid, G.3
  • 2
    • 84955329833 scopus 로고    scopus 로고
    • A decade of individual participant data meta-analyses: A review of current practice
    • Simmonds M, Stewart G, Stewart L. A decade of individual participant data meta-analyses: A review of current practice. Contemp Clin Trials 2015; 45: 76–83
    • (2015) Contemp Clin Trials , vol.45 , pp. 76-83
    • Simmonds, M.1    Stewart, G.2    Stewart, L.3
  • 3
    • 68549101842 scopus 로고    scopus 로고
    • The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration
    • Liberati A, Altman DG, Tetzlaff J, The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009; 339: b2700–b2700
    • (2009) BMJ , vol.339 , pp. b2700
    • Liberati, A.1    Altman, D.G.2    Tetzlaff, J.3
  • 4
    • 0028950893 scopus 로고
    • A random-effects regression model for meta-analysis
    • Berkey CS, Hoaglin DC, Mosteller F, A random-effects regression model for meta-analysis. Stat Med 1995; 14: 395–411
    • (1995) Stat Med , vol.14 , pp. 395-411
    • Berkey, C.S.1    Hoaglin, D.C.2    Mosteller, F.3
  • 5
    • 84956958671 scopus 로고    scopus 로고
    • Get real in individual participant data (IPD) meta-analysis: a review of the methodology
    • Debray TP, Moons KG, van Valkenhoef G, Get real in individual participant data (IPD) meta-analysis: a review of the methodology. Res Synth Methods 2015; 6(4): 293–309
    • (2015) Res Synth Methods , vol.6 , Issue.4 , pp. 293-309
    • Debray, T.P.1    Moons, K.G.2    van Valkenhoef, G.3
  • 6
    • 79960838960 scopus 로고    scopus 로고
    • A critical review of methods for the assessment of patient-level interactions in individual participant data meta-analysis of randomized trials, and guidance for practitioners
    • Fisher DJ, Copas AJ, Tierney JF, A critical review of methods for the assessment of patient-level interactions in individual participant data meta-analysis of randomized trials, and guidance for practitioners. J Clin Epidemiol 2011; 64: 949–967
    • (2011) J Clin Epidemiol , vol.64 , pp. 949-967
    • Fisher, D.J.1    Copas, A.J.2    Tierney, J.F.3
  • 7
    • 0031920047 scopus 로고    scopus 로고
    • Comparison of meta-analysis versus analysis of variance of individual patient data
    • Olkin I, Sampson A. Comparison of meta-analysis versus analysis of variance of individual patient data. Biometrics 1998; 54: 317–322
    • (1998) Biometrics , vol.54 , pp. 317-322
    • Olkin, I.1    Sampson, A.2
  • 8
    • 84867036811 scopus 로고    scopus 로고
    • Statistical analysis of individual participant data meta-analyses: a comparison of methods and recommendations for practice
    • Stewart GB, Altman DG, Askie LM, Statistical analysis of individual participant data meta-analyses: a comparison of methods and recommendations for practice. PLoS One 2012; 7: e46042–e46042
    • (2012) PLoS One , vol.7 , pp. e46042
    • Stewart, G.B.1    Altman, D.G.2    Askie, L.M.3
  • 9
    • 84867048680 scopus 로고    scopus 로고
    • Individual patient data meta-analysis of time-to-event outcomes: one-stage versus two-stage approaches for estimating the hazard ratio under a random effects model
    • Bowden J, Tierney JF, Simmonds M, Individual patient data meta-analysis of time-to-event outcomes: one-stage versus two-stage approaches for estimating the hazard ratio under a random effects model. Res Synth Methods 2011; 2: 150–162
    • (2011) Res Synth Methods , vol.2 , pp. 150-162
    • Bowden, J.1    Tierney, J.F.2    Simmonds, M.3
  • 10
    • 84876028745 scopus 로고    scopus 로고
    • Individual participant data meta-analysis for a binary outcome: one-stage or two-stage?
