메뉴 건너뛰기




Volumn 1, Issue 4, 2014, Pages 193-195

sbv Improver diagnostic signature challenge: Preface to this special issue

Author keywords

sbv Improver

Indexed keywords

MESSENGER RNA;

EID: 85043216720     PISSN: 21628130     EISSN: 21628149     Source Type: Journal    
DOI: 10.4161/sysb.26324     Document Type: Article
Times cited : (2)

References (15)
  • 1
    • 84860475570 scopus 로고    scopus 로고
    • Industrial methodology for process verification in research (IMPROVER): toward systems biology verification
    • PMID:22423044
    • Meyer P, Hoeng J, Rice JJ, Norel R, Sprengel J, Stolle K, Bonk T, Corthesy S, Royyuru A, Peitsch MC, et al. Industrial methodology for process verification in research (IMPROVER): toward systems biology verification. Bioinformatics 2012; 28:1193-201; PMID:22423044; http://dx.doi.org/10.1093/bioinformatics/bts116
    • (2012) Bioinformatics , vol.28 , pp. 1193-1201
    • Meyer, P.1    Hoeng, J.2    Rice, J.J.3    Norel, R.4    Sprengel, J.5    Stolle, K.6    Bonk, T.7    Corthesy, S.8    Royyuru, A.9    Peitsch, M.C.10
  • 5
    • 13444304216 scopus 로고    scopus 로고
    • Microarrays and molecular research: noise discovery?
    • PMID:15705441
    • Ioannidis JPA. Microarrays and molecular research: noise discovery? Lancet 2005; 365:454-5; PMID:15705441
    • (2005) Lancet , vol.365 , pp. 454-455
    • Ioannidis, J.P.A.1
  • 6
    • 80051764856 scopus 로고    scopus 로고
    • Duke scandal highlights need for genomics research criteria
    • PMID:21693754
    • Goozner M. Duke scandal highlights need for genomics research criteria. J Natl Cancer Inst 2011; 103:916-7; PMID:21693754; http://dx.doi. org/10.1093/jnci/djr231
    • (2011) J Natl Cancer Inst , vol.103 , pp. 916-917
    • Goozner, M.1
  • 7
    • 84885895107 scopus 로고    scopus 로고
    • Strengths and limitations of microarray-based phenotype prediction: Lessons learned from the IMPROVER Diagnostic Signature Challenge
    • In press; PMID:23966112
    • Tarca AL, Lauria M, Unger M, Bilal E, Boue S, Dey KK, Hoeng J, Koeppl H, Martin F, Meyer P, et al.; IMPROVER DSC Collaborators. Strengths and limitations of microarray-based phenotype prediction: Lessons learned from the IMPROVER Diagnostic Signature Challenge. Bioinformatics 2013; In press; PMID:23966112; http://dx.doi. org/10.1093/bioinformatics/btt492
    • (2013) Bioinformatics
    • Tarca, A.L.1    Lauria, M.2    Unger, M.3    Bilal, E.4    Boue, S.5    Dey, K.K.6    Hoeng, J.7    Koeppl, H.8    Martin, F.9    Meyer, P.10
  • 8
    • 84890032374 scopus 로고    scopus 로고
    • Methodological approach from the Best Overall Team in the sbv IMPROVER Diagnostic Signature Challenge
    • Tarca AL, Than NG, Romero R. Methodological approach from the Best Overall Team in the sbv IMPROVER Diagnostic Signature Challenge. Systems Biomedicine 2013; e25980
    • (2013) Systems Biomedicine
    • Tarca, A.L.1    Than, N.G.2    Romero, R.3
  • 9
    • 85043216795 scopus 로고    scopus 로고
    • Rank-based transcriptional signatures: A novel approach to diagnostic biomarker definition and analysis
    • Lauria M. Rank-based transcriptional signatures: A novel approach to diagnostic biomarker definition and analysis. Systems Biomedicine 2013; e25982
    • (2013) Systems Biomedicine
    • Lauria, M.1
  • 10
    • 84988949567 scopus 로고    scopus 로고
    • Relapsing-remitting multiple sclerosis classification using elastic net logistic regression on gene expression data
    • Zhao C, Deshwar AG, Morris Q. Relapsing-remitting multiple sclerosis classification using elastic net logistic regression on gene expression data. Systems Biomedicine 2013; e26131
    • (2013) Systems Biomedicine
    • Zhao, C.1    Deshwar, A.G.2    Morris, Q.3
  • 11
    • 84890025199 scopus 로고    scopus 로고
    • Learning diagnostic signatures from microarray data using L1-regularized logistic regression
    • Nandy P, Unger M, Zechner C, Dey KK, Koeppl H. Learning diagnostic signatures from microarray data using L1-regularized logistic regression. Systems Biomedicine 2013; e25271
    • (2013) Systems Biomedicine
    • Nandy, P.1    Unger, M.2    Zechner, C.3    Dey, K.K.4    Koeppl, H.5
  • 12
    • 85023744925 scopus 로고    scopus 로고
    • Kernel-based method for feature selection and disease diagnosis using transcriptomics data
    • Cho J-H, Lin A, Wang K. Kernel-based method for feature selection and disease diagnosis using transcriptomics data. Systems Biomedicine 2013; e25978
    • (2013) Systems Biomedicine
    • Cho, J-H.1    Lin, A.2    Wang, K.3
  • 13
    • 84988917839 scopus 로고    scopus 로고
    • Classification of lung adenocarcinoma and squamous cell carcinoma samples based on their gene expression profile in the sbv IMPROVER Diagnostic Signature Challenge
    • Ben-Hamo R, Boue S, Martin F, Talikka M, Efroni S. Classification of lung adenocarcinoma and squamous cell carcinoma samples based on their gene expression profile in the sbv IMPROVER Diagnostic Signature Challenge. Systems Biomedicine 2013; e25983
    • (2013) Systems Biomedicine
    • Ben-Hamo, R.1    Boue, S.2    Martin, F.3    Talikka, M.4    Efroni, S.5
  • 14
    • 85043224860 scopus 로고    scopus 로고
    • Hierarchical-TGDR: Combining biological hierarchy with a regularization method for multi-class classification of lung cancer samples via high-throughput gene-expression data
    • Tian S, Suárez-Fariñas M. Hierarchical-TGDR: Combining biological hierarchy with a regularization method for multi-class classification of lung cancer samples via high-throughput gene-expression data. Systems Biomedicine 2013; e25979
    • (2013) Systems Biomedicine
    • Tian, S.1    Suárez-Fariñas, M.2
  • 15
    • 85043224327 scopus 로고    scopus 로고
    • Predicting COPD status with a random generalized linear model
    • Song L, Horvath S. Predicting COPD status with a random generalized linear model. Systems Biomedicine 2013; e25981
    • (2013) Systems Biomedicine
    • Song, L.1    Horvath, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.