메뉴 건너뛰기




Volumn 29, Issue 22, 2013, Pages 2892-2899

Strengths and limitations of microarray-based phenotype prediction: Lessons learned from the IMPROVER Diagnostic Signature Challenge

Author keywords

[No Author keywords available]

Indexed keywords

DISEASES; DNA MICROARRAY; GENE EXPRESSION PROFILING; GENETICS; HUMAN; LUNG NEOPLASMS; MOLECULAR DIAGNOSIS; MULTIPLE SCLEROSIS; PHENOTYPE; PROCEDURES; PSORIASIS; PULMONARY DISEASE, CHRONIC OBSTRUCTIVE; ARTICLE; CHRONIC OBSTRUCTIVE LUNG DISEASE; LUNG TUMOR; METHODOLOGY;

EID: 84885895107     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btt492     Document Type: Article
Times cited : (99)

References (30)
  • 1
    • 33750624806 scopus 로고    scopus 로고
    • NSABP study confirms oncotype DX predicts chemotherapy benefit in breast cancer patients
    • (2006) NSABP study confirms oncotype DX predicts chemotherapy benefit in breast cancer patients. Oncology (Williston Park), 20, 789-790.
    • (2006) Oncology (Williston Park) , vol.20 , pp. 789-790
  • 2
    • 41649092988 scopus 로고    scopus 로고
    • Gene expression signatures, clinicopathological features, and individualized therapy in breast cancer
    • Acharya, C.R. et al. (2012) Retraction: Acharya CR, et al. Gene expression signatures, clinicopathological features, and individualized therapy in breast cancer. JAMA. 2008; 299:1574-1587.
    • (2012) JAMA , vol.299 , pp. 1574-1587
    • Acharya, C.R.1
  • 3
    • 84856477159 scopus 로고    scopus 로고
    • Gene expression signatures, clinicopathological features, and individualized therapy in breast cancer
    • Acharya CR, et al. (2012) Gene expression signatures, clinicopathological features, and individualized therapy in breast cancer. JAMA, 307, 453.
    • (2012) JAMA. , vol.307 , pp. 453
    • Acharya, C.R.1
  • 4
    • 0033931867 scopus 로고    scopus 로고
    • Assessing the accuracy of prediction algorithms for classification: An overview
    • Baldi, P. et al. (2000) Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics, 16, 412-424.
    • (2000) Bioinformatics , vol.16 , pp. 412-424
    • Baldi, P.1
  • 5
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Stat. Soc. B, 57, 289-300.
    • (1995) J. Royal Stat. Soc. B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 6
    • 0034601455 scopus 로고    scopus 로고
    • Molecular classification of cutaneous malignant melanoma by gene expression profiling
    • Bittner, M. et al. (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature, 406, 536-540.
    • (2000) Nature , vol.406 , pp. 536-540
    • Bittner, M.1
  • 7
    • 0036735386 scopus 로고    scopus 로고
    • Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
    • Gordon, G.J. et al. (2002) Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res., 62, 4963-4967.
    • (2002) Cancer Res. , vol.62 , pp. 4963-4967
    • Gordon, G.J.1
  • 8
    • 84878864979 scopus 로고    scopus 로고
    • Insurance coverage policies for personalized medicine
    • Hresko, A. and Haga, S.B. (2012) Insurance Coverage Policies for Personalized Medicine. J. Pers. Med., 2, 201-216.
    • (2012) J. Pers. Med. , vol.2 , pp. 201-216
    • Hresko, A.1    Haga, S.B.2
  • 9
    • 0142121516 scopus 로고    scopus 로고
    • Exploration, normalization, and summaries of high density oligonucleotide array probe level data
    • Irizarry, R.A. et al. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4, 249-264.
    • (2003) Biostatistics , vol.4 , pp. 249-264
    • Irizarry, R.A.1
  • 10
    • 33845502266 scopus 로고    scopus 로고
    • A genetic signature can predict prognosis and response to therapy in breast cancer: Oncotype DX
    • Kaklamani, V. (2006) A genetic signature can predict prognosis and response to therapy in breast cancer: Oncotype DX. Expert. Rev. Mol. Diagn., 6, 803-809.
    • (2006) Expert. Rev. Mol. Diagn. , vol.6 , pp. 803-809
    • Kaklamani, V.1
  • 11
    • 4644309388 scopus 로고    scopus 로고
    • Evaluating psoriasis with Psoriasis Area and Severity Index, Psoriasis Global Assessment, and Lattice System Physician's Global Assessment
    • Langley, R.G. and Ellis, C.N. (2004) Evaluating psoriasis with Psoriasis Area and Severity Index, Psoriasis Global Assessment, and Lattice System Physician's Global Assessment. J. Am. Acad. Dermatol., 51, 563-569.
    • (2004) J. Am. Acad. Dermatol. , vol.51 , pp. 563-569
    • Langley, R.G.1    Ellis, C.N.2
  • 12
    • 85043216795 scopus 로고    scopus 로고
    • Rank-based transcriptional signatures: A novel approach to diagnostic biomarker definition and analysis
    • in press
    • Lauria, M. (2013) Rank-based transcriptional signatures: a novel approach to diagnostic biomarker definition and analysis. Syst. Biomed., in press.
    • (2013) Syst. Biomed.
    • Lauria, M.1
  • 13
    • 77955131271 scopus 로고    scopus 로고
    • A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data
    • Luo, J. et al. (2010) A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. Pharmacogenomics J., 10, 278-291.
    • (2010) Pharmacogenomics J. , vol.10 , pp. 278-291
    • Luo, J.1
  • 14
    • 84870305264 scopus 로고    scopus 로고
    • Wisdom of crowds for robust gene network inference
    • Marbach, D. et al. (2012)Wisdom of crowds for robust gene network inference. Nat. Methods, 9, 796-804.
    • (2012) Nat. Methods , vol.9 , pp. 796-804
    • Marbach, D.1