    • Debray TP, Moons KG, Abo-Zaid GM, Individual participant data meta-analysis for a binary outcome: one-stage or two-stage? PLoS One 2013; 8: e60650–e60650
    • (2013) PLoS One , vol.8 , pp. e60650
    • Debray, T.P.1    Moons, K.G.2    Abo-Zaid, G.M.3
  • 11
    • 77953255195 scopus 로고    scopus 로고
    • Comparison of one-step and two-step meta-analysis models using individual patient data
    • Matthew T, Nordstorm K. Comparison of one-step and two-step meta-analysis models using individual patient data. Biometr J 2010; 52: 271–287
    • (2010) Biometr J , vol.52 , pp. 271-287
    • Matthew, T.1    Nordstorm, K.2
  • 12
    • 0029097672 scopus 로고
    • A comparison of meta-analytic results using literature vs individual patient data. Paternal cell immunization for recurrent miscarriage
    • Jeng GT, Scott JR, Burmeister LF. A comparison of meta-analytic results using literature vs individual patient data. Paternal cell immunization for recurrent miscarriage. JAMA 1995; 274: 830–836
    • (1995) JAMA , vol.274 , pp. 830-836
    • Jeng, G.T.1    Scott, J.R.2    Burmeister, L.F.3
  • 13
    • 0036139582 scopus 로고    scopus 로고
    • A comparison of summary patient-level covariates in meta-regression with individual patient data meta-analysis
    • Lambert PC, Sutton AJ, Abrams KR, A comparison of summary patient-level covariates in meta-regression with individual patient data meta-analysis. J Clin Epidemiol 2002; 55: 86–94
    • (2002) J Clin Epidemiol , vol.55 , pp. 86-94
    • Lambert, P.C.1    Sutton, A.J.2    Abrams, K.R.3
  • 14
    • 0030919503 scopus 로고    scopus 로고
    • Comparison of effect estimates from a meta-analysis of summary data from published studies and from a meta-analysis using individual patient data for ovarian cancer studies
    • Steinberg KK, Smith SJ, Stroup DF, Comparison of effect estimates from a meta-analysis of summary data from published studies and from a meta-analysis using individual patient data for ovarian cancer studies. Am J Epidemiol 1997; 145: 917–925
    • (1997) Am J Epidemiol , vol.145 , pp. 917-925
    • Steinberg, K.K.1    Smith, S.J.2    Stroup, D.F.3
  • 15
    • 43049159457 scopus 로고    scopus 로고
    • Meta-analysis of continuous outcomes combining individual patient data and aggregate data
    • Riley RD, Lambert PC, Staessen JA, Meta-analysis of continuous outcomes combining individual patient data and aggregate data. Stat Med 2008; 27: 1870–1893
    • (2008) Stat Med , vol.27 , pp. 1870-1893
    • Riley, R.D.1    Lambert, P.C.2    Staessen, J.A.3
  • 16
    • 34047170379 scopus 로고    scopus 로고
    • Evidence synthesis combining individual patient data and aggregate data: a systematic review identified current practice and possible methods
    • Riley RD, Simmonds MC, Look MP. Evidence synthesis combining individual patient data and aggregate data: a systematic review identified current practice and possible methods. J Clin Epidemiol 2007; 60: 431–439
    • (2007) J Clin Epidemiol , vol.60 , pp. 431-439
    • Riley, R.D.1    Simmonds, M.C.2    Look, M.P.3
  • 17
    • 84857135675 scopus 로고    scopus 로고
    • Assessment of publication bias, selection bias and unavailable data in meta-analyses using individual participant data: a database survey
    • Ahmed I, Sutton AJ, Riley RD. Assessment of publication bias, selection bias and unavailable data in meta-analyses using individual participant data: a database survey. BMJ 2012; 344: d7762–d7762
    • (2012) BMJ , vol.344 , pp. d7762
    • Ahmed, I.1    Sutton, A.J.2    Riley, R.D.3
  • 18
    • 84875612338 scopus 로고    scopus 로고
    • Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression
