-
2
-
-
85164560670
-
Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: Many names, many benefits, many concerns for the next generation evidence synthesis tool
-
Salanti G. Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. Res Synth Methods. 2012; 3:80-97.
-
(2012)
Res Synth Methods
, vol.3
, pp. 80-97
-
-
Salanti, G.1
-
4
-
-
84959268633
-
Absolute or relative effects? Arm-based synthesis of trial data
-
1:STN:280:DC%2BC28zhsF2qsw%3D%3D 26461457
-
Dias S, Ades AE. Absolute or relative effects? Arm-based synthesis of trial data. Res Synth Methods. 2016; 7(1):23-8.
-
(2016)
Res Synth Methods
, vol.7
, Issue.1
, pp. 23-28
-
-
Dias, S.1
Ades, A.E.2
-
5
-
-
84959284564
-
Rejoinder to the discussion of "a Bayesian missing data framework for generalized multiple outcome mixed treatment comparisons," by S. Dias and A.E. Ades
-
26461816
-
Hong H, Chu H, Zhang J, Carlin BP. Rejoinder to the discussion of "a Bayesian missing data framework for generalized multiple outcome mixed treatment comparisons," by S. Dias and A.E. Ades. Res Synth Methods. 2016; 7(1):29-33.
-
(2016)
Res Synth Methods
, vol.7
, Issue.1
, pp. 29-33
-
-
Hong, H.1
Chu, H.2
Zhang, J.3
Carlin, B.P.4
-
6
-
-
84871665175
-
The use of two-way linear mixed models in multitreatment meta-analysis
-
Piepho HP, Williams ER, Madden LV. The use of two-way linear mixed models in multitreatment meta-analysis. Biometrics. 2012; 68:1269-77.
-
(2012)
Biometrics
, vol.68
, pp. 1269-1277
-
-
Piepho, H.P.1
Williams, E.R.2
Madden, L.V.3
-
7
-
-
84956583945
-
Extending DerSimonian and Laird's methodology to perform network meta-analysis with random inconsistency effects
-
26423209
-
Jackson D, Law M, Barrett JK, Turner R, Higgins JPT, Salanti G, White IR. Extending DerSimonian and Laird's methodology to perform network meta-analysis with random inconsistency effects. Stat Med. 2016; 35(6):819-39.
-
(2016)
Stat Med
, vol.35
, Issue.6
, pp. 819-839
-
-
Jackson, D.1
Law, M.2
Barrett, J.K.3
Turner, R.4
Higgins, J.P.T.5
Salanti, G.6
White, I.R.7
-
8
-
-
84905565481
-
A design-by-treatment interaction model for network meta-analysis with random inconsistency effects
-
Jackson D, Barrett JK, Rice S, White IR, Higgins JPT. A design-by-treatment interaction model for network meta-analysis with random inconsistency effects. Stat Med. 2014; 33:3639-54.
-
(2014)
Stat Med.
, vol.33
, pp. 3639-3654
-
-
Jackson, D.1
Barrett, J.K.2
Rice, S.3
White, I.R.4
Higgins, J.P.T.5
-
9
-
-
0006407254
-
WinBUGS- a Bayesian modelling framework: Concepts, structure, and extensibility
-
Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS- a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput. 2000; 10:325-37.
-
(2000)
Stat Comput.
, vol.10
, pp. 325-337
-
-
Lunn, D.J.1
Thomas, A.2
Best, N.3
Spiegelhalter, D.4
-
10
-
-
84874724764
-
A graphical tool for locating inconsistency in network meta-analyses
-
Krahn U, Binder H, König J. A graphical tool for locating inconsistency in network meta-analyses. BMC Med Res Methodol. 2013; 13:35.
-
(2013)
BMC Med Res Methodol.
, vol.13
, pp. 35
-
-
Krahn, U.1
Binder, H.2
König, J.3
-
11
-
-
23244434820
-
How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS
-
Lambert PC, Sutton AJ, Burton PR, Abrams KR, Jones DR. How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Stat Med. 2005; 24:2401-28.