  • 15
    • 0016772212 scopus 로고
    • Comparison of the predicted and observed secondary structure of T4 phage lysozyme
    • Matthews, B.W. (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta, 405, 442-451.
    • (1975) Biochim. Biophys. Acta , vol.405 , pp. 442-451
    • Matthews, B.W.1
  • 16
    • 80052730617 scopus 로고    scopus 로고
    • Verification of systems biology research in the age of collaborative competition
    • Meyer, P. et al. (2011) Verification of systems biology research in the age of collaborative competition. Nat. Biotechnol., 29, 811-815.
    • (2011) Nat. Biotechnol. , vol.29 , pp. 811-815
    • Meyer, P.1
  • 17
    • 84860475570 scopus 로고    scopus 로고
    • Industrial methodology for process verification in research (IMPROVER): Toward systems biology verification
    • Meyer, P. et al. (2012) Industrial methodology for process verification in research (IMPROVER): toward systems biology verification. Bioinformatics, 28, 1193-1201.
    • (2012) Bioinformatics , vol.28 , pp. 1193-1201
    • Meyer, P.1
  • 18
    • 34249311296 scopus 로고    scopus 로고
    • Individualization of therapy using MammaPrint: From development to the MINDACT Trial
    • Mook, S. et al. (2007) Individualization of therapy using MammaPrint: from development to the MINDACT Trial. Cancer Genomics Proteomics, 4, 147-155.
    • (2007) Cancer Genomics Proteomics , vol.4 , pp. 147-155
    • Mook, S.1
  • 19
    • 84890025199 scopus 로고    scopus 로고
    • Learning diagnostic signatures from microarray data using L1-regularized logistic regression
    • in press
    • Nandy, P. et al. (2013) Learning diagnostic signatures from microarray data using L1-regularized logistic regression. Syst. Biomed., in press.
    • (2013) Syst. Biomed.
    • Nandy, P.1
  • 20
    • 84868135433 scopus 로고    scopus 로고
    • Comparison of molecular subtyping with BluePrint, MammaPrint, and TargetPrint to local clinical subtyping in breast cancer patients
    • Nguyen, B. et al. (2012) Comparison of molecular subtyping with BluePrint, MammaPrint, and TargetPrint to local clinical subtyping in breast cancer patients. Ann. Surg. Oncol., 19, 3257-3263.
    • (2012) Ann. Surg. Oncol. , vol.19 , pp. 3257-3263
    • Nguyen, B.1
  • 21
    • 0034680102 scopus 로고    scopus 로고
    • Molecular portraits of human breast tumours
    • Perou, C.M. et al. (2000)Molecular portraits of human breast tumours. Nature, 406, 747-752.
    • (2000) Nature , vol.406 , pp. 747-752
    • Perou, C.M.1
  • 22
    • 77949644952 scopus 로고    scopus 로고
    • Towards a rigorous assessment of systems biology models: The DREAM3 challenges
    • Prill, R.J. et al. (2010) Towards a rigorous assessment of systems biology models: the DREAM3 challenges. PLoS One, 5, e9202.
    • (2010) PLoS One , vol.5
    • Prill, R.J.1
  • 23
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • Schena, M. et al. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467-470.
    • (1995) Science , vol.270 , pp. 467-470
    • Schena, M.1
  • 24
    • 0242490780 scopus 로고    scopus 로고
    • Cytoscape: A software environment for integrated models of biomolecular interaction networks
    • Shannon, P. et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498-2504.
    • (2003) Genome Res. , vol.13 , pp. 2498-2504
    • Shannon, P.1
  • 25
    • 78650735473 scopus 로고    scopus 로고
    • The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models
    • Shi, L. et al. (2010) The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat. Biotechnol., 28, 827-838.
    • (2010) Nat. Biotechnol. , vol.28 , pp. 827-838
    • Shi, L.1
  • 26
    • 84872256757 scopus 로고    scopus 로고
    • Machine learning and its applications to biology
    • Tarca, A.L. et al. (2007) Machine learning and its applications to biology. PLoS. Comput. Biol., 3, e116.
    • (2007) PLoS. Comput. Biol. , vol.3
    • Tarca, A.L.1
  • 27
    • 84890032374 scopus 로고    scopus 로고
    • Methodological approach from the best overall team in the IMPROVER diagnostic signature challenge
    • in press.
    • Tarca, A.L., Than, N.G. and Romero, R. (2013) Methodological Approach from the Best Overall Team in the IMPROVER Diagnostic Signature Challenge. Syst. Biomed., in press.
    • (2013) Syst. Biomed.
    • Tarca, A.L.1    Than, N.G.2    Romero, R.3
  • 28
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. et al. (1996) Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B., 58, 267-288.
    • (1996) J. Royal. Statist. Soc B. , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 29
    • 34547446199 scopus 로고    scopus 로고
    • Post-transplant ischemic injury is associated with up-regulated AlloMap gene expression
    • Yamani, M.H. et al. (2007a) Post-transplant ischemic injury is associated with up-regulated AlloMap gene expression. Clin. Transplant., 21, 523-525.
    • (2007) Clin. Transplant. , vol.21 , pp. 523-525
    • Yamani, M.H.1
  • 30
    • 33947640618 scopus 로고    scopus 로고
    • Transplant vasculopathy is associated with increased AlloMap gene expression score
    • Yamani, M.H. et al. (2007b) Transplant vasculopathy is associated with increased AlloMap gene expression score. J. Heart Lung Transplant., 26, 403-406.
    • (2007) J. Heart Lung Transplant. , vol.26 , pp. 403-406
    • Yamani, M.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.