    • White IR, Barrett JK, Jackson D, Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Res Synth Method 2012; 3: 111–125
    • (2012) Res Synth Method , vol.3 , pp. 111-125
    • White, I.R.1    Barrett, J.K.2    Jackson, D.3
  • 19
    • 0035882387 scopus 로고    scopus 로고
    • Meta-analysis of continuous outcome data from individual patients
    • Higgins JP, Whitehead A, Turner RM, Meta-analysis of continuous outcome data from individual patients. Stat Med 2001; 20: 2219–2241
    • (2001) Stat Med , vol.20 , pp. 2219-2241
    • Higgins, J.P.1    Whitehead, A.2    Turner, R.M.3
  • 20
    • 84879169822 scopus 로고    scopus 로고
    • Meta-analysis of randomised trials with a continuous outcome according to baseline imbalance and availability of individual participant data
    • Riley RD, Kauser I, Bland M, Meta-analysis of randomised trials with a continuous outcome according to baseline imbalance and availability of individual participant data. Stat Med 2013; 32: 2747–2766
    • (2013) Stat Med , vol.32 , pp. 2747-2766
    • Riley, R.D.1    Kauser, I.2    Bland, M.3
  • 25
    • 85038856835 scopus 로고    scopus 로고
    • Borrowing of strength and study weights in multivariate and network meta-analysis
    • Jackson D, White IR, Price M, Borrowing of strength and study weights in multivariate and network meta-analysis. Stat Methods Med Res 2017; 26: 2853–2868
    • (2017) Stat Methods Med Res , vol.26 , pp. 2853-2868
    • Jackson, D.1    White, I.R.2    Price, M.3
  • 26
    • 0037186429 scopus 로고    scopus 로고
    • Advanced methods in meta-analysis: multivariate approach and meta-regression
    • Van Houwelingen HC, Arends LR, Stijnen T. Advanced methods in meta-analysis: multivariate approach and meta-regression. Stat Med 2002; 21: 589–624
    • (2002) Stat Med , vol.21 , pp. 589-624
    • Van Houwelingen, H.C.1    Arends, L.R.2    Stijnen, T.3
  • 27
    • 80051781370 scopus 로고    scopus 로고
    • Multivariate meta-analysis: potential and promise
    • Jackson D, Riley RD, White IR. Multivariate meta-analysis: potential and promise. Stat Med 2011; 30: 2481–2498
    • (2011) Stat Med , vol.30 , pp. 2481-2498
    • Jackson, D.1    Riley, R.D.2    White, I.R.3
  • 28
    • 79960824714 scopus 로고    scopus 로고
    • Multivariate random-effects meta-regression: Updates to mvmeta
    • White IR. Multivariate random-effects meta-regression: Updates to mvmeta. STATA J 2011; 11: 255–270
    • (2011) STATA J , vol.11 , pp. 255-270
    • White, I.R.1
  • 29
    • 85001084853 scopus 로고    scopus 로고
    • Network meta-analysis
    • White IR. Network meta-analysis. Stata J 2015; 15: 951–985
    • (2015) Stata J , vol.15 , pp. 951-985
    • White, I.R.1
  • 30
    • 33745663057 scopus 로고    scopus 로고
    • Assessing evidence inconsistency in mixed treatment comparisons
    • Lu G, Ades AE. Assessing evidence inconsistency in mixed treatment comparisons. J Am Stat Assoc 2006; 101: 447–459
    • (2006) J Am Stat Assoc , vol.101 , pp. 447-459
    • Lu, G.1    Ades, A.E.2
  • 31
    • 84875625927 scopus 로고    scopus 로고
    • Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies
    • Higgins JPT, Jackson D, Barrett JK, Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Method 2012; 3: 98–110
    • (2012) Res Synth Method , vol.3 , pp. 98-110
    • Higgins, J.P.T.1    Jackson, D.2    Barrett, J.K.3
  • 32
    • 78649672029 scopus 로고    scopus 로고
    • Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data
    • Stijnen T, Hamza TH, Özdemir P. Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. Stat Med 2010; 29: 3046–3067