-
(2005)
Stat Med.
, vol.24
, pp. 2401-2428
-
-
Lambert, P.C.1
Sutton, A.J.2
Burton, P.R.3
Abrams, K.R.4
Jones, D.R.5
-
12
-
-
84875612338
-
Consistency and inconsistency in network meta-analysis: Model estimation using multivariate meta-regression
-
White IR, Barrett JK, Jackson D, Higgins JPT. Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Res Synth Methods. 2012; 3:111-25.
-
(2012)
Res Synth Methods.
, vol.3
, pp. 111-125
-
-
White, I.R.1
Barrett, J.K.2
Jackson, D.3
Higgins, J.P.T.4
-
13
-
-
84875625927
-
Consistency and inconsistency in network meta-analysis: Concepts and models for multi-arm studies
-
Higgins JPT, Jackson D, Barrett JK, Lu G, Ades AE, White IR. Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Methods. 2012; 3:98-110.
-
(2012)
Res Synth Methods
, vol.3
, pp. 98-110
-
-
Higgins, J.P.T.1
Jackson, D.2
Barrett, J.K.3
Lu, G.4
Ades, A.E.5
White, I.R.6
-
14
-
-
33745663057
-
Assessing evidence inconsistency in mixed treatment comparisons
-
Lu G, Ades AE. Assessing evidence inconsistency in mixed treatment comparisons. J Am Stat Assoc. 2006; 101:447-59.
-
(2006)
J Am Stat Assoc.
, vol.101
, pp. 447-459
-
-
Lu, G.1
Ades, A.E.2
-
15
-
-
84979178051
-
The design-by-treatment interaction model: A unifying framework for modelling loop inconsistency in network meta-analysis
-
Jackson D, Boddington P, White IR. The design-by-treatment interaction model: a unifying framework for modelling loop inconsistency in network meta-analysis. Res Synth Methods. 2015. doi: http://dx.doi.org/10.10021jrsm1188.
-
(2015)
Res Synth Methods
-
-
Jackson, D.1
Boddington, P.2
White, I.R.3
-
16
-
-
84902370968
-
Network meta-analysis made easy: Detection of inconsistency using factorial analysis-of-variance models
-
Piepho HP. Network meta-analysis made easy: detection of inconsistency using factorial analysis-of-variance models. BMC Med Res Methodol. 2014; 14:61.
-
(2014)
BMC Med Res Methodol
, vol.14
, pp. 61
-
-
Piepho, H.P.1
-
17
-
-
0037199837
-
Network meta-analysis for indirect treatment comparisons
-
Lumley T. Network meta-analysis for indirect treatment comparisons. Stat Med. 2002; 21:2313-24.
-
(2002)
Stat Med.
, vol.21
, pp. 2313-2324
-
-
Lumley, T.1
-
18
-
-
80051781370
-
Multivariate meta-analysis: Potential and promise
-
Jackson D, Riley R, White IR. Multivariate meta-analysis: Potential and promise. Stat Med. 2011; 30:2481-98.
-
(2011)
Stat Med.
, vol.30
, pp. 2481-2498
-
-
Jackson, D.1
Riley, R.2
White, I.R.3
-
19
-
-
84922218560
-
Predictive distributions for between-study heterogeneity and methods for their application in Bayesian meta-analysis
-
Turner RM, Jackson D, Wei Y, Thompson SG, Higgins JPT. Predictive distributions for between-study heterogeneity and methods for their application in Bayesian meta-analysis. Stat Med. 2014; 34:984-98.
-
(2014)
Stat Med.
, vol.34
, pp. 984-998
-
-
Turner, R.M.1
Jackson, D.2
Wei, Y.3
Thompson, S.G.4
Higgins, J.P.T.5
-
22
-
-
43149101297
-
A new approach to outliers in meta-analysis
-
Baker R, Jackson D. A new approach to outliers in meta-analysis. Health Care Manag Sci. 2008; 11:121-31.