    • (2010) Stat Med , vol.29 , pp. 3046-3067
    • Stijnen, T.1    Hamza, T.H.2    Özdemir, P.3
  • 34
    • 84949346776 scopus 로고
    • Generalized linear mixed models: a pseudo-likelihood approach
    • Wolfinger R, O’Connell M. Generalized linear mixed models: a pseudo-likelihood approach. J Stat Comput Simul 1993; 48: 233–243
    • (1993) J Stat Comput Simul , vol.48 , pp. 233-243
    • Wolfinger, R.1    O’Connell, M.2
  • 35
    • 84884363111 scopus 로고    scopus 로고
    • A short guide and a forest plot command (ipdforest) for one-stage meta-analysis
    • Kontopantelis E, Reeves D. A short guide and a forest plot command (ipdforest) for one-stage meta-analysis. Stata J 2014; 13: 574–587
    • (2014) Stata J , vol.13 , pp. 574-587
    • Kontopantelis, E.1    Reeves, D.2
  • 36
    • 18244368464 scopus 로고    scopus 로고
    • Systolic and diastolic blood pressure lowering as determinants of cardiovascular outcome
    • Wang JG, Staessen JA, Franklin SS, Systolic and diastolic blood pressure lowering as determinants of cardiovascular outcome. Hypertension 2005; 45: 907–913
    • (2005) Hypertension , vol.45 , pp. 907-913
    • Wang, J.G.1    Staessen, J.A.2    Franklin, S.S.3
  • 37
    • 39549122751 scopus 로고    scopus 로고
    • Meta-analysis of individual- and aggregate-level data
    • Sutton AJ, Kendrick D, Coupland CA. Meta-analysis of individual- and aggregate-level data. Stat Med 2008; 27: 651–669
    • (2008) Stat Med , vol.27 , pp. 651-669
    • Sutton, A.J.1    Kendrick, D.2    Coupland, C.A.3
  • 38
    • 33745453391 scopus 로고    scopus 로고
    • Improving ecological inference using individual-level data
    • Jackson C, Best N, Richardson S. Improving ecological inference using individual-level data. Stat Med 2006; 25: 2136–2159
    • (2006) Stat Med , vol.25 , pp. 2136-2159
    • Jackson, C.1    Best, N.2    Richardson, S.3
  • 39
    • 78149266539 scopus 로고    scopus 로고
    • Meta-analysis of a binary outcome using individual participant data and aggregate data
    • Riley RD, Steyerberg EW. Meta-analysis of a binary outcome using individual participant data and aggregate data. Res Synth Methods 2010; 1: 2–9
    • (2010) Res Synth Methods , vol.1 , pp. 2-9
    • Riley, R.D.1    Steyerberg, E.W.2
  • 40
    • 36849058782 scopus 로고    scopus 로고
    • The binomial distribution of meta-analysis was preferred to model within-study variability
    • Hamza TH, van Houwelingen HC, Stijnen T. The binomial distribution of meta-analysis was preferred to model within-study variability. J Clin Epidemiol 2008; 61: 41–51
    • (2008) J Clin Epidemiol , vol.61 , pp. 41-51
    • Hamza, T.H.1    van Houwelingen, H.C.2    Stijnen, T.3
  • 41
    • 84979680261 scopus 로고    scopus 로고
    • Two new methods to fit models for network meta-analysis with random inconsistency effects
    • Law M, Jackson D, Turner R, Two new methods to fit models for network meta-analysis with random inconsistency effects. BMC Med Res Methodol 2016; 16: 87–87
    • (2016) BMC Med Res Methodol , vol.16 , pp. 87
    • Law, M.1    Jackson, D.2    Turner, R.3
  • 42
    • 84956583945 scopus 로고    scopus 로고
    • Extending DerSimonian and Laird’s methodology to perform network meta-analyses with random inconsistency effects
    • Jackson D, Law M, Barrett JK, Extending DerSimonian and Laird’s methodology to perform network meta-analyses with random inconsistency effects. Stat Med 2016; 35: 819–839
    • (2016) Stat Med , vol.35 , pp. 819-839
    • Jackson, D.1    Law, M.2    Barrett, J.K.3
  • 43
    • 84905565481 scopus 로고    scopus 로고
    • A design-by-treatment interaction model for network meta-analysis with random inconsistency effects
    • Jackson D, Barrett JK, Rice S, A design-by-treatment interaction model for network meta-analysis with random inconsistency effects. Stat Med 2014; 33: 3639–3654
    • (2014) Stat Med , vol.33 , pp. 3639-3654
    • Jackson, D.1    Barrett, J.K.2    Rice, S.3
  • 44
    • 0000814621 scopus 로고
    • Generalized linear model diagnostics using the deviance and single case deletions
    • Williams DA. Generalized linear model diagnostics using the deviance and single case deletions. Appl Stat 1987; 36: 181–191
    • (1987) Appl Stat , vol.36 , pp. 181-191
    • Williams, D.A.1
  • 45
    • 0000350475 scopus 로고
    • Logistic regression diagnostics
    • Pregibon D. Logistic regression diagnostics. Ann Stat 1981; 9: 705–724
    • (1981) Ann Stat , vol.9 , pp. 705-724
    • Pregibon, D.1
  • 47
    • 84858726078 scopus 로고    scopus 로고
    • Individual patient data meta-analysis of survival data using Poisson regression models
    • Crowther MJ, Riley RD, Staessen JA, Individual patient data meta-analysis of survival data using Poisson regression models. BMC Med Res Methodol 2012; 12: 34–34
    • (2012) BMC Med Res Methodol , vol.12 , pp. 34
    • Crowther, M.J.1    Riley, R.D.2    Staessen, J.A.3
  • 48
    • 84928753669 scopus 로고    scopus 로고
    • Preferred reporting items for systematic review and meta-analyses of individual participant data: the PRISMA-IPD Statement
    • Stewart LA, Clarke M, Rovers M, Preferred reporting items for systematic review and meta-analyses of individual participant data: the PRISMA-IPD Statement. JAMA 2015; 313: 1657–1665
    • (2015) JAMA , vol.313 , pp. 1657-1665
    • Stewart, L.A.1    Clarke, M.2    Rovers, M.3
  • 49
    • 84988478557 scopus 로고    scopus 로고
    • Random-effects meta-analysis of inconsistent effects: a time for change
    • Cornell JE, Mulrow CD, Localio R, Random-effects meta-analysis of inconsistent effects: a time for change. Ann Intern Med 2014; 160: 267–270
    • (2014) Ann Intern Med , vol.160 , pp. 267-270
    • Cornell, J.E.1    Mulrow, C.D.2    Localio, R.3
  • 50
    • 0035977414 scopus 로고    scopus 로고
    • A refined method for the meta-analysis of controlled clinical trials with binary outcome
    • Hartung J, Knapp G. A refined method for the meta-analysis of controlled clinical trials with binary outcome. Stat Med 2001; 20: 3875–3889
    • (2001) Stat Med , vol.20 , pp. 3875-3889
    • Hartung, J.1    Knapp, G.2
  • 51
    • 84959360130 scopus 로고    scopus 로고
    • Robust variance estimation in meta-regression with dependent effect size estimates
    • Hedges LV, Tipton E, Johnson MC. Robust variance estimation in meta-regression with dependent effect size estimates. Res Synth Methods 2010; 1: 39–65
    • (2010) Res Synth Methods , vol.1 , pp. 39-65
    • Hedges, L.V.1    Tipton, E.2    Johnson, M.C.3
  • 52
    • 33646897928 scopus 로고    scopus 로고
    • Robust variance estimation for random effects meta-analysis
    • Sidik K, Jonkman JN. Robust variance estimation for random effects meta-analysis. Comput Stat Data Anal 2006; 50: 3681–3701
    • (2006) Comput Stat Data Anal , vol.50 , pp. 3681-3701
    • Sidik, K.1    Jonkman, J.N.2
  • 53
    • 0030894843 scopus 로고    scopus 로고
    • Incorporating variability in estimates of heterogeneity in the random effects model in meta-analysis
    • Biggerstaff BJ, Tweedie RL. Incorporating variability in estimates of heterogeneity in the random effects model in meta-analysis. Stat Med 1997; 16: 753–768
    • (1997) Stat Med , vol.16 , pp. 753-768
    • Biggerstaff, B.J.1    Tweedie, R.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.