-
(2008)
Health Care Manag Sci.
, vol.11
, pp. 121-131
-
-
Baker, R.1
Jackson, D.2
-
23
-
-
77958110812
-
Conducting meta-analyses in R with the metafor package
-
Accessed 19 July 2016.
-
Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010; 36:1-48. http://www.jstatsoft.org/v36/i03/. Accessed 19 July 2016.
-
(2010)
J Stat Softw.
, vol.36
, pp. 1-48
-
-
Viechtbauer, W.1
-
25
-
-
0029874040
-
A likelihood approach to meta-analysis with random effects
-
Hardy RJ, Thompson SG. A likelihood approach to meta-analysis with random effects. Stat Med. 1996; 15:619-29.
-
(1996)
Stat Med.
, vol.15
, pp. 619-629
-
-
Hardy, R.J.1
Thompson, S.G.2
-
26
-
-
85001084853
-
Network meta-analysis
-
White IR
-
White IR. Network meta-analysis. Stata J. 2015; 15(4):951-85.
-
(2015)
Stata J
, vol.15
, Issue.4
, pp. 951-985
-
-
-
27
-
-
85001037986
-
Visualizing assumptions and results in network meta-analysis: The network graphs package
-
Chaimani A, Salanti G. Visualizing assumptions and results in network meta-analysis: The network graphs package. Stata J. 2015; 15(4):905-50.
-
(2015)
Stata J
, vol.15
, Issue.4
, pp. 905-950
-
-
Chaimani, A.1
Salanti, G.2
-
28
-
-
84965179011
-
-
Vienna, Austria: R Foundation for Statistical Computing Accessed 19 July 2016.
-
R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/. Accessed 19 July 2016.
-
R: A Language and Environment for Statistical Computing
-
-
-
29
-
-
84901492219
-
Comparative efficacy and safety of treatments for localized prostate cancer: An application of network meta-analysis
-
Xiong T, Turner R, Wei Y, Neal DE, Lyratzopoulos G, Higgins JPT. Comparative efficacy and safety of treatments for localized prostate cancer: an application of network meta-analysis. BMJ Open. 2014; 4:e004285.
-
(2014)
BMJ Open
, vol.4
, pp. e004285
-
-
Xiong, T.1
Turner, R.2
Wei, Y.3
De, N.4
Lyratzopoulos, G.5
Higgins, J.P.T.6
-
30
-
-
33644878794
-
Topical antibiotics without steroids for chronically discharging ears with underlying eardrum perforations
-
CD004618
-
Macfadyen CA, Acuin JM, Gamble C. Topical antibiotics without steroids for chronically discharging ears with underlying eardrum perforations. Cochrane Database Syst Rev. 2005; 4:CD004618.
-
(2005)
Cochrane Database Syst Rev.
, vol.4
-
-
MacFadyen, C.A.1
Acuin, J.M.2
Gamble, C.3
-
31
-
-
79951558340
-
A random effects variance shift model for detecting and accommodating outliers in meta-analysis
-
Gumedze FN, Jackson D. A random effects variance shift model for detecting and accommodating outliers in meta-analysis. BMC Med Res Methodol. 2011; 11:19.
-
(2011)
BMC Med Res Methodol
, vol.11
, pp. 19
-
-
Gumedze, F.N.1
Jackson, D.2
-
32
-
-
84907015020
-
Methods for calculating confidence and credible intervals for the residual between-study variance in random effects meta-regression models
-
Jackson D, Turner R, Rhodes K, Viechtbauer W. Methods for calculating confidence and credible intervals for the residual between-study variance in random effects meta-regression models. BMC Med Res Methodol. 2014; 14:103.
-
(2014)
BMC Med Res Methodol.
, vol.14
, pp. 103
-
-
Jackson, D.1
Turner, R.2
Rhodes, K.3
Viechtbauer, W.4
|